
Slice Sampling Reparameterization Gradients

David M. Zoltowski
Princeton Neuroscience Institute

Princeton University
Princeton, NJ 08540

zoltowski@princeton.edu

Diana Cai
Department of Computer Science

Princeton University
Princeton, NJ 08540

dcai@cs.princeton.edu

Ryan P. Adams
Department of Computer Science

Princeton University
Princeton, NJ 08540
rpa@princeton.edu

Abstract

Many probabilistic modeling problems in machine learning use gradient-based
optimization in which the objective takes the form of an expectation. These
problems can be challenging when the parameters to be optimized determine the
probability distribution under which the expectation is being taken, as the naïve
Monte Carlo procedure is not differentiable. Reparameterization gradients make
it possible to efficiently perform optimization of these Monte Carlo objectives
by transforming the expectation to be differentiable, but the approach is typically
limited to distributions with simple forms and tractable normalization constants.
Here we describe how to differentiate samples from slice sampling to compute slice
sampling reparameterization gradients, enabling a richer class of Monte Carlo
objective functions to be optimized. Slice sampling is a Markov chain Monte Carlo
algorithm for simulating samples from probability distributions; it only requires a
density function that can be evaluated point-wise up to a normalization constant,
making it applicable to a variety of inference problems and unnormalized models.
Our approach is based on the observation that when the slice endpoints are known,
the sampling path is a deterministic and differentiable function of the pseudo-
random variables, since the algorithm is rejection-free. We evaluate the method on
synthetic examples and apply it to a variety of applications with reparameterization
of unnormalized probability distributions.

1 Introduction

Probabilistic modeling is a powerful approach to inferring latent structure in complex real-world
processes, but often presents computational challenges for inference and further downstream tasks.
In many modern probabilistic models, inference is recast as optimization of a probabilistic objective
that takes the form of an expectation of a loss function with respect to some distribution. A salient
example is variational inference [27, 3], where a simpler distribution is optimized to approximate a
posterior distribution by minimizing the Kullback-Leibler (KL) divergence to the truth. In particular,
Monte Carlo methods for estimating the gradient of the KL with respect to the parameters have
extended the use of variational inference to non-conjugate Bayesian models [43, 44] and neural
networks [31]. Such probabilistic objectives also appear in a number of other applications in
machine learning and computational science, including the generator loss in generative adversarial
networks [15], computing the sensitivity of expectations under the posterior distribution to prior

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

hyperparameters [21, 19, 12], computing the Black-Scholes delta in computational finance [13], and
choosing a design that maximizes the probability of improvement in an experiment [56].

Typically, the probabilistic objectives are comprised of expectations that cannot be computed in
closed form, so gradients are often estimated via Monte Carlo sampling [39]. Two popular classes of
Monte Carlo gradient estimators are the score function estimator [32, 14, 55, 43, 44] and the pathwise
(or “reparameterization gradient”) estimator [23, 24, 45, 31, 49]. Score function gradient estimators
are general-purpose, as they apply when the underlying density is differentiable and can be sampled
from, even if the cost function is not differentiable. However, they often have high variance and are
used with variance reduction techniques (e.g., Ranganath et al. [44]). In contrast, reparameterization
gradients apply when the loss function is differentiable and samples from the underlying density
can be generated by a known deterministic, differentiable transformation of samples from a simpler
distribution that does not depend on the model parameters. Typically, reparameterization gradients
have lower variance than score function gradients, provided the loss function is sufficiently smooth
[39]. Therefore, developing effective reparameterized gradient estimators has been an active area of
research in sensitivity and perturbation analysis [23, 24, 13] and stochastic backpropagation [31, 45].

However, reparameterization gradients are primarily limited to distributions with tractable normalizing
constants. This precludes their use for complex models of interest such as energy-based models
and non-conjugate Bayesian models (although alternative training methods exist, see e.g. Lawson
et al. [33]). Thus, generalizing reparameterization with MCMC to unnormalized distributions is an
important direction for developing effective gradient estimators for complicated models. Indeed, some
recent work has focused on reparameterization gradients for unnormalized distributions in specialized
problems, including Gibbs samplers with reparameterizable conditional sampling steps [54] and
dynamics-based MCMC without accept/reject steps (e.g., Salimans et al. [50], Dai et al. [8]). However,
developing estimators for general unnormalized distributions using reparameterized gradients and
MCMC is not straightforward with existing approaches. For instance, not all Gibbs sampling steps
are reparameterizable using current methods, due to, e.g., rejection sampling [11] or “Metropolis-
within-Gibbs” sampling [7]. Next, dynamics-based MCMC samplers without accept/reject steps are
approximate samplers with asymptotic bias. Finally, a key obstacle in applying MCMC methods
with accept/reject steps, such as the Metropolis-Hastings (MH) [22], Metropolis-Adjusted Langevin
(MALA) [16], and Hamiltonian Monte Carlo (HMC) [42] algorithms, is that they do not have
differentiable sample paths.

An appealing alternative to MCMC methods currently used for reparameterized gradients is slice
sampling [41], an auxiliary-variable MCMC method that can be applied to unnormalized probability
distributions and does not require an accept/reject step or sensitive tuning parameters. Crucially, the
lack of an accept/reject step leads to the key observation that for a fixed pseudo-random sequence,
the realized slice sampling Markov chain is differentiable with respect to the model parameters. In
this work, we develop reparameterization gradients for samples generated from slice sampling that
apply to distributions known only up to a normalizing constant. Slice sampling reparameterization
gradients are broadly applicable to complicated multivariate distributions, such as energy-based
models (EBMs) [35] and non-conjugate Bayesian models. While the generated samples are correlated
and the gradient estimates are biased because we simulate from a finite Markov chain, we demonstrate
the efficacy of slice sampling reparameterization gradients in simulations, investigating the bias and
variance properties of reparameterized slice sampling in comparison with existing gradient estimators.
We then show applications of slice sampling reparameterized gradients to a number of problems in
machine learning and statistics in the areas of deep generative modeling, approximate inference, and
Bayesian sensitivity analysis.

2 Background

In this work we are concerned with probabilistic objectives that take the form of an expectation of a
real-valued function ‘ with respect to a base density p�(x), i.e.,

L(�) = Ep�(x)[‘(x)] : (1)

Typically the expectation cannot be computed in closed form, so computing the gradient of this
objective with respect to the distributional parameters � requires stochastic estimates of the gradient
of the expectation. Two popular classes of stochastic gradient estimators are score function gradients
and reparameterization (or pathwise) gradients; see Mohamed et al. [39] for a review.

2

2.1 Continuous reparameterization gradients

Reparameterization gradients are used for problems with a differentiable loss function` and contin-
uous densityp� . They apply when samples fromp� can be generated by a deterministic transfor-
mationf � of samples from a base distributionp(�) that does not depend on� . That is, if � � p(�)
thenx = f � (�) � p� (x). Applying this transformation, the gradient of the objective with respect
to � can then be expressed as an expectation with respect to a distribution that does not depend on� .
Assuming that the derivative and integral can be interchanged [39, Section 4.3.1]:

r � L (�) = r � Ep(�) [`(f � (�))] = Ep(�) [r � `(f � (�))] : (2)

Monte Carlo estimates of the gradient are then computed using samples fromp(�).

Many examples of reparameterization gradients for continuous distributions exist. “One-liner”
reparameterization gradients use a simple function to transform the base distribution into the desired
parameterized distribution [31, 45, 39]. The inverse CDF (quantile function) can be used to transform
uniform random variables into arbitrary 1D distributions, and gradients can be computed when
evaluating and differentiating the inverse CDF are numerically tractable. Additional examples are
implicit reparameterization gradients [10], doubly reparameterized gradients [53], reparameterization
of accept/reject sampling [40], and generalized reparameterization gradients [48].

2.2 Markov chain Monte Carlo via slice sampling

For complicated target distributions, direct sampling via, e.g., the inverse CDF, is often not feasible
and moreover it is often the case that the target density function can only be evaluated up to an
unknown normalization constant; this commonly occurs in Bayesian posterior inference where the
marginal likelihood is unavailable. Markov chain Monte Carlo (MCMC) algorithms address both of
these challenges. An MCMC algorithm is a recipe for constructing a Markov chain that is easy to
simulate and that converges in distribution to the target, gaining computational tractability at the cost
of initialization bias and correlation between the samples.

The most common recipe for constructing an MCMC transition operator is the Metropolis–Hastings
algorithm [38], which combines an easy-to-simulate proposal distribution with a randomized ac-
cept/reject decision that depends only on a ratio of densities, thereby avoiding the need to know the
normalization constant. Variations on this theme include Gibbs sampling, in which the proposal is
chosen to be the conditional distribution for a subset of the variables, and Hamiltonian Monte Carlo
(HMC) [42], in which the proposal is constructed from a �ctive dynamical system.

Slice sampling [41] is an alternative approach to MCMC based on the observation that samples
taken uniformly from the volume beneath the target PDF have the correct marginal distribution.
Slice sampling de�nes a Markov transition operator that leaves this uniform distribution invariant,
and is example of anauxiliary variableMCMC method (along with HMC, Swendsen-Wang [51],
pseudo-marginal MCMC [1], and others). It is appealing because such transition operators can be
constructed without having to identify a proposal distribution and the updates never get “stuck” as
can happen with Metropolis–Hastings; it is also generally robust to choices of tuning parameters.

Consider a distribution with densityp� (x) = 1
Z (�) � � (x) where the normalizing constant may not

be known. Slice sampling typically proceeds in two steps. Starting from a pointx n , a heightyn +1
is sampled uniformly beneath the density atx n such thatyn +1 � U (0; � � (x n)) . The heightyn +1
de�nes a “slice” through the probability density given byS = f x : yn +1 < � � (x)g. The next
point x n +1 is then sampled uniformly from the setS. There are different methods for sampling
uniformly from S, including component-wise updates and construction of hyper-rectangles; here
we userandom-direction slice samplingto sample from the setS (37, Chapter 29.7). A random
direction d is generated from a uniform distribution over directions, and the direction de�nes
a line segment through the slice with endpointsx � andx + . Finally, a valuex n +1 is sampled
uniformly between the endpoints. The most common procedure for �nding the endpoints, as proposed
by Neal[41], is to use a reversible “stepping-out” procedure followed by “interval shrinking” to
determinex n +1 . In this work we will not use this stepping out procedure and will instead perform a
direct search for the slice boundaries. This direct search is key to the present work, as it eliminates
the non-differentiable accept/reject step that otherwise appears in most implementations of slice
sampling.

3

Figure 1: Slice sampling.Left: One step of a 1D slice sampler.Right: Reparameterized slice sampling
computational graph with reverse mode gradients shown for a loss computed on the �nal sample.

3 Slice sampling reparameterization gradients

3.1 Random-direction slice sampling with numerical slice endpoints

Here we describe the steps of random-direction slice sampling in more detail. We consider a
continuous, unnormalized density� � (x) with parameters� and start from a pointx n 2 Rd. We
sample three random quantities: two uniform random numbersu1; u2 2 [0; 1] and a uniform random
unit vectord 2 Rd. The valueu1 determines the height of the sliceu1� � (x n). The directiond induces
a line through the slice. This line intersects with the density at points where� � (x n + � d) = u1� � (x n)
for scalar values� . The intersecting points on the sliceS induce the set of� values

A := f � 2 R : � � (x n + � d) = u1� � (x n)g : (3)

De�ne the slice endpoints representing the closest intersecting locations on the sliceS in the positive
and negative directions where� � (x n + � d) = u1� � (x n) as

x + := x n + � + d; x � := x n + � � d; where � + := min
�> 0

A; � � := max
�< 0

A: (4)

The points� + and� � are identi�ed using numerical root �nding (Appendix A). The next sam-
plex n +1 is then taken uniformly between the endpointsx � andx + :

x n +1 = x � + u2(x + � x �) = x n + u2� + d + (1 � u2)� � d : (5)

Importantly,� � and� + are implicit functions ofx n , d, u1, and� , denoted by� + (x n ; d; u1; �),
and� � (x n ; d; u1; �). Via Equation (5), the next sample iteratex n +1 is then a deterministic function
of the previous iteratex n , the parameters� , and the random variablesu1, u2, andd:

x n +1 = x n + u2 � + (x n ; d; u1; �) d + (1 � u2) � � (x n ; d; u1; �) d : (6)

In Figure 1 and later sections, we use� to refer to the random drawsu1, u2, andd. Notably, the per-
iteration cost of identifying the slice endpoints is similar for one-dimensional and higher-dimensional
distributions, as the algorithm searches for slice endpoints along a single direction per-iteration
regardless of the dimensionality of the sampling space.

3.2 Differentiating the slice sampling path

Recall that the goal is to estimate the gradient of an expectation taken with respect top� (x) / � � (x)
with an unknown normalization constant. Consider the following reparameterization of the proba-
bilistic objectiveL (�) and its Monte Carlo estimatorL (�), respectively:

L (�) = Ep� (x) [`(x)] = Ep(�) [`(x (� ; �))] (7)

�
1
N

NX

n =1

`(x (� n ; �)) =: L (�); where� (n) iid� p(�);

4

and wherex (� ; �) is a deterministic function of� and� andp(�) is the distribution of the uniform
random variablesu1 andu2 and the uniform random directiond. Given an initial samplex 0, the
slice sampling algorithm generates the samplesx 1:N := (x n)N

n =1 , wherex n = x (� (n) ; �) is the
value of the function established in Equation (5) evaluated at the previous pointx n � 1 and the
sample� (n) = (u(n)

1 ; u(n)
2 ; d(n)). After the forward pass of generating the samples, we evaluate the

objective function and use reverse-mode automatic differentiation (AD) to compute gradients [17,
Section 3.2]. In what follows, we derive the reverse-mode gradients, and for notational simplicity, we
will drop the explicit dependence ofx n on � and� . Our derivation uses implicit differentiation to
ef�ciently compute gradients of the slice endpoints, avoiding the need to compute gradients through
the numerical root �nding algorithm.

Applying the chain rule, the gradient ofL (�) with respect to� is given by a recurrence relation
backwards through the samplesx n :

r � L(�) =
NX

n =1

[J � (x n)]T r x n L; (8)

whereJ � (x n) 2 Rd� m is the Jacobian ofx n with respect to� 2 Rm . Here we observe that the
gradientr � L(�) depends on the gradients of the loss with respect to each sample,r x n L 2 Rd. For
the �nal samplex N this value is simplyr x N L = 1

N r x N `(x N). Due to the sequential dependency,
for earlier samplesx n wheren = 1 ; :::; N � 1 the loss gradients need to be backpropagated via

r x n L =
1
N

r x n `(x n) + [J x n (x n +1)]T r x n +1 L: (9)

The computational graph demonstrates how each samplex n +1 depends on the previous samplesx 1:n
and the parameters� (Figure 1). Therefore, to compute gradients with respect to the parameters
and/or the initial condition, the JacobiansJ x n (x n +1) andJ � (x n +1) are needed. Using Equation (5)
for x n +1 , these Jacobians can be computed indirectly via adjoints, i.e.,

J x n(x n +1) = J x n

�
x n + du2� + + d(1� u2)� � �

= I d + u2dr x n [� +]T + (1 � u2)dr x n [� �]T

J � (x n +1) = J �
�
x n + du2� + + d(1� u2)� � �

= u2dr � [� +]T + (1 � u2)dr � [� �]T : (10)

We use implicit differentiation to computer x n [� +]; r x n [� �]; r � [� +]; r � [� �]. The values� are
solutions to

f (x n ; d; �; �) = ln � � (x n + � d) � ln u1 � ln � � (x n) = 0 : (11)

Applying implicit differentiation (17, Chap. 15) results in:

r x n � = �
r x n f
@f=@�

= �
r x n ln � � (x n + � d) � r x n ln � � (x n)

dT r x n ln � � (x n + � d)
(12)

r � � = �
r � f

@f=@�
= �

r � ln � � (x n + � d) � r � ln � � (x n)
dT r x n ln � � (x n + � d)

:

After computingfr x 1 L; : : : ; r x N Lg, the gradientr � L is then formed by computing by Equa-
tion (8). Importantly, we computer � L without ever fully representing either of the Jacobians by
using vector-Jacobian products (Appendix D). We implemented1 the forward sampling and reverse
mode AD in JAX [4].

3.3 Gradient of expected log likelihood

In applications, we often require the gradient of the expected log likelihoodEq� (x) [logq� (x)] with
respect to� . For example, this arises in variational inference when optimizing the ELBO or KL
divergence. For a distributionq� (x) = 1

Z (�) ef � (x) , the gradient of the reparameterized objective is

r � Eq� (x) [logq� (x)] = r � Ep(�) [logq� (x (�; �))] (13)

= Ep(�) [r � f � (x (�; �)) � r � logZ (�)]: (14)

1Our implementation is available at https://github.com/PrincetonLIPS/slicereparam

5

Figure 2: Gradient estimator bias and variance for various Monte Carlo gradient estimators across
four different distributions (columns). Slice sampling reparameterization gradients are in green.

This appears to require the gradient of the unknown log normalizing constant. However, applying the
total derivative [46] yields

r � Ep(�) [r � logq� (x (�; �))] = Ep(�) [r x logq� (x (�; �)) r � x (�; �) + r � logq� (x)] (15)

= Ep(�) [r x f � (x (�; �)r � x (�; �)] + Ep(�) [r � logq� (x)] (16)

= Ep(�) [r x f � (x (�; �)r � x (�; �)]: (17)

where we dropped the dependence ofx on � to indicate evaluation at a valuex . We drop the second
term in (16) because it is the expected score function and is therefore equal to zero. Notably, this
gradient of the expected log likelihooddoes notrequire the gradient of the log normalizer and we can
compute the necessary quantities to construct Monte Carlo gradient estimates. In our experiments,
we use this estimator when optimizing the ELBO and KL divergence with unnormalized models.

4 Experiments

Here we apply slice sampling reparameterization gradients to several problems, demonstrating the
generality of the approach and the potential appeal of reparameterization gradients for unnormalized
distributions. For additional experimental details see the supplementary material (Section C).

4.1 Bias and variance

Following Mohamed et al.[39], we quantify the empirical bias and variance of slice sampling repa-
rameterization gradients in comparison to standard reparameterization gradients, score function gra-
dients, and reparameterized Langevin dynamics (Figure 2). We estimater � Eq(x ;�) [1

D

P
i (x i � k)2]

with x 2 RD for multiple distributionsq and various values ofk. These experiments show that
slice sampling gradient estimates have initialization bias for �nite sample sizes, which is expected.
Importantly, however, we also �nd that slice sampling reparameterization gradients can be lower
variance than score function gradients computed from exact samples from the distribution.

The �rst example is a one-dimensional Gaussian withq(x; �) = N (x; �; 1) and� = 1 . In this case,
slice sampling mixes well and the resulting reparameterization gradients are nearly unbiased with
variance similar to the standard reparameterization estimator. We next focus on comparing slice
sampling with Langevin dynamics on multi-dimensional examples. We consider two5-dimensional
multivariate Gaussian distributionsq(x ; �) = N (x ; � 1; 	 i) with diagonal covariances	 1 and	 2
and a Laplace distributionq(x; �) =

Q
i Laplace(x i ; �; b i). While Langevin with a tuned step size

may outperform slice sampling in some cases, we �nd that the performance of Langevin dynamics

6

	Introduction
	Background
	Continuous reparameterization gradients
	Markov chain Monte Carlo via slice sampling

	Slice sampling reparameterization gradients
	Random-direction slice sampling with numerical slice endpoints
	Differentiating the slice sampling path
	Gradient of expected log likelihood

	Experiments
	Bias and variance
	Minimizing KL-divergence
	Variational contrastive divergence with fully reparameterized gradients
	Conditional EBM approximate posterior
	Adversarial training of EBMs
	Bayesian sensitivity analysis

	Discussion

