
A Theoretical Guarantee

A.1 Proof Semiring

Definition A.1 Given a program P = (F ,R,J ,Q), the collection of sets of proofs S is defined to
be

{S | S ∈ P(P(F)),∀F ∈ S, F is a proof}.
Note that F being a proof implies that there is no disjunction conflict in F . That is,

∀f1, f2 ∈ F, j ∈ J , f1 ∈ j =⇒ f2 /∈ j

Definition A.2 The two binary operators ⊕ and ⊗: S × S → S are defined as
S1 ⊕ S2 = S1 ∪ S2,

S1 ⊗ S2 = {F | F = F1 ∪ F2, (F1, F2) ∈ S1 × S2,

F contains no disjunction conflict}.

Theorem A.3 (S,⊕,⊗, ∅, {∅}) forms a commutative semiring, which we call Proof Semiring.

Proof We show that (1). ∅ is a ⊕ identity, (2). {∅} is a ⊗ identity, (3). ⊕ and ⊗ are commutative
and associative, (4). multiplication is distributive, and (5). multiply by ∅ annihilates the operand.

1. ∅ is a ⊕ identity. Given S ∈ S,
S ⊕ ∅ = S ∪ ∅ = S = ∅ ∪ S = ∅ ⊕ S.

2. {∅} is a ⊗ identity. Given S = {F1, F2, . . . , Fn} ∈ S, we have
S ⊗ {∅} = {F1 ∪ ∅, F2 ∪ ∅, . . . , F2 ∪ ∅} = S

3. ⊕ is commutative: Given S1 and S2,
S1 ⊕ S2 = S1 ∪ S2 = S2 ∪ S1 = S2 ⊕ S1.

⊗ is commutative: Given S1 and S2,
S1 ⊗ S2 = {F 1

1 ∪ F 2
1 , . . . } = S2 ⊗ S1

⊕ is associative: Given S1, S2, S3 ∈ S,
S1 ⊕ (S2 ⊕ S3) = S1 ∪ (S2 ∪ S3) = (S1 ∪ S2) ∪ S3.

⊗ is associative: Given S1, S2, S3 ∈ S and Si = {F i1, F i2, . . . , F ini
}. We denote

Fxyz =

{
F 1
x ∪ F 2

y ∪ F 3
z if no disjunction conflict

∅ otherwise,
where x ∈ 1 . . . n1, y ∈ 1 . . . n2, z ∈ 1 . . . n3. We then have

S1 ⊗ (S2 ⊗ S3) = {F111, F112, . . . , Fn1n2n3
}

= (S1 ⊗ S2)⊗ S3

4. Distributive. Given S1, S2, and S3 ∈ S similar to above, we have
S1 ⊗ (S2 ⊕ S3) = S1 ⊗ (S2 ∪ S3) (5)

= (S1 ⊗ S2) ∪ (S1 ⊗ S3) (6)
= (S1 ⊗ S2)⊕ (S1 ⊗ S3) (7)

5. Multiplying ∅ annihilates the operand:
S1 ⊗ ∅ = ∅.

Therefore (S,⊕,⊗, ∅, {∅}) forms a semiring.

Theorem A.4 S is naturally ordered and ω-complete [17].

Proof We define a partial order ≤ such that S1 ≤ S2 ⇐⇒ S1 ⊂ S2. Therefore our S is naturally
ordered. In addition, our chain has a strict upper bound which is P(F), as ∀S ∈ S, S ⊂ P(F). Hence
S is also ω-complete.

14

Theorem A.5 The end result Sq can be expressed as

Sq =
⊕

F derives q

(⊗
f∈F

Sf

)
.

Proof Under the provenance semiring framework [17], we define a S-Relation R : G → S , such that
R(f) = {{f}} = Sf ,∀f ∈ F .

With S being a commutative ω-continuous semiring, Q being a datalog query, and our S-Relation R,
by Definition 5.1 [17], we have

Q(R)(t) =
⊕

τ yields t

(⊗
t′∈leaves(τ)

R(t′)
)
,

where τ ranges over all Q-derivation trees for t. In our case, we seek the result t = q, which is,
Sq = Q(R)(q). At the same time, we know that τ is a derivation tree for q and its leaf nodes t′ are
from our input facts F . Note that leaves(τ) is simply a proof F in our case and each t′ ∈ leaves(τ) is
an input fact f ∈ F . Therefore we know that t′ ∈ F and R(t′) = St′ . At last, we can express Sq as

Sq = Q(R)(q) =
⊕

F derives q

(⊗
f∈F

Sf

)
,

as expected.

Proposition A.6 |Sq| = O(2|F|).

Proof (Sketch) Theoretically, 2|F| is the absolute upper bound as there could be at most 2|F| proofs,
given by that each input fact f ∈ F can be in or not in a proof.

In reality, this upper bound can rarely be achieved. The actual size of Sq is always determined by
various factors including input facts, rules, and disjunctions.

A.2 Top-k Proof Semiring

We repeat our definitions of ⊕(k) and ⊗(k) here:

Definition A.7 With a Topk : S → S defined as keeping the top-k proofs, we define

S1 ⊗(k) S2 = Topk(S1 ⊗ S2),

S1 ⊕(k) S2 = Topk(S1 ⊕ S2).

Proposition A.8 The approximated set of proofs S̃q can be expressed as

S̃q =

(k)⊕
F derives q

((k)⊗
f∈F

Sf

)
.

Proof (Sketch) First show that S still form a semiring under ⊕(k) and ⊗(k) with the exact same
proof as in Theorem A.3. Then follow Theorem A.5 to show that this expression still holds.

Proposition A.9 |S̃q| = O(k).

Proof (Sketch) This follows directly from the definition of ⊕(k) and ⊗(k) as at each step the size of
the resulting set of proofs is capped by k.

A.3 Approximation Analysis

Proposition A.10 We give an approximation error bound

|Pr(Sq)− Pr(S̃q)| ≤
∑
F ∈ Sq\S̃q

Pr(F).

15

This is a loose bound given by the difference between Sq and S̃q. Equality happens when all the
proofs in Sq are disjoint.

Proposition A.11 For a program P = (F ,R,J ,Q), if J = ∅, then we have S̃q = Topk(Sq).

The proof of this proposition can be found in Theorem 1 of [12]. Under that setting, there is no J
and therefore J = ∅. At the same time the top-k derivation tree is equivalent to our top-k proof.

16

Category Function Name
Scene Graph INITIAL, FIND NAME, FIND ATTR, RELATE, RELATED REVERSE

Knowledge Graph FIND KG, FIND HYPERNYM
Logic Operators AND, OR

Table 3: Basic functions used to generate questions in VQAR.

B VQAR Dataset Collection

B.1 Dataset Generation

We focus on the task of multi-hop VQA with external common-sense knowledge. For this purpose,
we generate an object retrieval VQA dataset, called VQAR, by building upon two existing datasets,
GQA [18] and CRIC [16]. These datasets comprise real-world images from the Visual Genome and
have complementary qualities necessary for our task. In particular, we use curated scene graphs of
the images from the GQA dataset, and we use curated knowledge graphs related to visual questions
from the CRIC dataset.

Scene and Knowledge Graphs. Starting with the image and scene graph pairs from the GQA
dataset, we further pre-process the scene graphs to generate cleaner questions, as follows. We only
include the top 500 most frequently occurring object names, which covers more than 88% of all
object occurrences. We retain 609 attributes and 229 relationships after normalizing their names.
Finally, we ensure that every image has more than 5 objects so that its scene graph is complex enough.
After pre-processing, we are left with 80,178 images with their scene graphs.

The knowledge graph provided by the CRIC dataset comprises triplets of the form 〈e1, r, e2〉, where
e1 and e2 are two entities, and r describes a relationship between them, e.g., 〈giraffe, is_a, animal〉.
We represent each type of relationship as a separate binary relation. There are 10 different types
of relationships, such as is_a, used_for, and capable_of. We considered two alternatives to CRIC:
OK-VQA [25] and KB-VQA [34]. OK-VQA includes common-sense knowledge as part of the
question itself, and thus precludes multi-hop reasoning.

KB-VQA comprises over 160M probabilistic common-sense knowledge triplets drawn from Wik-
ilinks, but is noisy.

Programmatic Query Generation. Existing programmatic VQA questions typically seek aggre-
gated results which makes them liable to exploitable bias. For instance, a binary choice question
may be answered by an educated guess without using reasoning. We therefore generate object
identification queries that require reasoning to varying degrees. Such queries are harder to exploit,
since objects vary from scene to scene.

We use GQA’s domain specific language to generate programmatic queries for our purpose. Such
a query is composed of a functions sequence that successively identify a set of objects, where the
final set of objects are the targets to our query. We define a suite of 9 such functions as shown
in Table 3. Consider for instance the RELATE function. Viewing the scene graph as a relation
〈subject, predicate, object〉, this function identifies the object, given the subject and predicate. Then,
the natural language question in Figure 2 corresponds to the following programmatic query:

[INITIAL, RELATE(left), FIND HYPERNYM(animal), FIND ATTR(tall)]

The number of clauses n determines the degree of multi-hop reasoning in the query, which we call
a query of type Cn. Thus, the above example is a query of type C4. Furthermore, such queries are
straightforward to translate into Datalog, allowing them to be executed using Scallop. The Datalog
counterpart of the above query is also shown in Figure 2.

Our query generation procedure always starts with the INITIAL function which refers to all objects in
the scene graph. It then traverses through the scene graph and the knowledge graph to identify valid
clauses to append to the query. Lastly, we execute the resulting query using Scallop to obtain the
ground truth answer. We control the difficulty of the query by the number of its clauses.

Since we are not targeting the natural language questions, we only generate these questions in
functional program form. For each image, we generate 10 different question and answer pairs for
each clause length 2 to 6, to obtain 4 million data points in total. We split them into training (60%),

17

validation (10%), and testing (30%) sets, and ensure that all the questions about the same image occur
within the same split to test generalizability.

18

C Experiments

C.1 Synthetic Experiment Setup

Models. Our perception model uses two convolutional layers and two fully connected layers, which
takes in the MNIST image as input, and output a distribution on 10 possible numbers, 0-9. This
model is trained from scratch in an end-to-end fashion.

Training Hyper-parameters. The learning rate for both DeepProbLog and Scallop is 0.01; the batch
sizes for Scallop is 64, and 2 for DeepProbLog, as batch size 64 for DeepProbLog converges too
slow. We set the epoch size to 20, where both of the methods converge before 5 epochs.

Evaluation Metric. Our evaluation metric is accuracy. If the predicted outcome is the same as the
correct one, the accuracy is 1, otherwise, the accuracy is 0.

C.2 VQAR Experiment Setup

Models. Our perception model uses pre-trained fixed-weight Mask RCNN and ResNet models, which
take as input an image and produces feature vectors (along with bounding boxes). Then, input facts
representing names, attributes, and object relationships are extracted by 3 separate trainable MLP
classifiers. We note that these classifiers integrated with our reasoning engine are trained from scratch
in an end-to-end fashion. We also note that to ensure a fair comparison, the visual input (features +
bounding boxes) we feed to all baselines (including LXMERT) are the same.

Baselines. We use three baselines that are representative of different state-of-the-art approaches
to combining perception and reasoning: (1). Neural Module Network (NMNs), which uses a set
of neural modules, one per basic function, (2). DATALOG-RL, a reinforcement learning approach
supervised by a discrete logic reasoning engine, (3). DeepProbLog, a probabilistic logic programming
approach, and (4). LXMERT, a transformer based approach.

Dataset. To evaluate performance, we sample 50K tasks from the training split, 5K from the
validation split, and 5K from the testing split. To measure generalizability and sample complexity,
we sample 10 to 10K tasks of type C2 for training, and 1K tasks each of type C2 to C6 for testing.

Training Hyper-parameters. All the models converge under 20 training epochs. The learning rate is
tuned and is 0.0001 for Scallop, NMN, and DPL, 0.00001 for LXMERT. We select the loss function
to be binary cross-entropy loss, except DPL that only supports cross-entropy loss. With batch size 16
and k = 10, Scallop achieves the best accuracy in reasonable training time. All the optimizers are
Adam.

Model Size Comparison. The model for Scallop, datalog-RL and DeepProbLog are the same, so
they share the same model size: 10.91MB for attribute classification, 14.67MB for name classification,
17.78MB for relation classification. The neural modular networks method contains 8 modular network.
The and and or modules are 0.02MB, the find_name and find_attribute modules are 9.63MB,
the find_hypername and find_KG are 8.61MB, the relate and relate_reverse modules are
18.06MB. The LXMERT method uses a large pretrained module, which is 836MB.

Evaluation Metric. Since our tasks essentially involve object retrieval, any ground truth label is a
set of object IDs that satisfy the constraints stated in the question. For set comparison, we select the
recall@5 rate as the evaluation metric. It assesses the recall on the top 5 probable predictions.

C.3 VQAR Topk

We compare the performance of Scallop under different choices of k: 1, 5, 10, and 15. We train on
10K C2 tasks and test on 1K tasks of varying clause length. As shown in Figure 12, We observe that
the recall@5 score increases as k grows, as expected. However, the larger the k, the longer it takes to
process a single task at training time. Our running time increases modestly from k = 1 to k = 10,
and more dramatically when k = 15. We thus confirm that Scallop can strike a balance between
efficiency and accuracy by tuning the k value, and that exact probabilistic reasoning is not required to
obtain good performance on VQAR tasks.

19

C2 C3 C4 C5 C6

76

78

80

82

Test Dataset

R
ec

al
l@

5
(%

)

k=1 k=5 k=10 k=15

(a) Results of training on 10000 C2 tasks and testing on 1000 tasks
of types C2-C6. The recall rate grows as k increases from 1 to 15.

C2 C3 C4 C5 C6

0.5

1

Test Dataset

A
vg

.
R

un
Ti

m
e

pe
rT

as
k

(s
)

k=1 k=5 k=10 k=15

(b) Results of training on 10000 C2 tasks and testing on 1000 tasks
of types C2-C6. Running time grows as k increases from 1 to 15.

Figure 12: Comparison of Scallop across different choices of k.

Dataset (Clause-n) 2 3 4 5 6
Timeout rate (%) 54.5% 69.7% 74.4% 70.7% 74.0%

Table 5: DeepProbLog timeout rate on 1000 tasks of types C2-C6.

C.4 DeepProbLog

We give a more fine-grained analysis of the DeepProbLog performance. In particular, we investigate
the relation between timeout rate and query complexity. Again, our timeout is set to 10 seconds.

Test Dataset Timeout Rate w/ KG Timeout Rate w/ Rela
1000 C2 100% 21.43%
1000 C3 91.55% 73.09%
1000 C4 88.79% 70.74%
1000 C5 88.54% 62.27%
1000 C6 87.85% 75.20%

Table 4: Success Rates of DeepProbLog

Table 5. In the above table, column 2 shows DeepProbLog’s timeout rate when at least one KG-related
clause is presented in the programmatic query. It is worth noting that DeepProbLog performs the
worst on the C2 dataset. In C2, the KG-related clause is the only clause in the programmatic query
other than the first INITIAL clause. This implies that there is no constraint posed around the KG
clause, leading to a huge amount of possible proofs, and in turn causing the timeout.

Column 3 shows DeepProbLog’s timeout rate when at least one relation-related clause is presented in
the programmatic query. As one would expect, the more relation is included in the query, the deeper
the reasoning will need to be. The table clearly shows that DeepProbLog, without approximation
strategy, suffers from handling deep reasoning chain, as that would lead to an exponential amount of
proofs.

20

D Implementation Details

The Scallop implementation is composed of compilation, runtime, and weighted model counting.
The compilation part takes in a Datalog program and compiles it into a positive relational algebra
form. Then, the runtime executes the generated relational algebra expression and generates the query
output with its top-k proofs. Last, the weighted model counting process takes in the query output with
the fact probability and calculates the corresponding output probability with gradients. We implement
Scallop in Rust for better efficiency.

D.1 Compilation

The compilation process takes in the high-level datalog program and compiles it into an executable
form. First, the compiler preprocesses the program, ensures no parsing errors and type errors
occur in the given program. Then, it analysis the datalog program and convert it into a mid level
positive relational algebra form, which contains empty, union, projection, selection, natural join
and renaming. These mid-level relational algebra forms will be further compiled into join and
disjunction, which are directly executable by the runtime.

D.2 Runtime

The runtime execution adopts a bottom-up evaluation strategy with a tagging system for the prove-
nance semiring. It starts with all the input facts tagged with themselves as proofs and keeps applying
the rules in the join and disjunction form until a fixpoint is reached. Whenever a join happens on
tuple t1 tagged with F1, and tuple t2 tagged with F2, the generated tuple is tagged with F1 ⊗ F2,
where the⊗ is easily configurable. The story is similar for disjunction case. In terms of optimization,
we adopt the leap join strategy rather than the naive join to increase the evaluation efficiency.

D.3 Weight Model Counting

The weighted model counting algorithm is the same as DeepProbLog. We depend on the sentential
decision diagram to realize the weighted model counting process. To realize the gradient calculation,
we also implemented a semiring system to carry the additional information during weighted model
counting.

Weighted Model Counting v.s. DNF counting. Weighted model counting is a systematical way to
calculate the probability of a boolean formula holds, where each variable in the formula is associated
with a probability; DNF counting calculates the probability of a DNF formula being true. Since
performing DNF counting is less expensive than WMC, it is a promising way to further optimize for
the scalability of Scallop. However, we have not incorporated this optimization yet because (a) we
are using an off-the-shelf WMC solver and (b) supporting richer forms of reasoning such as negation
and aggregation will necessitate WMC. Nevertheless, we acknowledge this optimization possibility,
which could be incorporated into the WMC solver to further improve the overall efficiency of Scallop
on tasks for which weighted DNF counting is sufficient.

21

E Synthetic Task Details

E.1 Sum n numbers

The sum n numbers task is an extension from the original MNIST digit recognition task. Instead of
recognizing a single digit from the image, this task takes in n images, and recognizes the sum of all
the input images. For example, sum(, , 10) is corresponding to a sum2 task. In a scallop program,
we have the rule sum(I1, I2, DA + DB) :- digit(I1, DA), digit(I2, DB), where Ij are the image ids in the MNIST
dataset. This rule propagates the probability from low level perception in digit(, 3) and digit(, 7) to
the high level answer sum(, , 10). We list the code for sum n digit tasks below.

Sum2 {
decl digit(Symbol, Int).
decl sum(Symbol, Symbol, Int).
sum(imgA, imgB, DA + DB) :- digit(imgA, DA), digit(imgB, DB).

}
Figure 13: sum 2 numbers.

Sum3 {
decl digit(Symbol, Int).
decl sum(Symbol, Symbol, Symbol, Int).
sum(imgA, imgB, imgC, DA + DB + DC) :-

digit(imgA, DA), digit(imgB, DB), digit(imgC, DC).
}

Figure 14: sum 3 numbers.

Sum4 {
decl digit(Symbol, Int).
decl sum(Symbol, Symbol, Symbol, Symbol, Int).
sum(imgA, imgB, imgC, imgD, DA + DB + DC + DD) :-

digit(imgA, DA), digit(imgB, DB), digit(imgC, DC), digit(imgD, DD).
}

Figure 15: sum 4 numbers.

E.2 Sort-n-numbers

The sort n numbers task is another extension from the original MNISTT digit recognition task. In
this task, the input are n images in the MNIST dataset, and the desired output is to sort them in
order. For example, sort2(, ,0,1) means the given input and has the order 0, 1 from small to
large. In the scallop program to sort two numbers, we have the corresponding rules: sort(imgA, imgB,

0, 1) :- digit(imgA, DA), digit(imgB, DB), DA <= DB. sort(imgA, imgB, 1, 0) :- digit(0, DA), digit(1, DB), DA > DB. This means,
if the first number is smaller or equal to the second number, then we given them the order (0, 1),
else we give them the order (1, 0). We manually assign the order if two numbers are the same. The
corresponding scallop programs are shown below:

Sort2 {
decl digit(Symbol, Int).
decl sort_2(Int).
sort_2(0) :- digit(0, DA), digit(1, DB), DA <= DB.
sort_2(1) :- digit(0, DA), digit(1, DB), DA > DB.

}
Figure 16: sort 2 numbers.

22

Sort3 {
decl digit(Symbol, Int).
decl sort_3(Int).
decl digit_abc(Int, Int, Int).
digit_abc(DA, DB, DC) :- digit(0, DA), digit(1, DB), digit(2, DC).
sort_3(0) :- digit_abc(DA, DB, DC), DA <= DB, DB <= DC. // 0, 1, 2
sort_3(1) :- digit_abc(DA, DB, DC), DA <= DC, DC < DB. // 0, 2, 1
sort_3(2) :- digit_abc(DA, DB, DC), DB < DA, DA <= DC. // 1, 0, 2
sort_3(3) :- digit_abc(DA, DB, DC), DB <= DC, DC < DA. // 1, 2, 0
sort_3(4) :- digit_abc(DA, DB, DC), DC < DA, DA <= DB. // 2, 0, 1
sort_3(5) :- digit_abc(DA, DB, DC), DC < DB, DB < DA. // 2, 1, 0

}
Figure 17: sort 3 numbers.

Sort4 {
decl digit(Symbol, Int).
decl sort_4(Int).
decl digits(Int, Int, Int, Int).
digits(D0, D1, D2, D3) :- digit(0, D0), digit(1, D1), digit(2, D2), digit(3, D3).
sort_4(0) :- digits(D0, D1, D2, D3), D0 <= D1, D1 <= D2, D2 <= D3. // 0, 1, 2, 3
sort_4(1) :- digits(D0, D1, D2, D3), D0 <= D1, D1 <= D3, D3 < D2. // 0, 1, 3, 2
sort_4(2) :- digits(D0, D1, D2, D3), D0 <= D2, D2 < D1, D1 <= D3. // 0, 2, 1, 3
sort_4(3) :- digits(D0, D1, D2, D3), D0 <= D2, D2 <= D3, D3 < D1. // 0, 2, 3, 1
sort_4(4) :- digits(D0, D1, D2, D3), D0 <= D3, D3 < D1, D1 <= D2. // 0, 3, 1, 2
sort_4(5) :- digits(D0, D1, D2, D3), D0 <= D3, D3 < D2, D2 < D1. // 0, 3, 2, 1
sort_4(6) :- digits(D0, D1, D2, D3), D1 < D0, D0 <= D2, D2 <= D3. // 1, 0, 2, 3
sort_4(7) :- digits(D0, D1, D2, D3), D1 < D0, D0 <= D3, D3 < D2. // 1, 0, 3, 2
sort_4(8) :- digits(D0, D1, D2, D3), D1 <= D2, D2 < D0, D0 <= D3. // 1, 2, 0, 3
sort_4(9) :- digits(D0, D1, D2, D3), D1 <= D2, D2 <= D3, D3 < D0. // 1, 2, 3, 0
sort_4(10) :- digits(D0, D1, D2, D3), D1 <= D3, D3 < D0, D0 <= D2. // 1, 3, 0, 2
sort_4(11) :- digits(D0, D1, D2, D3), D1 <= D3, D3 < D2, D2 < D0. // 1, 3, 2, 0
sort_4(12) :- digits(D0, D1, D2, D3), D2 < D0, D0 <= D1, D1 <= D3. // 2, 0, 1, 3
sort_4(13) :- digits(D0, D1, D2, D3), D2 < D0, D0 <= D3, D3 < D1. // 2, 0, 3, 1
sort_4(14) :- digits(D0, D1, D2, D3), D2 < D1, D1 < D0, D0 <= D3. // 2, 1, 0, 3
sort_4(15) :- digits(D0, D1, D2, D3), D2 < D1, D1 <= D3, D3 < D0. // 2, 1, 3, 0
sort_4(16) :- digits(D0, D1, D2, D3), D2 <= D3, D3 < D0, D0 <= D1. // 2, 3, 0, 1
sort_4(17) :- digits(D0, D1, D2, D3), D2 <= D3, D3 < D1, D1 < D0. // 2, 3, 1, 0
sort_4(18) :- digits(D0, D1, D2, D3), D3 < D0, D0 <= D1, D1 <= D2. // 3, 0, 1, 2
sort_4(19) :- digits(D0, D1, D2, D3), D3 < D0, D0 <= D2, D2 < D1. // 3, 0, 2, 1
sort_4(20) :- digits(D0, D1, D2, D3), D3 < D1, D1 < D0, D0 <= D2. // 3, 1, 0, 2
sort_4(21) :- digits(D0, D1, D2, D3), D3 < D1, D1 <= D2, D2 < D0. // 3, 1, 2, 0
sort_4(22) :- digits(D0, D1, D2, D3), D3 < D2, D2 < D0, D0 <= D1. // 3, 2, 0, 1
sort_4(23) :- digits(D0, D1, D2, D3), D3 < D2, D2 < D1, D1 < D0. // 3, 2, 1, 0

}
Figure 18: sort 4 numbers.

23

F VQAR Dataset Details

F.1 VQAR Stats

C2 C3 C4 C5 C6

0%

20%

40%

60%

80%

100% Find_KG

Find_Hypernym

Find_Name

Find_Attr

Relate_Reverse

Relate

And

Or

Figure 19: This is the distribution of functions in queries. We only introduce AND and OR for the questions with
more than 5 clauses.

C2 C3 C4 C5 C6

0%

20%

40%

60%

80%

100%

KG_0

KG_1

KG_2

KG_3

KG_4

KG_5

Figure 20: This is the distribution of knowledge graph related function number in queries. FIND_HYPERNAME
and FIND_KG are the two basic functions that requires look into the knowledge graph. When the question has
more clauses, it is more likely include knowledge base related clauses.

C2 C3 C4 C5 C6

0%

20%

40%

60%

80%

100%

rela_0

rela_1

rela_2

rela_3

rela_4

rela_5

Figure 21: This is the distribution of relation related function number in queries. RELATE and RELATE_REVERSE
are the two basic functions that requires look into the knowledge graph. When the question has more clauses, it
is more likely include knowledge base related clauses.

F.2 VQAR Examples

We show 6 images in our VQAR dataset in Figures 22, 23, 24, 25, 26, and 27, each paired with 2
question and answer pairs. For each question, we show its original Programmatic Query as well as
the transformed Datalog Query. The object IDs are shown on the bounding boxes (in white) on the
image.

Then the program is Pxθ = (KGF ∪ Fn ∪ Fa ∪ Fr,KGR, Jn,Q). Note the universal knowledge
graph KGF is the same across different tasks.

24

Programmatic Query [INITIAL, RELATE_REVERSE(left), HYPERNYM_FIND(vehicle), HYPERNYM_FIND(thing)]
Datalog Query target(O) :− left(O,O′), name(O, vehicle), name(O, thing).
Answer {1630226, 1630228}

Programmatic Query [INITIAL, FIND_ATTR(parked), FIND_NAME(truck), RELATE_REVERSE(right)]
Datalog Query target(O) :− attr(O, parked), name(O, truck), right(O,O′).
Answer {3642007}

Figure 22: VQAR Example 1

Programmatic Query [INITIAL, FIND_KG(can, hold flowers), RELATE_REVERSE(left), RELATE(left)]
Datalog Query target(O) :− name(O,N), can(N, holdflowers), left(O,O2), left(O3,O).
Answer {4458161, 4458148}

Programmatic Query [INITIAL, RELATE_REVERSE(left), INITIAL, FIND_ATTR(blue), RELATE_REVERSE(right), OR]

Datalog Query target(O) :− left(O,O′).
target(O) :− attr(O, blue), right(O,O′).

Answer {4458150, 4458153, 4383115, 4458156, 4383118, 4458159, 4458161, 4383122, 4458165}

Figure 23: VQAR Example 2

Programmatic Query [INITIAL, FIND_ATTR(cloudy), RELATE_REVERSE(in)]
Datalog Query target(O) :− attr(O, cloudy), in(O,O′).
Answer {999665, 999666, 999660}

Programmatic Query [INITIAL, FIND_ATTR(black), INITIAL, FIND_KG(can be, opened or closed), AND]
Datalog Query target(O) :− attr(O, black), name(O,N), can_be(N, opened or closed).
Answer {999674, 999675, 999676, 999677, 999678}

Figure 24: VQAR Example 3

25

Programmatic Query [INITIAL, FIND_ATTR(grey)]
Datalog Query target(O) :− attr(O, grey).
Answer {3981862, 4133398, 3981863}

Programmatic Query [INITIAL, HYPERNYM_FIND(odd-toed ungulate), HYPERNYM_FIND(herbivore)]
Datalog Query target(O) :− name(O, odd-toed ungulate), name(O, herbivore).
Answer {3981865, 4133447}

Figure 25: VQAR Example 4

Programmatic Query [INITIAL, FIND_KG(can, hold water)]
Datalog Query target(O) :− name(O,N), can(N, hold water).
Answer {831745}

Programmatic Query [INITIAL, FIND_NAME(bottle), INITIAL, RELATE(standing by), FIND_KG(can, grow branches), OR]

Datalog Query target(O) :− name(O, bottle).
target(O) :− standing_by(O′,O), name(O,N), can(N, grow branches).

Answer {831745, 831764}

Figure 26: VQAR Example 5

Programmatic Query [INITIAL, FIND_HYPERNYM(aircraft), FIND_ATTR(black), FIND_NAME(propeller)]
Datalog Query target(O) :− name(O, aircraft), attr(O, black), name(O, propeller).
Answer {776649}

Programmatic Query [INITIAL, FIND_ATTR(neon), INITIAL, RELATE_REVERSE(by), OR]

Datalog Query target(O) :− attr(O, neon).
target(O) :− by(O,O′).

Answer {776674, 776661, 776677, 776664, 776666, 776654}

Figure 27: VQAR Example 6

26

G Framework Details

As noted in Section 6, the programming interface for Scallop is composed of a probabilistic relational
database (F ,J), and a set of Datalog rulesR. This Scallop framework is able to capture a variety of
learning tasks, including but not limited to MNIST calculation and VQAR:

a. Addition and sorting over MNIST digits. F represents the output of the MNIST digit recognition
network as tuples of the form 0.89::digit(,3); 0.02::digit(,4); R represents
the logic rules for addition/sorting. For example, the rule for addition is sum(imgA, imgB) :-
digit(imgA, DA), digit(imgB, DB).

b. The VQAR task. F represents the facts in the knowledge graph and the output of the three MLP
classifiers,Mθ = (Mn

θ ,Ma
θ ,Mr

θ), which predict names, attributes, and relations respectively.
These predictions are transformed into probabilistic facts. For example, the Mn

θ classifier
takes in the bounding box and feature vector of the object o1 and produces a distribution of
the classified names: 0.81::name(o1, tiger); 0.15::name(o1, giraffe); ... On the
other hand,Mr

θ takes in two bounding boxes and feature vectors from, say, object ox and oy.
It produces a distribution of classified relations between ox and oy: 0.15::rela(‘on’, ox,
oy). 0.05::rela(‘behind’, ox, oy). ... R represents the rules in the knowledge base
and the programmatic query.

c. Formula parsing and evaluation [23]. In this task, a vision model takes an image of a hand-written
formula (e.g.), and predicts the evaluation result. F encodes its output using probabilistic
relations of the form constant(, 2) and binary_op(, ‘+’, ,),R con-
tains rules for formula evaluation, such as eval(F, LY + RY) :- binary_op(F, ‘+’, L,
R), eval(L, LY), eval(R, RY).

d. Natural language reading comprehension [4, 13]. In this task, a language model takes as input
a natural language article (e.g. "Tom kicks the ball") and a natural language question (e.g.
"Who kicks the ball?"), and Scallop generates the answer to the question. F encodes its output
using probabilistic relations of the form subject_verb(tom, kicks), verb_object(kicks,
ball), and event(kicks, tom, ball). R represents the programmatic query target(W)
:- event(kicks, W, ball), which is obtained using a semantic parsing model.

27

