
A Generalization of the definition

Adapted from Bäuerle and Rieder (2010), a more general definition of an episodic CMOMDP with
horizon H ∈ N is given by a sequence of sets of data {(S,A,Xh,Prh, ch)}Hh=1, where

• S is the state space equipped with a σ-algebra FS .
• A is the action space equipped with a σ-algebra FA.
• Xh is a measurable subset of X = S ×A, which denotes the set of accessible state-action

pairs at time h.
• Prh is a stochastic transition kernel at time h. For any fixed (s, a) ∈ Xh, the mapping S 7→

Prh(S | s, a) is a probability measure on S. Moreover, the mapping (s, a) 7→ Prh(S | s, a)
is measurable with respect to (s, a) for all S ∈ FS . Intuitively, Prh(S | s, a) gives the
probability that the next state is in S if the current state is s and action a is taken at time h.

• ch : Xh → RD is a measurable function, which defines the expected cost at time h if the
current state is s and action a is taken.

For any h ∈ [H] and (s, a) ∈ S ×A, we define Ph(· | s, a) as the density of Prh(· | s, a) relative to
a certain measure µ by the Radon–Nikodym derivative, i.e., Ph = d Prh/dµ. We usually let µ be
the Lebesgue measure when the state is continuous and be the counting measure when S is discrete.
For example, for measurable real-valued function f , when S is discrete, Ph(· | s, a) is the probability
mass function and

∫
S f dµ coincides with

∑
s∈S f(s). When S is continuous, Ph(· | s, a) is the

probability density function and
∫
S f dµ denotes the Lebesgue integration. Our proposed method is

able to handle both of the above situations. For notational simplicity, we omit the dependence on µ
through the paper.

B Explanations and justifications of Assumption 1

In this section, we explain and justify Assumption 1 imposed on the target set. This assumption is a
stronger version of the one used in Yu et al. (2021) whereW∗ is not assumed to be a lower set.

B.1 Nonsingular intersections

We first explain the meaning of nonsingular intersection, namely the existence of γmax. The intuition
is that the target setW∗ and the achievable values V do not share the same support hyperplane.

W∗ V

(a) Nonsingular inter-
section.

W∗ V

(b) Singular intersection.

Figure 1: The illustration of two types of intersections: the nonsingular intersection and the singular
intersection. The target set W∗ is represented by a red square and the achievable values V is
represented by a blue circle. The intersection is in grey.

We illustrate it via a two-dimensional example in Figure 1. The target setW∗ is represented by a
red square and the achievable values V is represented by a blue circle. The intersection is in grey.
In (a), the intersection is nonsingular, which guarantees the existence of γmax < π. However, in
(b), V intersects withW singularly, leading to the inexistence of an upper bound γmax. We notice
that Figure 1 also intuitively shows why the Slater’s condition implies our assumption, since interior
points guarantee the nonsingular intersection.

As we see in related proofs, for any W ∈ V , nonsingular intersection enables us to reduce the
calculation of dist(W ,W∗) to dist(W ,W) multiplied by the sine of the included angle. We note
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that when this geometric requirement is not satisfied (i.e., when the intersection is singular), this
reduction may not exist. The reason is that when V is not of full dimension, W can be arbitrarily
close toW∗ while remains far away fromW , making the reduction impossible (Yu et al., 2021).

B.2 Being a lower set

Now we discuss the assumption of being a lower set. It is much milder than at first glance and can be
easily relaxed. For target setW∗ which is not a lower set, we can transform it into a lower set with at
most D · 2D dimensions. We achieve this by cutting the boundary ofW∗ into at most 2D pieces. We
provide a two-dimensional example as shown in Figure 2. The target set is defined as

W∗ =
{

(c1, c2) | c1 + c2 ≥ H/2, c1 + c2 ≤ 3H/2, c1 − c2 ≥ −H/2, c1 − c2 ≤ H/2
}
.

H/2 H

H/2

H

c1

c2

Figure 2: An example of target setW∗ = {(c1, c2) | c1 + c2 ≥ H/2, c1 + c2 ≤ 3H/2, c1 − c2 ≥
−H/2, c1 − c2 ≤ H/2}. Although it does not satisfy Assumption 1 of being a lower set, we can cut
its boundaries into four pieces, each of which corresponds to a partial constraint. Since each partial
constraint can be expressed in a way that is a lower set, the target setW∗ can be reformulated as the
combination of those partial constraints to satisfy the lower set requirement at the expense of higher
dimension.

We cut its boundaries into four pieces: the upper left one, the upper right one, the bottom left one,
and the bottom right one. For the upper right boundary, it corresponds to the partial constraint:{

(c1, c2) | c1 + c2 ≤ 3H/2
}
.

It is a little tricky to represent the other three. We take the upper left boundary, c2 − c1 ≤ H/2, for
an example. To that end, we notice that it is equivalent to c2 + (H − c1) ≤ 3H/2. Hence, we set
c3 = H − c1 and c4 = c2. Then we can represent this boundary by c3 + c4 ≤ 3H/2, which satisfies
Assumption 1 of being a lower set with respect to c3 and c4. Analogously, we introduce c5 to c8 for
the other two boundaries. Finally, we obtain a new target set with 8 objectives, c1, . . . , c8, that meet
Assumption 1. Hence, we successfully relax the constraint of being a lower set.

B.3 Summaries

In a word, our assumption is mild, and thus target sets that satisfy Assumption 1 are very common
in applications. For example, we can defineW∗ asW∗ = {W ∈ [0, H]D : W ≤ b} for b ∈ RD,
which is equivalent to the formation of constraints in CMDPs.
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C Reducing CMOMDPs to CMDPs

C.1 Proof of Proposition 1

Proof of Proposition 1. We first show that the CMDP is a special case of the CMOMDP. Then, we
point out the correspondence between the assumptions imposed on CMDPs and on CMOMDPs. To
be specific, we show that Slater’s condition imposed on CMDPs is equivalent to the existence of
γmax in Assumption 1. Hence, the CMOMDP is a reasonable generalization of CMDPs.

Reducing to CMDPs. An episodic CMDP is usually given byM = (S,A, H,P, c,u), where S
is a state space, A is an action space, H is the horizon, P = {Ph}Hh=1 is a collection of transition
kernels Ph : S ×A → ∆(S), c = {ch}Hh=1 is a collection of cost functions ch : S ×A → [0, 1], and
u = {uh}Hh=1 is a collection of utility functions uh : S ×A → [0, 1]D.

The CMDP aims to solve the following problem:
min

π∈∆(A |S,H)
V c,π1 (s) s.t. V u,π1 (s) ≤ b, (11)

where V c,π and V u,π are the state-value functions for cost c and utility u, respectively. Here we
assume b ∈ [0, H]D to avoid triviality.

Now we construct a CMOMDP M′ that is equivalent to M. To that end, we set M′ =
(S,A, H,P, c′) where S,A, H , andP are same asM. We define c′ = {c′h}Hh=1 as the concatenation
of c and u, i.e., c′h = (ch,u

>
h )> ∈ [0, 1]D+1 for h ∈ [H].

The preference function g : RD+1 → R is defined as the first coordinate map, i.e., we define
g(x1, . . . , xD+1) = x1.

We set the target setW∗ asW∗ = {W ∈ [0, H]D+1 : W2:(D+1) ≤ b} whereW2:(D+1) denotes the
D-dimensional vector obtained by removing the first coordinate ofW .

The CMOMDPM′ seeks to solve the following optimization problem

min
π∈∆(A |S,H)

g
(
V c

′,π
1 (s)

)
s.t. V c

′,π
1 (s) ∈ W∗. (12)

A careful analysis will reveal that, by the construction ofM′, (12) is equivalent to (11). Hence,
CMDP is a special case of CMOMDP.

Correspondence of assumptions. Under the above definition, it is clear that g is 1-Lipschitz and
convex and that g(x) ≥ g(x′) as long as x ≥ x′ for any x,x′ ∈ RD+1. In addition,W∗ is a lower
set, and it is close and convex.

It remains to show that the existence of γmax in Assumption 1 is satisfied. However, this is equivalent
to Slater’s condition on the CMDPs. Recall that Slater’s condition supposes the existence of an
interior point, which is equivalent to a nonsingular intersection between the target set and the set of
achievable values. Hence, it is exactly the geometric analog of Slater’s condition.

C.2 PEDI on CMDPs

Now we analyze PEDI on CMDPs. Recall that the core of PEDI is solving (7). Based on the
analysis in Appendix C.1, as we have specified g as the first coordinate map, we can derive its convex
conjugate,

g∗(x∗) = sup
x

(
x>x∗ − g(x)

)
= sup

x

(
x>x∗ − x1

)
=

{
0, x∗ = (1, 0, . . . , 0)>

+∞, otherwise
. (13)

Therefore, solving (7) is equivalent to solving

p∗ = min
V ∈V

max
α∈BD

V 1 − V 1,∗ + να>V − ν max
x∈W∗

α>x, (14)

since the objective attains the maximum with respect to β when β = (1, 0, . . . , 0)>. Here, by V 1 and
V 1,∗ we mean the first coordinates of V and V ∗, respectively. Now we consider maxx∈W∗ α

>x.
Recall that we constructW∗ by

W∗ = {W ∈ [0, H]D+1 : W ≤ b′}, (15)
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where we suppose b′ = (H, b>)> for simplicity. We observe this constraint is element-wise, i.e.,
different coordinates ofW are independent. Hence, we have

max
x∈W∗

α>x = max
x∈W∗

D+1∑
i=1

αixi = max
0≤xi≤bi,
i∈[D+1]

D+1∑
i=1

αixi =

D+1∑
i=1

max
0≤xi≤bi,
i∈[D+1]

αixi = α>i,+b
′, (16)

where α>i,+ denotes (α>i )+. Then, we have

p∗ = min
V ∈V

max
α∈BD

V 1 − V 1,∗ + ν
(
α>V −α>+b′

)
. (17)

A good observation is that α ≥ 0 always holds (otherwise, we can increase the negative component
of α to make the objective larger). Therefore, the optimization problem is actually

p∗ = min
V ∈V

max
α∈BD+

V 1 − V 1,∗ + να(V − b′)

= min
V ∈V

max
α∈BD+

V c,π1 (s)− V c,∗1 (s) + να
(
V u,π1 (s)− b

)
,

(18)

where the second equality is by definition and the fact that b′1 = H ≥ V 1. We notice that να
can be considered the Lagrangian multiplier. Hence, we conclude that the objective reduces to the
Lagrangian formulation of the CMDP optimization problem, and our algorithm reduces to the dual
gradient method.

D Equivalence of problems

In this section, we show that (1) and (4) share the same solution.

For convenience, we denote by p∗1 the original problem (1), and by p∗2 the new problem (4). We first
substitute their variables π with the state-value function.

For p∗1, we have
p∗1 = min

π
g
(
V π

1 (s)
)

s.t. V π
1 (s) ∈ W∗

= min
V ∈V

g
(
V
)

s.t. V ∈ W∗
(19)

while for p∗2, we have

p∗2 = min
π

(
SubOpt(π) + ν Violation(π)

)
= min

π

(
g
(
V π

1 (s)
)
− g
(
V ∗1 (s)

)
+ ν dist

(
V π

1 (s),W∗
))

= min
V ∈V

(
g(V )− g

(
V ∗1 (s)

)
+ ν dist(V ,W∗)

)
= min
V ∈V

g(V ) + ν dist(V ,W∗)

(20)

We suppose that V † is the solution of p∗2. To show that V † is also the solution of p∗1, it suffices to
verify dist(V †,W∗) = 0.

Suppose dist(V †,W∗) 6= 0, i.e., V † 6∈ W∗. We consider its projection onW∗, V § =
∏
W∗ V

†.
Since g is 1-Lipschitz, when ν > 1, it holds that

g(V §)− g(V †) < ν dist(V †,V §). (21)

Then, by (21), we have

g(V §) + ν dist(V §,W∗)
<g(V §)− g(V §) + g(V †) + ν

(
dist(V §,W∗) + dist(V †,V §)

)
=g(V †) + ν dist(V †,W∗),

where the last equality is for dist(V §,W∗) = 0. It contradicts our assumption that V † is the solution
of p∗2. Therefore, we conclude that the solution V † of p∗2 should lie inW∗, which completes the
proof of the equivalence between (1) and (4).
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E An instantiation of PEDI for linear kernel CMOMDPs

This section serves as complements for Section 3.3.

We now propose a method to estimate the empirical transition kernel P̂ and cost function ĉ and
thereby construct a ξ-uncertainty quantifier to specify Algorithm 2 for linear kernel CMOMDPs. We
construct the empirical transition kernel by ridge regression on the offline dataset D as follows,

P̂h(s′ | s, a) = ψ(s, a, s′)>θ̂h

where θ̂h = arg min
θ∈Rd1

N∑
τ=1

∫
S

(
δsτh+1

(s′)− ψ(sτh, a
τ
h, s
′)>θ

)2
ds′ + λ‖θ‖22.

Here δsτh(s) is the Dirac function centered at sτh for continuous space and indicator function for finite
space, and λ > 0 is the regularization parameter. Note that we can obtain the following closed form
of θ̂h,

θ̂h = Λ−1
h

N∑
τ=1

ψ(sτh, a
τ
h, s

τ
h+1) where Λh =

N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)ψ(sτh, a

τ
h, s
′)> ds′+λI. (22)

We construct ĉ in an analogous way by ridge regression,

r̂ih(s, a) = ϕ(s, a)>θ̂c
i

h where θ̂c
i

h = arg min
θ∈Rd2

N∑
τ=1

(
ci,τh − ϕ(sτh, a

τ
h)>θ

)2
+ λ‖θ‖22.

and θ̂cih has the closed form

θ̂c
i

h = Λ−1
ϕ,h

N∑
τ=1

ci,τh · ϕ(sτh, a
τ
h) where Λϕ,h =

N∑
τ=1

ϕ(sτh, a
τ
h)ϕ(sτh, a

τ
h)> + λI. (23)

Moreover, we construct the ξ-uncertainty quantifier for h ∈ [H] below

ΓPh (s, a, s′) = min
{
κ ·
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

, 1
}
, Γc

i

h (s, a) = min
{
κ · ‖ϕ(s, a)‖Λ−1

ϕ,h
, 1
}
, (24)

where κ > 0 is a scaling parameter to be specified later. By plugging (24) into the pessimistic
planning (Algorithm 1), we finish the establishment of PEDI on linear kernel CMOMDPs.

F Pessimism is all you need

This section studies the effectiveness of the pessimistic approach for offline CMOMDPs. To that
end, we first introduce the model evaluation error and then develop the decomposition lemma, which
decomposes the discrepancy between the state-value functions of the learned policy and the optimal
policy into three parts: the spurious correlation, the intrinsic uncertainty, and the optimization error.
Then, we show that our proposed method successfully eliminates the spurious correlation, which is
the most difficult one to control.

We consider a meta-algorithm that constructs a sequence of policies {πk}Kk=1 which ideally converges
to the optimal policy. At the k-th iteration, the algorithm constructs the estimations {V k

h }Hh=1 and
{Qk

h}Hh=1 such that V k
h (s) = Dπk [Qk

h](s). We define the model evaluation error below, which
characterizes the error of estimating the Bellman equations.

Definition 3 (Model evaluation error). The model evaluation error for the k-th iteration is defined as

ιkh(s, a) = Qk
h(s, a)− BhV k

h+1(s, a).

We denote its i-th scalar component by ιi,kh (s, a), i.e., ιi,kh (s, a) = Qi,kh (s, a)− BhV i,kh+1(s, a).

Utilizing the model evaluation error, the discrepancy between any state-value function and the optimal
one admits a decomposition as shown in the following lemma.
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Lemma 2 (Decomposition of state-value function). Let {V k
h }Hh=1 and {Qk

h}Hh=1 be any state-value
function and action-value function such that V k

h (s) = Dπk [Qk
h](s) for any s ∈ S and any h ∈ [H].

Then, it holds that

V k
1 (s)− V ∗1 (s) =

H∑
h=1

Eπ∗ [ιkh(sh, ah) | s1 = s]

+

H∑
h=1

Eπ∗
[〈
Qk
h(sh, ·), (πkh − π∗h)(· | sh)

〉
A

∣∣∣ s1 = s
]

and that

V πk
1 (s)− V ∗1 (s) =−

H∑
h=1

Eπk
[
ιkh(sh, ah)

∣∣ s1 = s
]

︸ ︷︷ ︸
(i) Spurious Correlation

+

H∑
h=1

Eπ∗
[
ιkh(sh, ah)

∣∣ s1 = s
]

︸ ︷︷ ︸
(ii) Intrinsic Uncertainty

+

H∑
h=1

Eπ∗
[〈
Qk
h(sh, ·), (πkh − π∗h)(· | sh)

〉
A

∣∣∣ s1 = s
]

︸ ︷︷ ︸
(iii) Optimization Error

,

where Eπk and Eπ∗ are taken with respect to the trajectories induced by πk and π∗ in the underlying
CMOMDP, respectively.

Proof of Lemma 2. See Appendix H.6.1 for a detailed proof.

Lemma 2 is the vectorized analogue of Lemma 3.1 in Jin et al. (2020b). It suggests that we can
decompose the discrepancy between the state-value function of learned policy and the optimal one
into (i) spurious correlation, (ii) intrinsic uncertainty, and (iii) optimization error. Among them, (i) is
the most difficult to control since it depends on both πk and ιkh that spuriously correlated with each
other. As the learner has no control over the data collecting process, this spurious correlation could
be large even in a multi-armed bandit setting (Jin et al., 2020b). Term (ii) is easier to control since π∗
is intrinsic to the underlying CMOMDP and therefore not spuriously correlated with ιkh.

As proved in Section 4.1, our proposed algorithm successfully eliminates term (i) through pessimism.
In Section 4.2, we have shown that (ii) is impossible to eliminate as it arises from the information-
theoretic lower bound of linear kernel CMOMDPs.

G Reducing linear kernel CMOMDPs to tabular CMOMDPs

All we need is to represent the transition kernel P and cost function c of tabular CMOMDP in the
form of linear kernel CMOMDP.

We set d1 = |S||A||S| and d2 = |S||A| and set ψ(s, a, s′) = e(s,a,s′), (θh)(s,a,s′) =

P(s′ | s, a), ϕ(s, a) = e(s,a), and (θcih )(s,a) = cih(s, a).

Here we denote by e the canonical basis. It can be verified that the definition of linear kernel MDP
(Definition 2) is satisfied with R = 1.

H Proofs for Section 4

For notational simplicity, we sometime use the shorthand ιkh, Qh, Vh, πh to denote ιkh(sh, ah),
Qh(sh, ah), Vh(sh), and πh(ah | sh) when there is no risk of confusion.

H.1 Proof of Lemma 1

Proof of Lemma 1. The proof is by backward induction. Suppose the inequality holds for Q-values
in the (h+ 1)-th step. Then, it holds that for any s ∈ S, i ∈ [D],

V i,kh+1(s) = Dπkh
[
Qi,kh+1

]
(s) ≥ Dπkh

[
Qi,π

k

h+1

]
(s) = V i,π

k

h+1 .
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For any (s, a) ∈ S×A, i ∈ [D], whenQi,kh (s, a) = H−h+1, it holds thatQi,kh (s, a) ≥ Qi,π
k

h (s, a).
Otherwise, by the definition of ξ-uncertainty quantifier defined in Definition 1, it holds that

Qi,kh (s, a) ≥ĉih(s, a) + P̂kh
[
V i,kh+1

]
(s, a) + Γh + Γc

i

h

≥cih(s, a) + Pkh
[
V i,kh+1

]
(s, a)

≥cih(s, a) + Pkh
[
V i,π

k

h+1

]
(s, a)

=Qi,π
k

h (s, a)

under event E . Thus, by induction, it holds for all h that Qi,kh ≥ Q
i,πk

h .

Then, by the fact that g(x) ≥ g(x′) holds as long as x ≥ x′, we have

g
(
V̂1(s)

)
≥ g
(
V π̂

1 (s)
)
.

For the constraint violation, we consider the pointW = V πk

1 (s) +
∏
W∗ V

k
1 (s)− V k

1 (s). By the
fact thatW∗ is a lower set in Assumption 1, it holds thatW+ ∈ W∗ and

dist
(
V πk

1 (s),W∗
)
≤ dist

(
V πk

1 (s),W
)
≤ dist

(
V k

1 (s),W∗
)
.

Thus, we complete the proof of Lemma 1.

H.2 Proof of Theorem 1

Proof of Theorem 1. In the following lemma, we show that the difference between any state-value
function and the optimal one, as stated in Lemma 2, can be bounded from above by the ξ-uncertainty
quantifier with high probability when projected along with θk.

Lemma 3 (Upper bound of projected difference of state-value functions). Suppose {(ΓPh ,Γch)}Hh=1
in Algorithm 2 is a ξ-uncertainty quantifier. Then under event E , we have

(θ
k
)>
(
V k

1 (s)− V ∗1 (s)
)
≤ 2(1 + ρ)

√
D

H∑
h=1

Eπ∗
[
Γh(sh, ah) + ‖Γch(sh, ah)‖∞

∣∣ s1 = s
]

Proof of Lemma 3. See Appendix H.6.3 for a detailed proof.

In what follows, we suppose the event E holds, which has probability at least 1− ξ. Applying Lemma
1, we have

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρdist

(
V π̂

1 (s),W∗
)]

≤K
[
g
(
V̂1(s)

)
− g
(
V ∗1 (s)

)
+ ρdist

(
V̂1(s),W∗

)]
.

By the convex conjugate in (6) and the fact that V̂1(s) =
∑K
k=1 V

k
1 (s), we get

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρdist

(
V π̂

1 (s),W∗
)]

= max
‖β‖≤1

{
β ·

K∑
k=1

V k
1 (s)−

K∑
k=1

g∗(β)
}
−Kg

(
V ∗1 (s)

)
+ ρ max

‖α‖≤1

{
α ·

K∑
k=1

V k
1 (s)−

K∑
k=1

max
x∈W∗

α · x
}

We observe these two terms

max
‖β‖≤1

{
β ·

K∑
k=1

V k
1 (s)−

K∑
k=1

g∗(β)
}
, max
‖α‖≤1

{
α ·

K∑
k=1

V k
1 (s)−

K∑
k=1

max
x∈W∗

α · x
}
,
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are the “single best desicion” in hindsight in the projected subgradient method. By setting ηk =

2G−1
√
D/k (or 2G−1

√
D/K if K is predefined), we apply Theorem 5 with R = 2 and G =

2(1 + ρ)H
√
D (to verify the conditions, note that g∗ is H

√
D-Lipschitz) to get

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρ dist

(
V π̂

1 (s),W∗
)]

≤
K∑
k=1

{
(βk)>V k

1 (s)− g∗(βk)
}
−Kg

(
V ∗1 (s)

)
+ ρ

K∑
k=1

{
(αk)>V1

k(s)− max
x∈W∗

(αk)>x
}

+ C(1 + ρ)
√
DH2K

(25)

where C is a constant. Then, by observing

g∗(βk) = max
V

{
(βk)>V − g(V )

}
≥ (βk)>V ∗1 (s)− g

(
V ∗1 (s)

)
,

max
x∈W∗

(αk)>x ≥ (αk)>V ∗1 (s),

we have for (25) that

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρ dist

(
V π̂

1 (s),W∗
)]

≤
K∑
k=1

{
(βk)>V k

1 (s)− (βk)>V ∗1 (s) + ρ
(
(αk)>V k

1 (s)− (αk)>V ∗1 (s)
)}

+ C(1 + ρ)
√
DH2K

=

K∑
k=1

[
(θk)>

(
V1

k(s)− V ∗1 (s)
)]

+ C(1 + ρ)
√
DH2K

(26)
Applying Lemma 3, we have

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρdist

(
V π̂

1 (s),W∗
)]

≤2K(1 + ρ)
√
D

H∑
h=1

Eπ∗
[
Γh(sh, ah) + ‖Γch(sh, ah)‖∞ | s1 = s

]
+ C(1 + ρ)

√
DH2K

=K(εK + IntUncertπ
∗

D ),

where we define

εK = C(1+ρ)

√
DH2

K
, IntUncertπ

∗

D = 2(1 + ρ)
√
D

H∑
h=1

Eπ∗
[
Γh(sh, ah)+‖Γch(sh, ah)‖∞ | s1 = s

]
.

Note that dist(WK ,W∗) ≥ 0. Therefore, we can bound the suboptimality from above by

g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
≤ εK + IntUncertπ

∗

D .

To obtain an upper bound of the constraint violation, we employ the following lemma.

Lemma 4. Let W ∗ denote a return vector in set W that achieves the lowest cost, i.e. ∀W ∈
W, g(W ) ≥ g(W ∗). Then, under Assumption 1, it holds for anyW ∈ RD that

g(W )− g(W ∗) ≥ −dist(W ,W∗)/ sin(γmax).

Proof of Lemma 4. See Lemma 16 in Yu et al. (2021) for a detailed proof.
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We notice that by definition, W ∗ = V ∗1 (s). Therefore, applying Lemma 4 with W = V π̂
1 (s), we

have

dist
(
V π̂

1 (s),W∗
)

≤dist
(
V π̂

1 (s),W∗
)

+ sin(γmax)

[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+

dist
(
V π̂

1 (s),W∗
)

sin(γmax)

]
= sin(γmax)

[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρdist

(
V π̂

1 (s),W∗
)]

≤2

ρ
(εK + IntUncertπ

∗

D ).

where the last inequality follows from (26). Thus, we complete the proof of Theorem 1.

H.3 Proof of Theorem 2

Proof of Theorem 2. It suffices to show that {(ΓPh ,Γch)}Hh=1 defined in (24) is a ξ-uncertainty quanti-
fier as stated in the following lemma.

Lemma 5. Under Assumptions 2, we set

λ = 1, κ = CR
√
d log(dN) + log(DH/ξ),

where C > 0 is an absolute constant and ξ ∈ (0, 1) is the confidence parameter. Then,
{(ΓPh ,Γch)}Hh=1 in (24) is a ξ-uncertainty quantifier.

Proof of Lemma 5. See Appendix H.6.5 for a detailed proof.

By Theorem 1, we have that

SubOpt(π̂) ≤ εK + IntUncertπ
∗

D , Violation(π̂) ≤ 2

ρ
(εK + IntUncertπ

∗

D )

where we define

εK = C(1 + ρ)

√
DH2

K
, IntUncertπ

∗

D = 2(1 + ρ)
√
D

H∑
h=1

Eπ∗
[
Γh(s, a) + ‖Γch(s, a)‖∞

∣∣ s1 = s
]
.

By Lemma 5 and the ξ-uncertainty quantifier defined in (24), we finish the proof.

H.4 Proof of Theorem 3

Proof of Theorem 3. The following lemma is adopted from Jin et al. (2020b), which characterizes
the information-theoretic lower bound of offline RL.

Theorem 4. For the output π̂ of any offline RL algorithm, there exists a tabular MDPM with initial
state s ∈ S and a dataset D compliant withM, such that

ED

[
SubOpt(π̂)∑H

h=1 Eπ∗
[
1/
√

1 + nh(sh, ah)
∣∣ s1 = s

]] ≥ C
where C > 0 is an absolute constant. Here nh(sh, ah) =

∑N
τ=1 1{sτh = sh, a

τ
h = ah} for

(sh, ah) ∈ S ×A.

Proof of Theorem 4. See Theorem 4.6 in Jin et al. (2020b) for a detailed proof.

Note that we can view the MDP as a special case of CMOMDP with the target setW∗ = RD, D = 1
and g being the identity function. Hence the hard instance in Theorem 4 is also a hard instance of
CMOMDP. It remains to reduce the tabular MDP there to a linear kernel MDP defined in Definition
2. To that end, we set d1 = |S||A||S| and d2 = |S||A| and set ψ(s, a, s′) = e(s,a,s′), (θh)(s,a,s′) =
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P(s′ | s, a), ϕ(s, a) = e(s,a), and (θcih )(s,a) = cih(s, a). Here e denotes the canonical basis. It can be
verified that Definition 2 is satisfied with R = 1.

Then, it holds that

Λh = λI +

N∑
τ=1

∑
s′∈S

ψ(sτh, a
τ
h, s
′)ψ(sτh, a

τ
h, s
′)> = λI +

∑
(s,a)∈S×A

∑
s′∈S

nh(s, a)E(s,a,s′),(s,a,s′)

where E(s,a,s′),(s,a,s′) is the matrix in which entries at
(
(s, a, s′), (s, a, s′)

)
is 1 and other entries are

all 0. We note that λ = 1 and Λh is diagonal and thus we have∥∥ψ(s, a, s′)
∥∥

Λ−1
h

≤ 1√
1 + nh(s, a)

(27)

Following the same derivation we get

‖ϕ(s, a)‖Λ−1
ϕ,h
≤ 1√

1 + nh(s, a)
(28)

Then, by Theorem 4, (27), and (28), we have

ED

[
SubOpt(π̂)∑H

h=1 Eπ∗
[
‖ϕ(sh, ah)‖Λ−1

ϕ,h
+ |S|−1

∫
S ‖ψ(sh, ah, s′)‖Λ−1

h
ds′
∣∣ s1 = s

]]

≥ED

[
SubOpt(π̂)

2
∑H
h=1 Eπ∗

[
1/
√

1 + nh(sh, ah)
∣∣ s1 = s

]]
≥c/2.

which completes the proof of Theorem 3.

H.5 Proof of Corollary 1

Proof of Corollary 1. By the property of visitation measure, we have that

Eπ∗
[
Γh(sh, ah) + Γcih (sh, ah) | s1 = s

]
=Eµ∗h

[
Γh(s, a)

]
+ Eµ∗h

[
Γcih (s, a)

]
≤

(
sup

(s,a)∈S×A

µ∗h(s, a)

µb,τ
h (s, a)

)
·
(
Eµb,τ

h

[
Γh(s, a)

]
+ Eµb,τ

h

[
Γcih (s, a)

])
≤ς ·

(
Eµb,τ

h

[
Γh(s, a)

]
+ Eµb,τ

h

[
Γcih (s, a)

])
,

(29)

where the first inequality follows from Hölder’s inequality and the last inequality follows from the
condition. We will upper bound the term Eµb,τ

h

[
Γh(s, a)

]
and Eµb,τ

h

[
Γcih (s, a)

]
respectively.

Let Xci,τ
h = Eµb,τ

h

[
Γcih (s, a)

]
− Γcih (sτh, a

τ
h), which is a martingale difference process with respect

to the filtration {Fτh}Nτ=1. To see this, we have

E[Xci,τ
h | Fτ−1

h ] = E[Xci,τ
h ] = 0

Note that |Xci,τ
h | is bounded by 2, and thus Azuma’s inequality implies for all h ∈ [H] that

N∑
τ=1

Xci,τ
h ≤ C

√
N log(DH/ξ) (30)

holds with probability at least 1− ξ/(D + 1). Here C denotes an absolute constant.

Moreover, by the Cauchy-Schwarz inequality, it holds that

N∑
τ=1

Γcih (sτh, a
τ
h) ≤

N∑
τ=1

κ
√
ϕ(sτh, a

τ
h)>Λ−1

ϕ,hϕ(sτh, a
τ
h) ≤ κ

√√√√N

N∑
τ=1

ϕ(sτh, a
τ
h)>Λ−1

ϕ,hϕ(sτh, a
τ
h),

(31)
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and by the property of trace, we have

N∑
τ=1

ϕ(sτh, a
τ
h)>Λ−1

ϕ,hϕ(sτh, a
τ
h)

= tr
( N∑
τ=1

ϕ(sτh, a
τ
h)>Λ−1

ϕ,hϕ(sτh, a
τ
h)
)

= tr
( N∑
τ=1

ϕ(sτh, a
τ
h)ϕ(sτh, a

τ
h)>Λ−1

ϕ,h

)
= tr

(
(Λϕ,h − λI)Λ−1

ϕ,h

)
= tr

(
I − λ diag(λ1, λ2, . . . , λd2)−1

)
≤d2,

(32)

where in the last equality we denote by λ1, λ2, . . . , λd2 the eigenvalues of Λϕ,h. By plugging (32)
into (31) we have

N∑
τ=1

Γcih (sτh, a
τ
h) ≤ κ

√
dN. (33)

Combining (30) and (33), we have

N∑
τ=1

Eµb,τ
h

[
Γcih (s, a)

]
=

N∑
τ=1

Xci,τ
h +

N∑
τ=1

Γcih (sτh, a
τ
h) ≤ Cκ

√
dN log(DH/ξ) (34)

with probability at least 1− ξ/(D + 1).

For term Eµb,τ
h

[
Γh(s, a)

]
, we follow a similar derivation. Let Xτ

h = Eµb,τ
h

[
Γh(s, a)

]
− Γh(sτh, a

τ
h)

be a martingale difference sequence with bound 2H for each Xτ
h . Then, by the Azuma’s inequality,

it holds that
N∑
τ=1

Xτ
h ≤ CH

√
N log(DH/ξ) (35)

with probability at least 1− ξ/(D + 1). Similarly, we have

N∑
τ=1

Γh(sτh, a
τ
h) ≤

N∑
τ=1

H

∫
S
κ
√
ψ(sτh, a

τ
h, s
′)>Λ−1

h ψ(sτh, a
τ
h, s
′) ds′

≤ κH

√√√√|S|N N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)>Λ−1

h ψ(sτh, a
τ
h, s
′) ds′

(36)

and note that
N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)>Λ−1

h ψ(sτh, a
τ
h, s
′) ds′

= tr

(
N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)>Λ−1

h ψ(sτh, a
τ
h, s
′) ds′

)

= tr

(
N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)ψ(sτh, a

τ
h, s
′)>Λ−1

h ds′

)
≤d1.

(37)

Combining (35), (36) and (37), we have

N∑
τ=1

Eµb,τ
h

[
Γh(s, a)

]
=

N∑
τ=1

Xτ
h +

N∑
τ=1

Γh(sτh, a
τ
h) ≤ CκH

√
dN |S| log(DH/ξ) (38)
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holds with probability at least 1− ξ/(D + 1).

Taking the union bound for (34) and (38), by (29), we have

IntUncert π
∗

D = 2(1 + ρ)

H∑
h=1

Eπ∗
[
Γh(sh, ah) + ‖Γch(sh, ah)‖∞

∣∣ s1 = s
]

≤ 2ς(1 + ρ)

H∑
h=1

N−1
N∑
τ=1

(
Eµb,τ

h

[
Γh(s, a)

]
+ Eµb,τ

h

[
‖Γch(s, a)‖∞

])
≤ Cςκ(1 + ρ)H2

√
d|S|/N log(DH/ξ)

with probability at least 1− ξ. Thus, we complete the proof of Corollary 1.

H.6 Supporting lemmas and proofs

H.6.1 Proof of Lemma 2

Proof of Lemma 2.

Lemma 6 (Extended value difference (Cai et al., 2020)). Let π = {πh}Hh=1 and π′ = {π′h}Hh=1 be
two arbitrary policies and let {Qh}Hh=1 be any given Q-functions. For any h ∈ [H], we define a
value function Vh : S → R by letting Vh(s) = 〈Qh(s, ·), πh(· | s)〉A for all s ∈ S. Then, we have

V1(s)− V π
′

1 (s) =

H∑
h=1

Eπ′
[〈
Qh(sh, ·), πh(· | sh)− π′h(· | sh)

〉
A

∣∣∣ s1 = s
]

+

H∑
h=1

Eπ′
[
Qh(sh, ah)− (BhVh+1)(sh, ah)

∣∣ s1 = s
]
.

where s is an initial state.

Proof of Lemma 6. See Section B.1 in Cai et al. (2020) for a detailed proof.

Applying Lemma 6 with π = πk, π′ = π∗, and Qh = Qi,kh , we get

V i,k1 (s)− V i,∗1 (s) =

H∑
h=1

Eπ∗
[〈
Qi,kh , πkh − π∗h

〉 ∣∣∣ s1 = s
]

+

H∑
h=1

Eπ∗
[
ιi,kh

∣∣∣ s1 = s
]
. (39)

Moreover, applying Lemma 6 with π = π′ = πk, we get

V i,π
k

1 (s)− V i,k1 (s) = −
H∑
h=1

Eπk
[
ιi,kh
∣∣ s1 = s

]
. (40)

Since for any k ∈ [K],

V πk

1 (s)− V ∗1 (s) = V πk

1 (s)− V k
1 (s) + V k

1 (s)− V ∗1 (s), (41)

we are done by plugging (39) and (40) into (41).

H.6.2 Projected subgradient method

Our algorithm benefits from the online projected subgradient method for the update of dual variables.
We formally state it below for compactness.

Online learning. Online learning involves two players: the adversary and the player. The online
learning protocol is shown in Algorithm 3.
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Algorithm 3 Protocol of Online Learning

1: for t = 1, . . . , T do
2: The player chooses an action xt.
3: The adversary picks a function ft.
4: The player obtains reward ft(xt).
5: The player learns via ft.
6: end for

Note that there is no assumption on how the adversary will pick the function ft, and it may be
adversarially chosen. The player aims to minimize the regret:

Regret = max
x

T∑
t=1

ft(x)−
T∑
t=1

ft(xt), (42)

which measures the quality of the player’s strategy x1, . . . , xT compared with the single best desicion
in hindsight.

Projected subgradient method. The projected subgradient method is a particular case of mirror
descent/ascent with Euclidean distance. Applying this method to online learning produces a regret
bound of the order O(

√
T ).

We suppose that the actions xt are required to be contained in some convex set X , i.e., xt ∈ X .
Let gt ∈ ∂ft(xt) denote a subgradient of ft at xt and G and R denote two constant bounds such
that maxx,y∈X ‖x− y‖2 ≤ R and maxt∈[T ] ‖∂ft(xt)‖2 ≤ G. We set the step length ηt at the t-th
iteration to R

G
√
t

if we do not know the number of iterations T in advance and to R
G
√
T

if we have the
knowledge of T . The latter case will leads to an upper bound with a smaller constant multiplicative
factor. With these notations, the update rule of projected subgradient method can be expressed as

xt+1 ← arg max
x∈X

{
ft(xt) + 〈ηtgt, x− xt〉 −

1

2
‖x− xt‖22

}
.

We describe the complete method in Algorithm 4.

Algorithm 4 projected subgradient method

1: Arbitrarily initialize x1 ∈ X .
2: for t = 1, . . . , T − 1 do
3: xt+1 ← arg maxx∈X

{
ft(xt) + 〈ηtgt, x− xt〉 − 1

2‖x− xt‖
2
2

}
4: end for

By this method, the regret is guaranteed to increase sublinearly as stated in Theorem 5.

Theorem 5. Using projected subgradient method mentioned in Algorithm 4, it holds that for the
regret (42) that

Regret ≤ CRG
√
T ,

where C is an absolute constant.

Proof of Theorem 5. See Zinkevich (2003) for a detailed proof.

H.6.3 Proof of Lemma 3

Proof of Lemma 3. The model evaluation error can be upper bounded by the ξ-uncertainty quantifier.
We formally state it below.

Lemma 7. Under event E , it holds that for any k ∈ [K] and h ∈ [H],

0 ≤ ιkh(s, a) ≤ 2
(
Γh(s, a) · 1 + Γch(s, a)

)
.

Proof of Lemma 7. See Appendix H.6.4 for a detailed proof.
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By Lemma 2, it holds that

(θk)>
(
V k

1 (s)− V ∗1 (s)
)

=

H∑
h=1

Eπ∗
[
(θk)>ιkh

∣∣∣ s1 = s
]

︸ ︷︷ ︸
(i)

+

H∑
h=1

Eπ∗
[ 〈

(θk)>Qk
h, π

k
h − π∗h

〉
A

∣∣∣ s1 = s
]

︸ ︷︷ ︸
(ii)

.

We bound these two terms above separately. For (ii), since πk in Algorithm 2 is greedy (see Line 5),
we have (ii)≤ 0. For (i), by Lemma 7, we get

(i) ≤ 2|θk|>
H∑
h=1

Eπ∗
[
Γh(sh, ah) · 1 + Γch(sh, ah)

∣∣ s1 = s
]
.

By plugging them back and applying Hölder’s inequality, we have

(θ
k
)>
(
V k

1 (s)− V ∗1 (s)
)
≤ 2(1 + ρ)

√
D

H∑
h=1

Eπ∗
[
Γh(sh, ah) + ‖Γch(sh, ah)‖∞

∣∣ s1 = s
]
,

where we notice that ‖θk‖1 ≤ (1 + ρ)
√
D. Thus, we finish the proof of Lemma 3.

H.6.4 Proof of Lemma 7

Proof of Lemma 7. For any i ∈ [D], recall that we have

Qi,kh (s, a) = min
{
Q
i,k

h (s, a), H − h+ 1
}

+
.

Under event E , we have

Q
i,k

h (s, a) =ĉih(s, a) + P̂h[V i,kh+1](s, a) + Γh + Γc
i

h

≥cih(s, a) + Ph[V i,kh+1]

≥0,

where the last inequality follows from V i,kh+1 ∈ [0, H − h]. Therefore, it holds that Qi,kh (s, a) ≤
Q
i,k

h (s, a) and

Qi,kh (s, a) = min
{
Q
i,k

h (s, a), H − h+ 1
}

+

≥min
{
cih(s, a) + Ph[V i,kh+1], H − h+ 1

}
+

=cih(s, a) + Ph[V i,kh+1],

which implies

ιi,kh (s, a) = Qi,kh (s, a)−
[
cih(s, a) + PhV i,kh+1(s, a)

]
≥ 0.

It remains to establish an upper bound for ιi,kh (s, a). To that end, we have

ιi,kh (s, a) =Qi,kh (s, a)−
[
cih(s, a) + PhV i,kh+1(s, a)

]
≤Qi,kh (s, a)−

[
cih(s, a) + PhV i,kh+1(s, a)

]
=
[
ĉih(s, a) + P̂h[V i,kh+1](s, a) + Γh(s, a) + Γc

i

h (s, a)
]
−
[
cih(s, a) + Ph[V i,kh+1](s, a)

]
=
[
Γc

i

h (s, a)− cih(s, a) + ĉih(s, a)
]

+
[
Γh(s, a)− PhV i,kh+1(s, a) + P̂h[V i,kh+1](s, a)

]
≤2
(
Γh(s, a) + Γc

i

h (s, a)
)
,

where the last inequality follows from the definition of the ξ-uncertainty quantifier. Thus, we finish
the proof of Lemma 7.
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H.6.5 Proof of Lemma 5

Proof of Lemma 5. In what follows, we show that {(ΓPh ,Γch)}Hh=1 defined in (24) are ξ-uncertainty
quantifier for linear kernel CMOMDP.

Uncertainty quantifier for P . We first show that ΓPh is the ξ-uncertainty quantifier of P .

By definition, we have

Ph(s′ | s, a) = ψ(s, a, s′)>θh = ψ(s, a, s′)>Λ−1
h Λhθh

= ψ(s, a, s′)>Λ−1
h

(
N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ + λθh

)
.

Thus, by the closed form of θ̂h in (22), we have

Ph(s′ | s, a)− P̂h(s′ | s, a)

= Ph(s′ | s, a)− ψ(s, a, s′)>θ̂h

= ψ(s, a, s′)>Λ−1
h

(
N∑
τ=1

( ∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ − ψ(sτh, a

τ
h, s

τ
h+1)

))
︸ ︷︷ ︸

(i)

+λ · ψ(s, a, s′)>Λ−1
h θh︸ ︷︷ ︸

(ii)

.

(43)

For term (i), by Cauchy-Schwartz inequality, we have

|(i)| ≤
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

·

∥∥∥∥∥
N∑
τ=1

( ∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ − ψ(sτh, a

τ
h, s

τ
h+1)

)∥∥∥∥∥
Λ−1
h

≤ C1R ·
√
d log(dN) + log(DH/ξ) ·

∥∥ψ(s, a, s′)
∥∥

Λ−1
h

, ∀(s, a, s′) ∈ S ×A× S, h ∈ [H]

with probability at least 1− ξ/(D + 1). Now we prove the last inequality of the above derivation.
To that end, we need the following lemma that generalizes the Theorem 1 in Abbasi-Yadkori et al.
(2011) to function-valued process.

Lemma 8 (Self-normalized bound for function-valued Process). Let Ω be a probability space and
{ηt}∞t=1 be a function-valued stochastic process with a filtration {Gt}∞t=0, i.e., ηt : Ω× S → R. We
assume that ηt | Gt−1 is zero-mean and σ−sub-Gaussian, i.e.,

E
[
ηt(s)

∣∣Gt−1

]
= 0, ∀s ∈ S,

logE
[

exp
(
〈f, ηt〉

) ∣∣∣Gt−1

]
≤ ‖f‖2∞ · σ2/2, ∀f : S → R.

Let {Xt}∞t=0 be an Rd-function-valued stochastic process, i.e., Xt : Ω× S → Rd, and suppose Xt

is Gt−1-measurable. We further assume that

‖λ>Xt‖∞ ≤ R · ‖λ>Xt‖2 (44)

almost surely for any λ ∈ Rd. Let V ∈ Rd×d be a positive definite matrix. We define

V t = V +

t∑
τ=1

∫
S
Xτ (s)Xτ (s)> ds

and

St =

t∑
τ=1

〈Xτ , ητ 〉S .

Then for any δ > 0, with probability at least 1− δ, it holds that for any t ≥ 0,

‖St‖2Vt−1 ≤ 2σ2R2 log

(
det(V t)

1/2

δ det(V )1/2

)
.
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Proof of Lemma 8. See Appendix H.6.6 for a detailed proof.

We consider the filtration {Fτh}
H,N
h,τ=1 defined in Assumption 2. Then it holds that

E
[
δsτh+1

(s′) | Fτh
]

= Ph(s′ | sτh, aτh).

For any f : S → R, by Hölder’s inequality, it holds that 〈f,Ph(· | sτh, aτh) − δsτh+1
〉S ≤ 2‖f‖∞,

which implies

logE
[

exp
(
〈f,Ph(· | sτh, aτh)− δsτh+1

〉
) ∣∣∣Fh,τ] ≤ 4‖f‖2∞/2.

It corresponds to the conditional 2-sub-Gaussianity. Moreover, noticing that ψ(sτh, a
τ
h, s
′) is Fτh -

measurable and both P(· | sτh, aτh) and δsτh+1
are Fτh+1-measurable, we apply Lemma 8 with Xτ =

ψ(sτh, a
τ
h, ·), ηh = Ph(· | sτh, aτh)− δsτh+1

and V = λI to get∥∥∥∥∥
N∑
τ=1

( ∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ − ψ(sτh, a

τ
h, s

τ
h+1)

)∥∥∥∥∥
2

Λ−1
h

≤ 8R2 · log
(
H/p · det(Λh)1/2 det(λI)−1/2

) (45)

with probability at least 1− p/H . It remains to upper bound det(Λh).

By Definition 2, we have

y>Λhy = λ‖y‖22 +

N∑
τ=1

〈
y>ψ(sτh, a

τ
h, ·), y>ψ(sτh, a

τ
h, ·)

〉
≤ λ · ‖y‖22 + dN · ‖y‖22,

which implies ‖Λh‖2 ≤ λ+ dN , and therefore,

det(Λh) ≤ ‖Λh‖d2 ≤ (λ+ dN)d. (46)

Setting λ = 1 and plugging (46) back into (45), we get∥∥∥∥∥
N∑
τ=1

(∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ − ψ(sτh, a

τ
h, s

τ
h+1)

)∥∥∥∥∥
2

Λ−1
h

≤ 8R2 ·
(
1/2 · d log(1 + dN) + log(H/p)

)
≤ CR2 ·

(
d log(dN) + log(H/p)

)
(47)

holds with probability at least 1− p/H . Here C is an absolute constant. By the union bound, (47)
holds for all h ∈ [H] with probability at least 1− p.

For term (ii) in (43), by setting λ = 1, we have

|(ii)| ≤
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

· ‖θh‖Λ−1
h
≤
√
d ·
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

(48)

where the last inequality is due to the definition of linear kernel MDP (Definition 2) and ‖Λ−1
h ‖2 ≤ 1.

By plugging (47) and (48) into (43), we get, for all h ∈ [H], (s, a, s′) ∈ S ×A× S ,

|Ph(s′ | s, a)− P̂h(s′ | s, a)| ≤ CR
√
d log(dN) + log(DH/ξ) ·

∥∥ψ(s, a, s′)
∥∥

Λ−1
h

≤ κ ·
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

(49)

holds with probability at least 1− ξ/(D + 1).
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Uncertainty quantifier for c. Due to the closed form solution of θ̂c
i

h in (23), we have∣∣cih(s, a)− ĉih(s, a)
∣∣

=|ϕ(s, a)>(θc
i

h − θ̂c
i

h )|

=|ϕ(s, a)>Λ−1
ϕ,h

( N∑
τ=1

ci,τh · ϕ(sτh, a
τ
h)− Λϕ,hθ

ci

h

)
|

=|ϕ(s, a)>Λ−1
ϕ,h

( N∑
τ=1

ϕ(sτh, a
τ
h)
(
ci,τh − ϕ(sτh, a

τ
h)>θc

i

h

)
− λθc

i

h

)
|

≤‖ϕ(s, a)‖Λ−1
ϕ,h
· ‖

N∑
τ=1

ϕ(sτh, a
τ
h)
(
ci,τh − ϕ(sτh, a

τ
h)>θc

i

h

)
‖Λ−1

ϕ,h
+ λ‖θc

i

h ‖Λ−1
ϕ,h

Following a similar argument as we did for P , we obtain a result analogous to (49),

‖cih(s, a)− ĉih(s, a)‖ ≤ κ · ‖ϕ(s, a)‖Λ−1
φ,h
.

with probability at least 1− p.

Finally, by setting p = ξ/(D + 1) and taking union bound for P and ci (i ∈ [D]), we complete the
proof of Lemma 5.

H.6.6 Proof of Lemma 8

Proof of Lemma 8. We generalize the proof of Abbasi-Yadkori et al. (2011) as follows.

Lemma 9. Let λ ∈ Rd be an arbitrary vector and

Mλ
t = exp

[
t∑

τ=1

(〈
λ>Xτ , ητ

〉
σ2R2

− ‖λ
>Xτ‖22

2

)]
.

Let T be a stopping time with respect to {Gt}∞t=1. Then Mλ
T is almost surely well-defined and

E[Mλ
T ] ≤ 1.

Proof of Lemma 9. We first show that {Mλ
t }∞t=0 is a supermartingale. To see this, we have

E
[
Mλ
t

∣∣Gt−1

]
= Mλ

t−1 · E

[
exp(

〈
λ>Xt, ηt

〉
σ2R2

− ‖λ
>Xt‖22

2
)

∣∣∣∣∣Gt−1

]

≤Mλ
t−1 · E

[
exp(

‖λ>Xt‖2∞
2R2

− ‖λ
>Xt‖2∞
2R2

)

∣∣∣∣Gt−1

]
= Mλ

t−1.

where the inequality is due to the conditional σ-sub-Gaussianity of ηt and the condition in (44). It also
implies E[Mλ

t ] ≤ 1 for any t ≥ 0. By martingale convergence theorem, with t → ∞, Mλ
t almost

surely converges to a random variable Mλ
∞ with finite expectation, and thus Mλ

T is well-defined
almost surely. Applying Fatou’s lemma, we have

E
[
Mλ
T

]
= E

[
lim inf
t→∞

Mλ
T∧t

]
≤ lim inf

t→∞
E
[
Mλ
T∧t
]
≤ 1.

Lemma 10. Let T be a stopping time with respect to {Gt}∞t=0. Then the following holds with
probability at least 1− δ

‖ST ‖2Vt−1 ≤ 2σ2R2 log

(
det(V t)

1/2

δ det(V )1/2

)
.
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Proof of Lemma 10. For notational simplicity, we assume σ ·R = 1. We define

Vt =

t∑
τ=1

∫
S
Xτ (s)Xτ (s)> ds

and therefore V t = Vt + V . Then we can write Mλ
t = exp(λ>St − ‖λ‖2Vt/2). Let Λ be a

Rd-valued Gaussian random variable with covariance V −1 and that it is independent of {Gt}∞t=0.
Let Mt = E

[
MΛ
t

∣∣G∞] where G∞ = σ(cup∞t=0Gt). Let q denote the density of Λ and v(A) =∫
exp(−x>Ax/2) dx =

√
(2π)d/ det(A) for any positive definite matrix A.

Then, we have

Mt =

∫
Rd

exp(λ>St − ‖λ‖2Vt/2)q(λ) dλ

=

∫
Rd

exp(−‖λ− V −1
t St‖2Vt/2 + ‖St‖2V −1

t
/2)q(λ) dλ

=v(V )−1 · exp(‖St‖2V −1
t
/2) ·

∫
Rd

exp
(
−
(
‖λ− V −1

t St‖2Vt + ‖λ‖2V
)
/2
)

dλ.

(50)

Note that

‖λ− V −1
t St‖2Vt + ‖λ‖2V = ‖λ− V −1

t St‖2V t + ‖V −1
t St‖2Vt − ‖St‖

2

V
−1
t

= ‖λ− V −1

t St‖2V t + ‖St‖2V −1
t
− ‖St‖2V −1

t

.
(51)

By plugging (51) into (50), we get

Mt = v(V )−1 · exp
(
‖St‖2V −1

t

/2
)
·
∫
Rd

exp
(
− ‖λ− V −1

t St‖2V t/2
)

dλ

=
v(V t)

v(V )
· exp

(
‖St‖2V −1

t

/2
)

=

√
det(V )/ det(V t) · exp

(
‖St‖2V −1

t

/2
)
.

Hence, we have

P
(
‖ST ‖2V −1

T

> 2 log
(det(V T )1/2

δ det(V )1/2

))
= P(δ ·MT > 1) ≤ E[δ ·MT ] ≤ δ,

which completes the proof of Lemma 10.

We construct a stopping time as below.

T = inf

{
t ≥ 0 : ‖St‖2V −1

t

> 2 log
( det(V t)

1/2

δ det(V )1/2

)}
Then, we have

P
(
∃t ≥ 0, ‖St‖2

V
−1
t

> 2 log
(

det(V t)
1/2

δ det(V )1/2

))
= P(T <∞)

= P
(
‖ST ‖2

V
−1
T

> 2 log
(

det(V T )1/2

δ det(V )1/2

)
, T <∞

)
≤ P

(
‖ST ‖2

V
−1
T

> 2 log
(

det(V T )1/2

δ det(V )1/2

))
≤ δ,

which completes the proof of Lemma 8.
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I Experiments

Experiments are conducted on tabular CMOMDPs as follows. We define the constraint set as
W∗ = {x ∈ RD : ‖x‖2 ≤ 1} for simplicity, and one can verify that it satisfies Assumption 1.
The transition kernel P and cost function c are generated uniformly at random from [0, 1] (and
we conduct normalization for P). We make the cost deterministic for simplicity. In addition, we
set Ph(s0 | s0, a0) = 1 and ch(s0, a0) = 0 for a certain state action pair (s0, a0) ∈ S × A for all
h ∈ [H], and the initial state is set to s0. The intuition here is to ensure that the optimal policy, which
always takes action a0, achieves zero total cost and zero constraint violation for simplicity. The
dataset is generated by a uniformly random experimenter, i.e., it picks a ∈ A uniformly at random at
each step. Hyperparameters are listed in Table 1.

Table 1: List of hyperparameters
Hyperparameter Value

H: horizon 5
D: dimension of cost function 6
|S|: cardinality of state space 5
|A|: cardinality of action space 5
|D|: dataset size 50000
K: number of iteration of PEDI 100
δ: confidence level 0.9
η: step length 0.01
ν: scaling constant 3

In our implementation, PEDI estimates the transition and cost functions by the empirical mean,
i.e., P̂h(s, a) = nh(s, a, s′)/nh(s, a) and ĉih(s, a) = f ih(s, a)/nh(s, a) for i ∈ [D] where nh(s, a)
is the number of visits to (s, a) at step h and f ih(s, a) is the sum of the i-th cost incurred in the
dataset when visiting (s, a) at step h. We construct the Hoeffding-style uncertainty quantifiers, i.e.,
ΓPh (s, a, s′) =

√
log(2H|S||A||S|/δ)/(2nh(s, a)) and Γch =

√
log(2DH|S||A|/δ)/(2nh(s, a)).

We can verify that they satisfy the definition (Definition 1).

We conduct experiments to see how PEDI converges to the optimal policy with different preference
functions: quadratic functions, polynomial functions, and their combinations.

Quadratic Functions. Suppose the interplay of cost functions can be modeled by a positive definite
matrix A, a vector b and a constant c, i.e., the preference function is defined as

g(x) =
1

2
x>Ax+ b>x+ c,

where A is positive definite. For simplicity, we assume b is the zero vector and c = 0. To guarantee
1-Lipschitzness, it suffices to restrict the spectral radius λmax. In particular, we require λmax(A) ≤
1/(2HD1/2) since ‖∂xg‖2 = ‖2Ax‖2 ≤ 2λmax(A)HD1/2. For the convex conjugate, we can
verify that g∗(x∗) = 1

2 (x∗ − b)>A−1(x∗ − b)− c = 1
2x
∗A−1x∗. In the numerical experiment, the

matrix A is randomly generated with the mentioned spectral radius requirement. The results are given
in Table 2.

Table 2: Results of quadratic preference functions
Iteration k Suboptimality Constraint Violation

1 0.067 0.880
2 0.505 4.007
3 0.067 0.880
4, 5, . . . , 100 0.000 0.000

As we see, it converges to the optimal policy in mere four iterations and stays optimal permanently.

32



Polynomial Functions. Suppose the preference function is polynomial, i.e.,

g(x) =

D∑
i=1

ci|xi|pi .

For simplicity, we assume p = pi = pj and c = ci = cj for any 1 ≤ i, j ≤ D. To en-
sure 1-Lipschitzness, it suffices to set c = 1/(pHp−1D1/2) for all i which results in ‖∂xg‖2 =

cpxp−1D1/2 ≤ 1 for x ≥ 0. Then, we have g∗(x∗) =
∑D
i=1

|x∗i |
q

cq−1pq−1q where 1
p + 1

q = 1. In the
numerical experiment, we set p = 2. The results are shown in Table 3.

Table 3: Results of polynomial preference functions
Iteration k Suboptimality Constraint Violation

1 0.165 1.009
2 0.139 0.844
3, 4, . . . , 100 0.000 0.000

As we see, it reaches the optimal solution in only three iterations.

Combination of Quadratic Functions and Polynomial Functions. We consider more complex sce-
narios where preference functions are combinations of quadratic functions and polynomial functions,
i.e., g(x) = g1(x1) + g2(x2) with

g1(x) =
1

2
x>Ax+ b>x, g2(x) =

D2∑
i=1

ci|xi|pi .

Here x = (x>1 , x
>
2 )> with x1 ∈ RD1 , x2 ∈ RD2 and D1 + D2 = D. It is clear that g∗(x∗) =

g∗1(x∗1)+g∗2(x∗2). In experiments we setD1 = D2 = D/2. Moreover, we impose similar requirements
and restrictions as we did previously to ensure 1-Lipschitzness. The numerical results are in Table
4, which show that the suboptimality and constraint violation decrease as the number of iterations
increases, and PEDI finds the solution in nine iterations.

Table 4: Results of functions that are a combination of quadratic functions and polynomial preference
functions

Iteration k Suboptimality Constraint Violation

1 1.517 6.033
2 1.490 6.000
3, 4, 5 1.438 5.864
6 1.333 5.609
7 0.811 4.152
8 0.093 0.884
9, 10, . . . , 100 0.000 0.000

The following two remarks discuss (1) possibilities to handle other (even more general) preference
functions and (2) some practical variants of PEDI for application, which is left to future work, as this
paper is mainly theoretical.
Remark 1 (General Preference Function). In addition to the above demonstration, PEDI is also
easily applicable to preference functions from many function classes such as exponential function,
logarithmic function, and entropy function. Even when the exact expression of the preference function
g is not good or even unknown, PEDI applies as long as we can approximate g∗ by some numerical
methods, say, by directly approximating supx(〈x∗, x〉 − g(x)), which is the definition of the convex
conjugate. To obtain the subgradient, we can use certain techniques such as numerical differentiation.
Remark 2 (General Planning Algorithm). For a real-world application, the pessimistic planning
(PESSPLANNING, see Algorithm 1) may seem too heavy. It can be replaced by any algorithms as
long as it approximately produces the desired policy πk and a pessimistic estimation of the value
functions V k at each iteration. For example, we can apply policy iteration algorithms or even any
neural network-based approximate algorithms.
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