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ABSTRACT 

The aim of this paper is to explore the spatial organization of 
neural networks under Markovian assumptions, in what concerns the be­
haviour of individual cells and the interconnection mechanism. Space­
organizational properties of neural nets are very relevant in image 
modeling and pattern analysis, where spatial computations on stocha­
stic two-dimensional image fields are involved. As a first approach 
we develop a random neural network model, based upon simple probabi­
listic assumptions, whose organization is studied by means of dis­
crete-event simulation. We then investigate the possibility of ap­
proXimating the random network's behaviour by using an analytical ap­
proach originating from the theory of general product-form queueing 
networks. The neural network is described by an open network of no­
des, in which customers moving from node to node represent stimula­
tions and connections between nodes are expressed in terms of sui­
tably selected routing probabilities. We obtain the solution of the 
model under different disciplines affecting the time spent by a sti­
mulation at each node visited. Results concerning the distribution 
of excitation in the network as a function of network topology and 
external stimulation arrival pattern are compared with measures ob­
tained from the simulation and validate the approach followed. 

INTRODUCTION 

Neural net models have been studied for many years in an attempt 
to achieve brain-like performance in computing systems. These models 
are composed of a large number of interconnected computational ele­
ments and their structure reflects our present understanding of the 
organizing principles of biological nervous systems. In the begin­
ing, neural nets, or other equivalent models, were rather intended 
to represent the logic arising in certain situations than to provide 
an accurate description in a realistic context. However, in the last 
decade or so the knowledge of what goes on in the brain has increased 
tremendously. New discoveries in natural systems, make it now rea­
sonable to examine the possibilities of using modern technology in 
order to synthesige systems that have some of the properties of real 
neural systems 8,9,10,11. 

In the original neural net model developed in 1943 by McCulloch 
and Pitts 1,2 the network is made of many interacting components, 
known as the "McCulloch-Pitts cells" or "formal neurons II , which are 
simple logical units with two possible states changing state accord-
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ing to a threshold function of their inputs. Related automata models 
have been used later for gene control systems (genetic networks) 3, 
in which genes are represented as binary automata changing state ac­
cording to boolean functions of their inputs. Boolean networks con­
stitute a more general model, whose dynamical behaviour has been stu­
died extensively. Due to the large number of elements, the exact 
structure of the connections and the functions of individual compo­
nents are generally unknown and assumed to be distributed at random. 
Several studies on these random boolean networks 5,6 have shown that 
they exhibit a surprisingly stable behaviour in what concerns their 
temporal and spatial organization. However, very few formal analyti­
cal results are available, since most studies concern statistical 
descriptions and computer simulations. 

The temporal and spatial organization of random boolean networks 
is of particular interest in the attempt of understanding the proper­
ties of such systems, and models originating from the theory of sto­
chastic processes 13 seem to be very useful. Spatial properties of 
neural nets are most important in the field of image recognition 12. 
In the biological eye, a level-normalization computation is performed 
by the layer of horizontal cells, which are fed by the immediately 
preceding layer of photoreceptors. The horizontal cells take the 
outputs of the receptors and average them spatially, this average 
being weighted on a nearest-neighbor basis. This procedure corres­
ponds to a mechanism for determining the brightness level of pixels 
in an image field by using an array of processing elements. The 
principle of local computation is usually adopted in models used for 
representing and generating textured images. Among the stochastic 
models applied to analyzing the parameters of image fields, the ran­
dom Markov field model 7,14 seems to give a suitably structured re­
presentation, which is mainly due to the application of the marko­
vian property in space. This type of modeling constitutes a promi­
sing alternative in the study of spatial organization phenomena in 
neura 1 nets. 

The approach taken in this paper aims to investigate some as­
pects of spatial organization under simple stochastic assumptions. 
In the next section we develop a model for random neural networks 
assuming boolean operation of individual cells. The behaviour of 
this model, obtained through simulation experiments, is then appro­
ximated by using techniques from the theory of queueing networks. 
The approximation yields quite interesting results as illustrated by 
various examples. 

THE RANDOM NETWORK MODEL 

We define a random neural network as a set of elements or cells, 
each one of which can be in one of two different states: firing or 
quiet. Cells are interconnected to form an NxN grid, where each grid 
point is occupied by a cell. We shall consider only connections be­
tween neighbors, so that each cell is connected to 4 among the other 
cells: two input and two output cells (the output of a cell is equal 
'to its internal state and it is sent to its output cells which use 
;it as one of their inputs). The network topology is thus specified 



742 

by its incidence matrix A of dimension MxM, where M=N2. This matrix 
takes a simple form in the case of neighbor-connection considered 
here. We further assume a periodic structure of connections in what 
concerns inputs and outputs; we will be interested in the following 
two types of networks depending upon the period of reproduction for 
elementary square modules 5, as shown in Fig.l: 
- Propagative nets (Period 1) 
- Looping nets (Period 2) 
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Fig.1. (a) Propagative connections, (b) Looping connections 

At the edges of the grid, circular connections are established (mo­
dulo N), so that the network can be viewed as supported by a torus. 

The operation of tile network is non-autonomous: changes of sta­
te are determined by both the interaction among cells and the influ­
ence of external stimulations. We assume that stimulations arrive 
from the outside world according to a Poisson process with parameter 
A. Each arriving stimulation is associated with exactly one cell of 
the network; the cell concerned is determined by means of a given 
discrete probability distribution qi (l~i~M), considering an one-di­
mensional labeling of the M cells. 

The operation of each individual cell is asynchronous and can be 
described in terms of the following rules: 
- A quiet cell moves to the firing state if it receives an arriving 

stimulation or if a boolean function of its inputs becomes true. 
- A firing cell moves to the quiet state if a boolean function of its 

inputs becomes false. 
- Changes of state imply a reaction delay of the cell concerned; the­

se delays are independent identically distributed random variables 
following a negative exponential distribution with parameter y. 

According to these rules, the operation of a cell can be viewed as il­
lustrated by Fig.2, where the horizontal axis represents time and the 
numbers 0,1,2 and 3 represent phases of an operation cycle. Phases 1 
and 3, as indicated in Fig.2, correspond to reaction delays. In this 
sense, the qui et and fi ri ng s ta tes, as defi ned in the begi ni ng of thi s 
section, represent the aggregates of phases 0,1 and 2,3 respectively. 
External stimulations affect the receiving cell only when it is in pha­
se 0; otherwise we consider that the stimulation is lost. In the sa­
me way, we assume tha t changes of the value of the input boo 1 ean func­
tion do not affect the operation of the cell during phases land 3. The 
conditions are checked only at the end of the respective reaction delay. 
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Fig.2. Changes of state for individual cells 

The above defi ned model i ncl udes some fea tures of the ori gi na 1 
McCulloch-Pitts cells 1,2. In fact, it represents an asynchronous 
counterpart of the latter, in which boolean functions are considered 
instead of threshold functions. However, it can be shown that any 
McCulloch and Pitts' neural network can be implemented by a boolean 
network designed in an appropriate fashion 5. In what follows, we will 
consider that the firing condition for each individual cell is de­
termined by an "or" function of its inputs. 

Under the assumptions adopted, the evolution of the network in 
time can be described by a conti nuous-parameter Markov process. How­
ever, the size of the state-space and the complexity of the system 
are such that no analytical solution is tractable. The spatial orga­
nization of the network could be expressed in terms of the steady­
state probability distribution for the Markov process. A more useful 
representation is provided by the marginal probability distributions 
for all cells in the network, or equivalently by the probability of 
being in the firing state for each cell. This measure expresses the 
level of excitation for each point in the grid. 

We have studied the behaviour of the above model by means of si­
mulation experiments for various cases depending upon the network si­
ze, the connection type, the distribution of external stimulation ar­
rivals on the grid and the parameters A and V. Some examples are il­
lustrated in the last section, in comparison with results obtained 
using the approach discussed in the next section. The estimations ob­
ta i ned concern the probabil i ty of bei ng in the fi ri ng s ta te for all 
cells in the network. The simulation was implemented according to 
the "batched means" method; each run was carried out unti 1 the width 
of the 95% confidence interval was less that 10% of the estimated 
mean value for each cell, or until a maximum number of events had 
been simulated depending upon the size of the network. 

THE ANALYTICAL APPROACH 

The neural network model considered in the previous section exhi­
bited the markovian property in both time and space. Markovianity in 
space, expressed by the principle of "neighbor-connections", is the 
basic feature of Markov random fields 7,14, as already discussed. Our 
idea is to attempt an approximation of the random neural network mo­
del by usi ng a well-known model, wlli ch is markovi an in time, and ap­
plying the constraint of markovianity in space. The model considered 
is an open queueing network, which belongs to the general class of 
queueing networks admitting a product-form solution 4. In fact, one 
could distinguish several common features in the two network models. 














