Iterative Connecting Probability Estimation for Networks

Part of Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021)

Paper Supplemental

Bibtek download is not available in the pre-proceeding


Authors

Yichen Qin, Linhan Yu, Yang Li

Abstract

Estimating the probabilities of connections between vertices in a random network using an observed adjacency matrix is an important task for network data analysis. Many existing estimation methods are based on certain assumptions on network structure, which limit their applicability in practice. Without making strong assumptions, we develop an iterative connecting probability estimation method based on neighborhood averaging. Starting at a random initial point or an existing estimate, our method iteratively updates the pairwise vertex distances, the sets of similar vertices, and connecting probabilities to improve the precision of the estimate. We propose a two-stage neighborhood selection procedure to achieve the trade-off between smoothness of the estimate and the ability to discover local structure. The tuning parameters can be selected by cross-validation. We establish desirable theoretical properties for our method, and further justify its superior performance by comparing with existing methods in simulation and real data analysis.