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ABSTRACT 
The paper presents an artificial neural network concept (the 

Synchronizable Oscillator Networks) where the instants of individual 
firings in the form of point processes constitute the only form of 
information transmitted between joining neurons. This type of 
communication contrasts with that which is assumed in most other 
models which typically are continuous or discrete value-passing 
networks. Limiting the messages received by each processing unit to 
time markers that signal the firing of other units presents significant 
implemen tation advantages. 

In our model, neurons fire spontaneously and regularly in the 
absence of perturbation. When interaction is present, the scheduled 
firings are advanced or delayed by the firing of neighboring neurons. 
Networks of such neurons become global oscillators which exhibit 
multiple synchronizing attractors. From arbitrary initial states, 
energy minimization learning procedures can make the network 
converge to oscillatory modes that satisfy multi-dimensional 
constraints Such networks can directly represent routing and 
scheduling problems that conSist of ordering sequences of events. 

INTRODUCTION 

Most neural network models derive from variants of Rosenblatt's 
original perceptron and as such are value-passing networks. This is 
the case in particular with the networks proposed by Fukushima I, 
Hopfield2, Rumelhart3 and many others. In every case, the inputs to 
the processing elements are either binary or continuous amplitude 
signals which are weighted by synaptic gains and subsequently 
summed (integrated). The resulting activation is then passed 
through a sigmoid or threshold filter and again produce a continuous 
or quantized output which may become the input to other neurons. 
The behavior of these models can be related to that of living neurons 
even if they fall considerably short of accounting for their complexity. 
Indeed, it can be observed with many real neurons that action 
potentials (spikes) are fired and propagate down the axonal branches 
when the internal activation reaches some threshold and that higher 
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input rates levels result in more rapid firing. Behind these 
traditional models, there is the assumption that the average 
frequency of action potentials is the carrier of information between 
neurons. Because of integration, the firings of individual neurons are 
considered effective only to the extent to which they contribute to 
the average intensities It is therefore assumed that the activity is 
simply "frequency coded". The exact timing of individual firing is 
ignored. 

This view however does not cover some other well known 
aspects of neural communication. Indeed, the precise timing of 
spike arrivals can make a crucial difference to the outcome of some 
neural interactions. One classic example is that of pre-synaptic 
inhibition, a widespread mechanism in the brain machinery. Several 
studies have also demonstrated the occurrence and functional 
importance of precise timing or phase relationship between 
cooperating neurons in local networks4. 5 . 

The model presented in this paper contrasts with the ones just 
mentioned in that in the networks each firing is considered as an 
individual output event. On the input side of each node, the firing of 
other nodes (the presynaptic neurons) either delay (inhibit) or 
advance (excite) the node firing. As seen earlier, this type of 
neuronal interaction which would be called phase-modulation in 
engineering systems, can also find its rationale in experimental 
neurophysiology. Neurophysiological plausibility however is not the 
major concern here. Rather, we propose to explore a potentially 
useful mechanism for parallel distributed computing. The merit of 
this approach for artificial neural networks is that digital pulses are 
used for internode communication instead of analog voltages. The 
model is particularly well suited to the time-ordering and 
sequencing found in a large class of routing and trajectory control 
problems. 

NEURONS AS SYNCHRONIZABLE OSCILLATORS: 

In our model, the proceSSing elements (the "neurons") are 
relaxation oscillators with built-in self-inhibition. A relaxation 
oscillator is a dynamic system that is capable of accumulating 
potential energy until some threshold or breakdown point is 
reached. At that point the energy is abruptly released, and a new 
cycle begins. 

The description above fits the dynamic behavior of neuronal 
membranes. A richly structured empirical model of this behavior is 
found in the well-established differential formulation of Hodgkin and 
Huxley6 and in a simplified version given by Fitzhugh7. These 
differential equations account for the foundations of neuronal activity 
and are also capable of representing subthreshold behavior and the 
refractoriness that follows each firing. When the membrane 
potential enters the critical region, an abrupt depolarization, i.e., a 
collapse of the potential difference across the membrane occurs 
followed by a somewhat slower recovery. This brief electrical 
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shorting of the membrane is called the action potential or "spike" 
and constitutes the output event for the neuron. If the causes for the 
initial depolarization are maintained, oscillation ( "limit-cycles") 
develops, generating multiple firings. Depending on input level and 
membrane parameters, the oscillation can be limited to a single 
spike, or may produce an oscillatory burst, or even continually 
sustained activity. 

The present model shares the same general properties but uses 
the much simpler description of relaxation oscillator illustrated on 
Figure 1. 
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Figure 1 Relaxation Oscillator with perturbation input 

Firing occurs when the energy level E(t) reaches some critical 
level Ec. Assuming a constant rate of energy influx a, firing will 
occur with the natural period 

Ec· 
T=a:-

When pre-synaptic pulses impinge on the course of energy 
accumulation, the firing schedule is disturbed. Letting to represent 
the instant of the last firing of the cell and tj. U = 1.2 •... J), the 
intants of impinging arrivals from other cells: 

E(t - to) = aCt - to) + L Wj •• uo(t - til ; E $ Ec 

where uo(t) represents the unit impulse at t=O. 

The dramatic complexity of synchronization dynamics can be 
appreCiated by considering the simplest possible case, that of a 
master slave interaction between two regularly firing oscillator units 
A and B, with natural periods TA and TB. At the instants of firing, 
unit A unidirectionally sends a spike Signal to unit B which is 
received at some interval <I> measured from the last time B fired. 
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Upon reception the spike is transformed into a quantum of energy 
6E which depends upon the post-firing arrival time 4>. The 
relationship 6E(4)) can be shaped to represent refractoriness and 
other post-spike properties. Here it is assumed to be a simple ramp 
function. If the interaction is inhibitory. the consequence of this 
arrival is that the next firing of unit B is delayed (with respect to 
what its schedule would have been in absence of perturbation) by 
some positive interval 5 (Figure 2). Because of the shape of 6E(4)) . 
the delaying action. nil immediately after firing. becomes longer for 
impinging pre-synaptic spikes that arrive later in the interval. If the 
interaction is excitatory. the delay is negative. Le. a shortening of the 
natural firing interval. Under very general assumptions regarding the 
function 6E( 4». B will tend to synchronize to A. Within a given 
range of coupling gains, the phase 4> will self-adjust until 
equilibrium is achieved. With a given 6E(4)) , this equilibrium 
corresponds to a distribution of maximum entropy, i.e., to the point 
where both cells receive the same amouint of activation. during their 
common cycle. 
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Figure 2 Relationship between phase and delay when input effiCiently 
increases linearly in the after-spike interval 

The synchronization dynamiCS presents an attractor for each 
rational frequency pair. To each ratio is aSSOCiated a range of stability 
but only the ratios of lowest cardinality have wide zones of phase­
locking (Figure 3). The wider stability wnes correspond to a one to 
one ratio between fA and fB (or between their inverses TA and TBl. 
Kohn and Segundo have demonstrated that such phase locking 
occurs in living invertebrate neurons and pointed out the paradoxical 
nature of phase-locked inhibition which, within each stability region, 
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takes the appearence of excitation since small increases in input 
firing rate will locally result in increased output rates 8, 5. 

The areas between these ranges of stability have the appearance 
of unstable transitions but in fact. as recently pOinted out by Bak9 • 
form an infinity of locking steps known as the Devil's Staircase. 
corresponding to the infinity of intermediate rational pairs (figure 3). 
Bak showed that the staircase is self-similar under scaling and that 
the transitions form a fractal Cantor set with a fractal dimension 
which is a universal constant of dynamic systems. 
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Figure 3 Unilateral SynchroniZation: 

CONSTRAINT SATISFACTION IN OSCILLATOR NETWORKS 

The global synchronization of an interconnected network of 
mutually phase-locking oscillators is a constraint satisfaction 
problem. For each synchronization equilibrium, the nodes fire in 
interlocked patterns that organize inter-spike intervals into integer 
ratios. 

The often cited "Traveling Salesman Problem". the archetype 
for a class of important "hard" problems. is a special case when the 
ratio must be 1 / 1: all nodes must fire at the same frequency. Here 
the equilibrium condition is that every node will accumulate the the 
same amount of energy during the global cycle. Furthermore. the 
firings must be ordered along a minimal path. 
Using stochastic energy minimization and simulated annealing. the 
first simulations have demonstrated the feasibility of the approach 
with a limited number of nodes. The TSP is isomorphic to many 
other sequencing problems which involve distributed constraints. and 
fall into the oscillator array neural net paradigm in a particularly 
natural way. Work is being pursued to more rigorously establish the 
limits of applicability of the model.. 
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Figure 4. The Traveling Salesman Problem: In the global 
oscillation oj minimal energy each node is constrained to fire at 
the same rate in the order corresponding to the minimal path. 
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