A No-go Theorem for Robust Acceleration in the Hyperbolic Plane

Part of Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021)

Paper

Bibtek download is not available in the pre-proceeding


Authors

Linus Hamilton, Ankur Moitra

Abstract

In recent years there has been significant effort to adapt the key tools and ideas in convex optimization to the Riemannian setting. One key challenge has remained: Is there a Nesterov-like accelerated gradient method for geodesically convex functions on a Riemannian manifold? Recent work has given partial answers and the hope was that this ought to be possible. Here we prove that in a noisy setting, there is no analogue of accelerated gradient descent for geodesically convex functions on the hyperbolic plane. Our results apply even when the noise is exponentially small. The key intuition behind our proof is short and simple: In negatively curved spaces, the volume of a ball grows so fast that information about the past gradients is not useful in the future.