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Abstrad 

A family of neuromorphic networks specifically designed for communications 
and optical signal processing applications is presented. The information is encoded 
utilizing sparse Optical Orthogonal Code sequences on the basis of unipolar, binary 
(0,1) signals. The generalized synaptic connectivity matrix is also unipolar, and 
clipped to binary (0,1) values. In addition to high-capacity associative memory, 
the resulting neural networks can be used to implement general functions, such as 
code filtering, code mapping, code joining, code shifting and code projecting. 

1 Introduction 

Synthetic neural nets[1,2] represent an active and growing research field . Fundamental 
issues, as well as practical implementations with electronic and optical devices are being 
studied. In addition, several learning algorithms have been studied, for example stochas­
tically adaptive systems[3] based on many-body physics optimization concepts[4,5]. 

Signal processing in the optical domain has also been an active field of research. 
A wide variety of non-linear all-optical devices are being studied, directed towards ap­
plications both in optical computating and in optical switching. In particular, the 
development of Optical Orthogonal Codes (OOC)[6] is specifically interesting to opti­
cal communications applications, as it has been demonstrated in the context of Code 
Division Multiple Access (CDMA)[7] . 

In this paper we present a new class of neuromorphic networks, specifically designed 
for optical signal processing and communications, that encode the information in sparse 
OOC's. In Section 2 we review some basic concepts. The new neuromorphic networks 
are defined in Section 3, and their associative memory properties are presented in Section 
4. In Section 5 other general network functions are discussed. Concluding remarks are 
given in Section 6. 

2 Neural Networks and Optical Orthogonal Codes 

2.1 Neural Network Model 

Neural network are generally based on multiply-threshold-feedback cycles. In the Hop­
field model[2], for instance, a connectivity T matrix stores the M different memory 
elements, labeled m, by the sum of outer products, 

M 

Tij=Lu'iuj; i,j=1,2 ... N (1) 
m 
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where the state vectors ym represent the memory elements in the bipolar (-1,1) basis. 
The diagonal matrix elements in the Hopfield model are set to zero, Tii = O. 

For a typical memory recall cycle, an input vector .!lin, which is close to a particular 
memory element m = k, multiplies the T matrix, such that the output vector .!lout is 
given by 

N 
• out ~T. in 
Vi = L.J ijVj i,j = l,2 ... N (2) 

j=l 

and can be seen to reduce to 

vit ~ (N - l)u~ + J(N - l)(M - 1) (3) 

for large N and in the case of randomly coded memory elements ym. 

In the Hopfield model, each output ~out is passed through a thresholding stage 
around zero. The thresholded output signals are then fed back, and the multiply and 
threshold cycle is repeated until a final stable output .!lout is obtained. IT the input .!lin is 
sufficiently close to y1c, and the number of state vectors is small (Le. M ~ N), the final 
output will converge to memory element m = k, that is, .!lout -+ y1c. The associative 
memory property of the network is thus established. 

2.2 Optical Orthogonal Codes 

The OOC sequences have been developed[6,7] for optical CDMA systems. Their prop­
erties have been specifically designed for this purpose, based on the following two con­
ditions: each sequence can be easily distinguished from a shifted version of itself, and 
each sequence can be easily distinguished from any other shifted or unshifted sequence 
in the set. Mathematically, the above two conditions are expressed in terms of auto­
and crosscorrelation functions. Because of the non-negative nature of optical signals 1 , 

OOC are based on unipolar (0,1) signals[7]. 
In general, a family of OOC is defined by the following parameters: 

- F, the length of the code, 

- K, the weight of the code, that is, the number of l's in the sequence, 

- >.a, the auto-correlation value for all possible shifts, other than the zero shift, 

- Ac , the cross-correlation value for all possible shifts, including the zero shift. 

For a given code length F, the maximum number of distinct sequences in a family 
of OOC depends on the chosen parameters, that is, the weight of the code K and the 
allowed overlap AaandAc. In this paper we will consider OOC belonging to the minimum 
overlap class, Aa = Ac = 1. 

lWe refer to optical inten6ity signals, and not to detection systems sensitive to phase information. 
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3 Neuromorphic Optical Networks 

Our neuromorphic networks are designed to take full advantage of the properties of the 
~OC. The connectivity matrix T is defined as a sum of outer products, by analogy with 
(1), but with the following important modifications: 

1. The memory vectors are defined by the sequences of a given family of OOC, with a 
basis given by the unipolar, binary pair (0,1). The dimension of the sparse vectors 
is given by the length of the code F, and the maximum number of available items 
depends on the chosen family of ~OC. 

2. All ofthe matrix elements Ti; are clipped to unipolar, binary (0,1) values, resulting 
in a sparse and simplified connectivity matrix, without any loss in the functional 
properties defined by our neuromorphic networks. 

3. The diagonal matrix elements Tii are not set to zero, as they reflect important 
information implicit in the OOC sequences. 

4. The threshold value is not zero, but it is chosen to be equal to K, the weight of 
the ~OC. 

5. The connectivity matrix T is generalized to allow for the possibility of a variety 
of outer product options: self-outer products, as in (1), for associative memory, 
but also cross-outer products of different forms to implement various other system 
functions. 

A simplified schematic diagram of a possible optical neuromorphic processor is shown 
in Figure 1. This implementation is equivalent to an incoherent optical matrix-vector 
multiplier[8], with the addition of nonlinear functions. The input vector is clipped using 
an optical hard-limiter with a threshold setting at 1, and then it is anamorphic ally 
imaged onto the connectivity mask for T. In this way, the ith pixel of the input vector 
is imaged onto the ith column of the T mask. The light passing through the mask is 
then anamorphically imaged onto a line of optical threshold elements with a threshold 
setting equal to K, such that the jth row is imaged onto the lh threshold element. 

4 Associative Memory 

The associative memory function is defined by a connectivity matrix TMEM given by: 

(4) 

where each memory element ~m corresponds to a given sequence of the OOC family, 
with code length F. The matrix elements of TMEM are all clipped, unipolar values, as 
indicated by the function gn, such that, 

g{ (} = { 1 if ( ~ 1 ° if ( < 1 
(5) 
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We will now show that an input vector ~Ie, which corresponds to memory element 
m = k, will produce a stable output (equal to the wanted memory vector) in a single 
pass of the multiply and threshold process. 

The multiplication can be written as: 

(6) 

We remember that the non-linear clipping function an is to be applied first to obtain 
-MEM T . Hence, 

v~t = ~:z:'! a {:z:'!:z:'! + ~ :z:~:z:'!'} , L.JJ 'J L.J'J 
j m#;1e 

(7) 

For :z:~ = 0, only the second term in (7) contributes, and the pseudo-orthogonality 
properties of the OOC allow us to write: 

(8) 

where the cross-correlation value is Ac < K. 
For :z:~ = 1, we again consider the properties of the OOC to obtain for the first term 

of (7): 

(9) 

where K is the weight of the OOC. 
Therefore, the result of the multiplication operation given by (7) can be written as: 

A out K Ie [value strictly 1 
Vi = :Z:i + less than K (10) 

The thresholding operation follows, around the value K as explained in Section 3. 
That is, (10) is thresholded such that: 

{ 
1 if v~t > K vit = ,-o ifv~t < K , , (11) 

hence, the final output at the end of a single pass will be given by: v:ut = :z:~. 
The result just obtained can be extended to demonstrate the single pass convergence 

when the input vector is close, but not necessarily equal, to a stored memory element. 
We can draw the following conclusions regarding the properties of our neuromorphic 
networks based on OOC: 

• For any given input vector ~in, the single pass output will correspond to the 
memory vector ~m which has the smallest Hamming distance to the input . 

• If the input vector ~in is missing a single 1-element from the K l's of an OOC, 
the single pass output will be the null or zero vector. 
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• If the input vector !lin has the same Hanuning distance to two (or more) memory 
vectors ~m , the single pass output will be the logical sum of those memory vectors. 

The ideas just discussed were tested with a computer simulation. An example of 
associative memory is shown in Table 1, corresponding to the OOC class of length 
F = 21 and weight K = 2. For this case, the maximum number of independent 
sequences is M = 10. The connectivity matrix TMEM is seen in Table 1, where one can 
clearly appreciate the simplifying features of our model, both in terms of the sparsity 
and of the unipolar, clipped values of the matrix elements. The computer simulations for 
this example are shown in Table 2. The input vectors ~ and Q show the error-correcting 
memory recovery properties. The input vector ~ is equally distant to memory vectors 
e3 and ~8, resulting in an output which is the sum (e3 EB e8 ). And finally, input vector 
d is closest to ~\ but one 1 is missing, and the output is the zero vector. The mask 
in Figure 1 shows the optical realization of the Table 1, where the transparent pixels 
correspond to the l's and the opaque pixels to the O's ofthe connectivity matrix TMEM. 

It should be pointed out that the capacity of our network is significant. From the 
previous example, the capacity is seen to be ::::: F /2 for single pass memory recovery. 
This result compares favorably with the capacity of a Hopfield model[9], of ~ F / 41n F. 

5 General Network Functions 

Our neuromorphic networks, based on OOC, can be generalized to perform functions 
other than associative memory storage by constructing non-symmetrical connectivity 
matrices. The single pass convergence of our networks avoids the possibility of limit­
cycle oscillations. We can write in general: 

Tii = g{t Yf'Zj} , 
m=l 

(12) 

where each pair defined by m includes two vectors ym and em, which are not necessarily 
equal. The clipping function 9 {} insures that all m;:trix elements are binary (0,1) values. 
The possible choice of vector pairs is not completely arbitrary, but there is a wide variety 
of functions that can be implemented for each family of OOC. We will now discuss some 
of the applications that are of particular interest in optical communication systems. 

S.l Code Filtering (CDMA) 

Figure 2 shows an optical CDMA network in a star configuration. M nodes are inter­
connected with optical fibers to a passive MxM star coupler that broadcasts the optical 
signals. At each node there is a data encoder that maps each bit of information to the 
OOC sequence corresponding to the user for which the transmission is intended. In 
addition, each node has a filter and decoder that recognizes its specific OOC sequence. 
The optical transmission rate has been expanded by a factor F corresponding to the 
length of the OOC sequence. Within the context of a CDMA communication system[7], 
the filter or decoder must perform the function of recognizing a specific OOC sequence 
in the presence of other interfering codes sent on the common transmission medium. 
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We can think, then, of one of our neuromorphic networks as a filter, placed at a given 
receiver node, that will recognize the specific code that it was programmed for. 

We define for this purpose a connectivity matrix as 

T CDMA Ie Ie •• 1 2 F ij =ziZj; 1.,}= , ... , (13) 

where only one vector �~�I�e� is stored at each node. This symmetric, clipped connectivity 
matrix will give an output equal to �~�I�e� whenever the input contains this vector, and a 
null or zero output vector otherwise. It is clear by comparing (13) with (4) that the 
CDMA filtering matrix is equivalent to an associative memory matrix with only one 
item imprinted in the memory. Hence the discussion of Section 4 directly applies to the 
understanding of the behaviour of T CDMA 

In order to evaluate the performance of our neuromorphic network as a CDMA 
filter, computer simulations were performed. Table 3 presents the TCDM A matrix for 
a particular node defined by �~�I�e� of a CDMA system based on the OOC family F = 21, 
K = 2. The total number of distinct codes for this OOC family is M = 10, hence there 
are 9 additional OOC sequences that interfere with �~�I�e�,� labeled in Table 3 �~�l� to �~�9�.� 

The performance was simulated by generating random composite sequences from the 
set of codes �~�l� to �~�9� arbitrarily shifted. All inputs are unipolar and clipped (0,1) signals. 

The results presented in Table 4 give examples of our simulation for the T CDMA matrix 
shown in Table 3. The input Q is the (logical) sum of a I-bit (vector �~�I�e�)�,� plus interfering 
signals from arbitrarily shifted sequences of �~�2�,� �~�3�,� �~�4�,� �~�6� and �~�9�.� The output of the 
neuromorphic network is seen to recover accurately the desired vector �~�I�e�.� The input 
vector Q contains a O-bit (null vector), plus the shifted sequences of �~�l�,� �~�2�,� �~�3�,� �~�6�,� �~�7� 

and �~�8�,� and we see that the output correctly recovers a O-bit. 
As discussed in Section 4, our neuromorphic network will always correctly recognize 

a I-bit (vector �~�I�e�)� presented to its input. On the other hand 2, there is the possibility of 
making an error when a O-bit is sent, and the interfering signals from other nodes happen 
to generate the chip positions of �~�I�e�.� This case is shown by input vector �~� of Table 4, 
which contains a O-bit (null vector), plus shifted sequences of �~�2�,� �~�3�,� �~�4�,� �~�6�,� �~�6�,� �~�7� and 
�~�8� in such a way that the output is erroneously given as a I-bit. The properties of the 
OOC sequences are specifically chosen to minimize these errors(7], and the statistical 
results of our simulation are also shown in Table 4. It is seen that, as expected, when 
a I-bit is sent it is always correctly recognized. On the other hand, when O-bits are 
sent, occasional errors occur. Our simulation, yields an overall bit error rate (BER) of 
BER.im = 5.88%, as shown in Table 4. 

These results can be compared with theoretical calculations[7] which yield an esti­
mate for the BER for the CDMA system described: 

K-l 

ER 1 IT [ M-l-le] B �c�a�l�c�~�- 1-q , 
2 Ie=O 

(14) 

where q = 1 - �~�.� For the example of the OOC family F = 21, K = 2, with M = 10, 
the above expression yields BERcalc :::::: 5.74%. 

20ur channel can be described, then, as a binary Z-channel between each two nodes dynamically 
establishing a communication path 










