
Neural Net and Traditional Classifiers1

William Y. Huang and Richard P. Lippmann

MIT Lincoln Laboratory
Lexington, MA 02173, USA

387

Abstract. Previous work on nets with continuous-valued inputs led to generative
procedures to construct convex decision regions with two-layer perceptrons (one hidden
layer) and arbitrary decision regions with three-layer perceptrons (two hidden layers).
Here we demonstrate that two-layer perceptron classifiers trained with back propagation
can form both convex and disjoint decision regions. Such classifiers are robust, train
rapidly, and provide good performance with simple decision regions. When complex
decision regions are required, however, convergence time can be excessively long and
performance is often no better than that of k-nearest neighbor classifiers. Three neural
net classifiers are presented that provide more rapid training under such situations.
Two use fixed weights in the first one or two layers and are similar to classifiers that
estimate probability density functions using histograms. A third "feature map classifier"
uses both unsupervised and supervised training. It provides good performance with
little supervised training in situations such as speech recognition where much unlabeled
training data is available. The architecture of this classifier can be used to implement
a neural net k-nearest neighbor classifier.

1. INTRODUCTION

Neural net architectures can be used to construct many different types of classi­
fiers [7]. In particular, multi-layer perceptron classifiers with continuous valued in­
puts trained with back propagation are robust, often train rapidly, and provide perfor­
mance similar to that provided by Gaussian classifiers when decision regions are convex
[12,7,5,8]. Generative procedures demonstrate that such classifiers can form convex deci­
sion regions with two-layer perceptrons (one hidden layer) and arbitrary decision regions
with three-layer perceptrons (two hidden layers) [7,2,9]. More recent work has demon­
strated that two-layer perceptrons can form non-convex and disjoint decision regions.
Examples of hand crafted two-layer networks which generate such decision regions are
presented in this paper along with Monte Carlo simulations where complex decision
regions were generated using back propagation training. These and previous simula­
tions [5,8] demonstrate that convergence time with back propagation can be excessive
when complex decision regions are desired and performance is often no better than that
obtained with k-nearest neighbor classifiers [4]. These results led us to explore other
neural net classifiers that might provide faster convergence. Three classifiers called,
"fixed weight," "hypercube," and "feature map" classifiers, were developed and eval­
uated. All classifiers were tested on illustrative problems with two continuous-valued
inputs and two classes (A and B). A more restricted set of classifiers was tested with
vowel formant data.

2. CAPABILITIES OF Two LAYER PERCEPTRONS

Multi-layer perceptron classifiers with hard-limiting nonlinearities (node outputs
of 0 or 1) and continuous-valued inputs can form complex decision regions. Simple
constructive proofs demonstrate that a three-layer perceptron (two hidden layers) can

1 This work was sponsored by the Defense Advanced Research Projects Agency and the Department
of the Air Force. The views expressed are those of the authors and do not reflect the policy or position
of the U. S. Government.

© American Institute of Physics 1988

388

DECISION REGION FOR CLASS A

X2 b, b2 b4 , , ,
~, ~-1 ~-1
I I

2 ----[J' -:: -:-: I ---

~, .:-):
1 f----- -":-<i:/ ___ _

I
I

I
I
I
I

o 2 3

FIG. 1. A two-layer perceptron that form! di!joint deci!ion region! for cia!! A (!haded area!). Connec­
tion weight! and node ojJ!eb are !hown in the left. Hyperplane! formed by all hidden node! are drawn
a! da!hed line! with node labek Arrow! on theu line! point to the half plane where the hidden node
output i! "high".

form arbitrary decision regions and a two-layer perceptron (one hidden layer) can form
single convex decision regions [7,2,9]. Recently, however, it has been demonstrated that
two-layer perceptrons can form decision regions that are not simply convex [14]. Fig. 1,
for example, shows how disjoint decision regions can be generated using a two-layer
perceptron. The two disjoint shaded areas in this Fig. represent the decision region
for class A (output node has a "high" output, y = 1). The remaining area represents
the decision region for class B (output node has a "low" output, y = 0). Nodes in
this Fig. contain hard-limiting nonlinearities. Connection weights and node offsets are
indicated in the left diagram. Ten other complex decision regions formed using two-layer
perceptrons are presented in Fig. 2.

The above examples suggest that two-layer perceptrons can form decision regions
with arbitrary shapes. We, however, know of no general proof of this capability. A
1965 book by Nilson discusses this issue and contains a proof that two-layer nets can
divide a finite number of points into two arbitrary sets ([10] page 89). This proof
involves separating M points using at most M - 1 parallel hyperplanes formed by first­
layer nodes where no hyperplane intersects two or more points. Proving that a given
decision region can be formed in a two-layer net involves testing to determine whether
the Boolean representations at the output of the first layer for all points within the
decision region for class A are linearly separable from the Boolean representations for
class B. One test for linear separability was presented in 1962 [13].

A problem with forming complex decision regions with two-layer perceptrons is that
weights and offsets must be adjusted carefully because they interact extensively to form
decision regions. Fig. 1 illustrates this sensitivity problem. Here it can be seen that
weights to one hidden node form a hyperplane which influences decision regions in
an entire half-plane. For example, small errors in first layer weights that results in a
change in the slopes of hyperplanes bs and b6 might only slightly extend the Al region
but completely eliminate the A2 region. This interdependence can be eliminated in
three layer perceptrons.

It is possible to train two-layer perceptrons to form complex decision regions using
back propagation and sigmoidal nonlinearities despite weight interactions. Fig. 3, for
example, shows disjoint decision regions formed using back propagation for the problem
of Fig. 1. In this and all other simulations, inputs were presented alternately from
classes A and B and selected from a uniform distribution covering the desired decision
region. In addition, the back propagation rate of descent term, TJ, was set equal to the
momentum gain term, a and TJ = a = .01. Small values for TJ and a were necessary to
guarantee convergence for the difficult problems in Fig. 2. Other simulation details are

389

~llll 5)

IEl I I

blEl mJ
I I I I 9)

6)

+ 3)

=(3 m1 rm
I I I I I I

4) 10)

1= ~ftfI
r

I I I I

FIG. 2. Ten complex deci6ion region6 formed by two-layer perceptron6. The number6 a66igned to each
ca6e are the "ca6e" number6 u6ed in the re6t of thi6 paper.

as in [5,8]. Also shown in Fig. 3 are hyperplanes formed by those first-layer nodes with
the strongest connection weights to the output node. These hyperplanes and weights
are similar to those in the networks created by hand except for sign inversions, the
occurrence of multiple similar hyperplanes formed by two nodes, and the use of node
offsets with values near zero.

3. COMPARATIVE RESULTS OF TWO-LAYERS VS. THREE-LAYERS

Previous results [5,8], as well as the weight interactions mentioned above, suggest
that three-layer perceptrons may be able to form complex decision regions faster with
back propagation than two-layer perceptrons. This was explored using Monte Carlo
simulations for the first nine cases of Fig. 2. All networks have 32 nodes in the first
hidden layer. The number of nodes in the second hidden layer was twice the number
of convex regions needed to form the decision region (2, 4, 6, 4, 6, 6, 8, 6 and 6 for
Cases 1 through 9 respectively). Ten runs were typically averaged together to obtain
a smooth curve of percentage error vs. time (number of training trials) and enough
trials were run (to a limit of 250,000) until the curve appeared to flatten out with little
improvement over time. The error curve was then low-pass filtered to determine the
convergence time. Convergence time was defined as the time when the curve crossed a
value 5 percentage points above the final percentage error. This definition provides a
framework for comparing the convergence time of the different classifiers. It, however, is
not the time after which error rates do not improve. Fig. 4 summarizes results in terms
of convergence time and final percentage error. In those cases with disjoint decision
regions, back propagation sometimes failed to form separate regions after 250,000 trials.
For example, the two disjoint regions required in Case 2 were never fully separated with

390

, " I

!... .7.2 : ' I
~2~ , I

I ,..-409
J I 12.7 ~ '9.3,- 4.5 7.6

J , __ ' , __ t..-[-
--=~I -]-(1--- -

I ,--r ,----r--
, I I I

I " I " ,
I " I

21-

0--

11.9

I I I I
·2 ~_ I __ ---,I ___ ~I __ I ____ I,-----,

·2 o 2 4 6

FIG. 3. Deci!ion region, formed u,ing bacle propagation for Ca!e! ! of Fig. !. Thiele !olid line! repre!ent
deci,ion boundariu. Da,hed line! and arrow! have the lame meaning a! in Fig. 1. Only hyperplane!
for hidden node, with large weight! to the output node are !hown. Over 300,000 training trial! were
required to form !eparote N!gion!.

a two-layer perceptron but were separated with a three-layer perceptron. This is noted
by the use of filled symbols in Fig. 4.

Fig. 4 shows that there is no significant performance difference between two and
three layer perceptrons when forming complex decision regions using back propagation
training. Both types of classifiers take an excessively long time (> 100,000 trials) to
form complex decision regions. A minor difference is that in Cases 2 and 7 the two-layer
network failed to separate disjoint regions after 250,000 trials whereas the three-layer
network was able to do so. This, however, is not significant in terms of convergence time
and error rate. Problems that are difficult for the two-layer networks are also difficult
for the three-layer networks, and vice versa.

4. ALTERNATIVE CLASSIFIERS

Results presented above and previous results [5,8] demonstrate that multi-layer per­
ceptron classifiers can take very long to converge for complex decision regions. Three
alternative classifiers were studied to determine whether other types of neural net clas­
sifiers could provide faster convergence.

4.1. FIXED WEIGHT CLASSIFIERS

Fixed weight classifiers attempt to reduce training time by adapting only weights
between upper layers of multi-layer perceptrons. Weights to the first layer are fixed
before training and remain unchanged. These weights form fixed hyperplanes which
can be used by upper layers to form decision regions. Performance will be good if the
fixed hyperplanes are near the decision region boundaries that are required in a specific
problem. Weights between upper layers are trained using back propagation as described
above. Two methods were used to adjust weights to the first layer. Weights were
adjusted to place hyperplanes randomly or in a grid in the region (-1 < Xl,X2 < 10).
All decision regions in Fig. 2 fall within this region. Hyperplanes formed by first layer
nodes for "fixed random" and "fixed grid" classifiers for Case 2 of Fig. 2 are shown as
dashed lines in Fig. 5. Also shown in this Fig. are decision regions (shaded areas) formed

12

10

8

6

04

2

o 2-1ayers ERROR RATE

o .~.~.~.~x.~:':".::

OL-__ L-__ L-__ L-__ L-__ L-__ L-__ L-__ L-~~~

200000 CONVERGENCE TIME

391

FIG. 4. Percentage errOr (top) and convergence time (bottom) for Ca8e6 1 through 9 of Fig. 2 for
two-and three-layer perceptron clauifier6 trained u6ing back propagation. Filled 6ymbol6 indicate that
6eparate di6joint region6 were not formed after 250,000 triak

using back propagation to train only the upper network layers. These regions illustrate
how fixed hyperplanes are combined to form decision regions. It can be seen that decision
boundaries form along the available hyperplanes. A good solution is possible for the
fixed grid classifier where desired decision region boundaries are near hyperplanes. The
random grid classifier provides a poor solution because hyperplanes are not near desired
decision boundaries. The performance of a fixed weight classifier depends both on the
placement of hyperplanes and on the number of hyperplanes provided.

4.2. HYPERCUBE CLASSIFIER

Many traditional classifiers estimate probability density functions of input variables
for different classes using histogram techniques [41. Hypercube classifiers use this tech­
nique by fixing weights in the first two layers to break the input space into hypercubes
(squares in the case of two inputs). Hypercube classifiers are similar to fixed weight
classifiers, except weights to the first two layers are fixed, and only weights to output
nodes are trained. Hypercube classifiers are also similar in structure to the CMAC
model described by Albus [11. The output of a second layer node is "high" only if the
input is in the hypercube corresponding to that node. This is illustrated in Fig. 6 for a
network with two inputs.

The top layer of a hypercube classifier can be trained using back propagation. A
maximum likelihood approach, however, suggests a simpler training algorithm which
consists of counting. The output of second layer node Hi is connected to the output
node corresponding to that class with greatest frequency of occurrence of training inputs
in hypercube Hi. That is, if a sample falls in hypercube Hi, then it is classified as class
(J* where

Nj,o. > Ni,O for all (J f:. (J •• (1)

In this equation, Ni,O is the number of training tokens in hypercube Hi which belong to
class (J. This will be called maximum likelihood (ML) training. It can be implemented
by connection second-layer node Hi only to that output node corresponding to class (J.
in Eq. (1). In all simulations hypercubes covered the area (-1 < Xl, X2 < 10).

392

RANDOM GRID

o

FIG. 5. Deci.ion region. formed with "fixed random" and "fixed grid" clal6ifier. for Ca.e ! from Fig.
! ruing back propagation training. Line! !hown are hyperplane! formed by the fird layer node!. Shaded
area. repre.ent the deci.ion region for clau A.

A B

}

INPUT

TRAINED
LAYER

FIXED
LAYERS

"2

3

2

FOUR BINS CREATED
BY FIXED LAYERS

"1

FIG. 6. A hypercube clauifier (left) i! a three-layer perceptron with fixed weight! to the fird two layen,
and trainable weight! to output node!. Weights are initialized !uch that output! of nodes HI through H.
(left) are "high" only when the input i! in the corre!ponding hypercube (right).

OUTPUT (Only One High)

SElECT [
CLASS

WITH MAJORITY
IN TOP k

SELECT TOP [
k EXEMPLARS

CALCULATE
CORRELATION

TO STORED
EXEMPLARS

II,
INPUT

FIo. 1. Feature map clauifier.

4.3. FEATURE MAP CLASSIFIER

SUPERVISED
ASSOCIATIVE

LEARNING

UNSUPERVISED
KOHONEN

FEATURE MAP
LEARNING

393

In many speech and image classification problems a large quantity of unlabeled
training data can be obtained, but little labeled data is available. In such situations
unsupervised training with unlabeled training data can substantially reduce the amount
of supervised training required [3]. The feature map classifier shown in Fig. 7 uses com­
bined supervised/unsupervised training, and is designed for such problems. It is similar
to histogram classifiers used in discrete observation hidden Markov models [11] and the
classifier used in [6]. The first layer of this classifier forms a feature map using a self
organizing clustering algorithm described by Kohonen [6]. In all simulations reported in
this paper 10,000 trials of unsupervised training were used. After unsupervised train­
ing, first-layer feature nodes sample the input space with node density proportional to
the combined probability density of all classes. First layer feature map nodes perform a
function similar to that of second layer hypercube nodes except each node has maximum
output for input regions that are more general than hypercubes and only the output of
the node with a maximum output is fed to the output nodes. Weights to output nodes
are trained with supervision after the first layer has been trained. Back propagation, or
maximum likelihood training can be used. Maximum likelihood training requires Ni,8

(Eq. 1) to be the number of times first layer node i has maximum output for inputs
from class 8. In addition, during classification, the outputs of nodes with Ni,8 = 0 for
all 8 (untrained nodes) are not considered when the first-layer node with the maximum
output is selected. The network architecture of a feature map classifier can be used
to implement a k-nearest neighbor classifier. In this case, the feedback connections in
Fig. 7 (large circular summing nodes and triangular integrators) used to select those
k nodes with the maximum outputs must be slightly modified. K is 1 for a feature
map classifier and must be adjusted to the desired value of k for a k-nearest neighbor
classifier.

5. COMPARISON BETWEEN CLASSIFIERS

The results of Monte Carlo simulations using all classifiers for Case 2 are shown in
Fig. 8. Error rates and convergence times were determined as in Section 3. All alter-

394

Percent Correct

Conventional Fixed Weight Hypercube Feature Map

12

%
8

4

0

Tr ials Convergence Time
2500

1 77K
2000 I 2-1ay

1500

1000 • • I ~id
500 I

0
KNN GAUSS 32 3& 40 120

Number ot Hidden Nodes

FIG. 8. Comparative performance of clauifier8for Ca8e 2. Training time of the feature map clauifier8
doe8 not include the 10,000 un8upervi8ed training trials.

native classifiers had shorter convergence times than multi-layer perceptron classifiers
trained with back propagation. The feature map classifier provided best performance.
With 1,600 nodes, its error rate was similar to that of the k-nearest neighbor classifiers
but it required fewer than 100 supervised training tokens. The larger fixed weight and
hypercube classifiers performed well but required more supervised training than the
feature map classifiers. These classifiers will work well when the combined probability
density function of all classes varies smoothly and the domain where this function is
non-zero is known. In this case weights and offsets can be set such that hyperplanes and
hypercubes cover the domain and provide good performance. The feature map classifier
automatically covers the domain. Fixed weight "random" classifiers performed substan­
tially worse than fixed weight "grid" classifiers. Back propagation training (BP) was
generally much slower than maximum likelihood training (ML).

6. VOWEL CLASSIFICATION

Multi layer perceptron, feature map, and traditional classifiers were tested with
vowel formant data from Peterson and Barney [11]. These data had been obtained
by spectrographic analysis of vowels in /hVd/ context spoken by 67 men, women and
children. First and second formant data of ten vowels was split into two sets, resulting
in a total of 338 training tokens and 333 testing tokens. Fig. 9 shows the test data
and the decision regions formed by a two-layer percept ron classifier trained with back
propagation. The performance of classifiers is presented in Table I. All classifiers had
similar error rates. The feature map classifier with only 100 nodes required less than 50
supervised training tokens (5 samples per vowel class) for convergence. The perceptron
classifier trained with back propagation required more than 50,000 training tokens. The
first stage of the feature map classifier and the multi-layer perceptron classifier were
trained by randomly selecting entries from the 338 training tokens after labels had been
removed and using tokens repetitively.

395

4000
D head

.. hid
D

+ hod
• had hawed

2000 • heard

o heed

(hud
F2 (lIz) ..) vho' d

+ .. " hood
+

1000

..
+

500 1400
0

F1 (Hz)

FIG. 9. DecilJion regionlJ formed by a two-layer network using BP after 200,000 training tokens from
PeterlJon'lJ steadylJtate vowel data [PeterlJon, 1952}. AllJo shown are samplelJ of the telJting lJet. Legend
IJhow example 0/ the pronunciation of the 10 vowels and the error within each vowel.

I ALGORITHM I TRAINING TOKENS I % ERROR I

TABLE I
Performance of classifiers on IJteady IJtate vowel data.

396

7. CONCLUSIONS

Neural net architectures form a flexible framework that can be used to construct
many different types of classifiers. These include Gaussian, k-nearest neighbor, and
multi-layer perceptron classifiers as well as classifiers such as the feature map classifier
which use unsupervised training. Here we first demonstrated that two-layer perceptrons
(one hidden layer) can form non-convex and disjoint decision regions. Back propagation
training, however, can be extremely slow when forming complex decision regions with
multi-layer perceptrons. Alternative classifiers were thus developed and tested. All
provided faster training and many provided improved performance. Two were similar to
traditional classifiers. One (hypercube classifier) can be used to implement a histogram
classifier, and another (feature map classifier) can be used to implement a k-nearest
neighbor classifier. The feature map classifier provided best overall performance. It
used combined supervised/unsupervised training and attained the same error rate as a
k-nearest neighbor classifier, but with fewer supervised training tokens. Furthermore,
it required fewer nodes then a k-nearest neighbor classifier.

REFERENCES

[1] J. S. Albus, Brains, Behavior, and Robotics. McGraw-Hill, Petersborough, N.H., 1981.

[2] D. J. Burr, "A neural network digit recognizer," in Proceedings of the International Conference
on Systems, Man, and Cybernetics, IEEE, 1986.

[3] D. B. Cooper and J. H. Freeman, "On the asymptotic improvement in the outcome of supervised
learning provided by additional nonsupervised learning," IEEE Transactions on Computers,
vol. C-19, pp. 1055-63, November 1970.

[4] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. John-Wiley &. Sons, New
York, 1973.

[5] W. Y. Huang and R. P. Lippmann, "Comparisons between conventional and neural net classifiers,"
in 1st International Conference on Neural Network, IEEE, June 1987.

[6] T. Kohonen, K. Makisara, and T. Saramaki, "Phonotopic maps - insightful representation of
phonological features for speech recognition," in Proceedings of the 7th International Confer­
ence on Pattern Recognition, IEEE, August 1984.

[7] R. P. Lippmann, "An introduction to computing with neural nets," IEEE A SSP Magazine, vol. 4,
pp. 4-22, April 1987.

[8] R. P. Lippmann and B. Gold, "Neural classifiers useful for speech recognition," in 1st International
Conference on Neural Network, IEEE, June 1987.

[9] I. D. Longstaff and J. F. Cross, "A pattern recognition approach to understanding the multi-layer
perceptron," Mem. 3936, Royal Signals and Radar Establishment, July 1986.

[10] N. J. Nilsson, Learning Machines. McGraw Hill, N.Y., 1965.

[11] T. Parsons, Voice and Speech Processing. McGraw-Hill, New York, 1986.

[12] F. Rosenblatt, Perceptrons and the Theory of Brain Mechanisms. Spartan Books, 1962.

[13] R. C. Singleton, "A test for linear separability as applied to self-organizing machines," in Self­
Organization Systems, 1962, (M. C. Yovits, G. T. Jacobi, and G. D. Goldstein, eds.), pp. 503-
524, Spartan Books, Washington, 1962.

[14] A. Wieland and R. Leighton, "Geometric analysis of neural network capabilities," in 1st Interna­
tional Conference on Neural Networks, IEEE, June 1987.

