Self-Supervised GANs with Label Augmentation

Part of Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021)

Paper Supplemental

Bibtek download is not available in the pre-proceeding


Authors

Liang Hou, Huawei Shen, Qi Cao, Xueqi Cheng

Abstract

Recently, transformation-based self-supervised learning has been applied to generative adversarial networks (GANs) to mitigate catastrophic forgetting in the discriminator by introducing a stationary learning environment. However, the separate self-supervised tasks in existing self-supervised GANs cause a goal inconsistent with generative modeling due to the fact that their self-supervised classifiers are agnostic to the generator distribution. To address this problem, we propose a novel self-supervised GAN that unifies the GAN task with the self-supervised task by augmenting the GAN labels (real or fake) via self-supervision of data transformation. Specifically, the original discriminator and self-supervised classifier are unified into a label-augmented discriminator that predicts the augmented labels to be aware of both the generator distribution and the data distribution under every transformation, and then provide the discrepancy between them to optimize the generator. Theoretically, we prove that the optimal generator could converge to replicate the real data distribution. Empirically, we show that the proposed method significantly outperforms previous self-supervised and data augmentation GANs on both generative modeling and representation learning across benchmark datasets.