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Abstract

In this paper, we devise identity tests for ranking data that is generated from
Mallows model both in the asymptotic and non-asymptotic settings. First we
consider the case when the central ranking is known, and devise two algorithms for
testing the spread parameter of the Mallows model. The first one is obtained by
constructing a Uniformly Most Powerful Unbiased (UMPU) test in the asymptotic
setting and then converting it into a sample-optimal non-asymptotic identity test.
The resulting test is, however, impractical even for medium sized data, because
it requires computing the distribution of the sufficient statistic. The second non-
asymptotic test is derived from an optimal learning algorithm for the Mallows
model. This test is both easy to compute and is sample-optimal for a wide range of
parameters. Next, we consider testing Mallows models for the unknown central
ranking case. This case can be tackled in the asymptotic setting by introducing a
bias that exponentially decays with the sample size. We support all our findings with
extensive numerical experiments and show that the proposed tests scale gracefully
with the number of items to be ranked.

1 Introduction

Identity testing of discrete distributions [9, 11] is one of the most fundamental problem which
consists of answering a yes-or-no question about the closeness of some explicitly given distribution
to an unknown distribution from which random samples are observed. This testing problem have
been studied in the classical statistical literature [16], and several tests have been devised in the
asymptotic regime which family hypothesis tests are often referred to as goodness-of-fit tests and
are routinely used in data analysis [10]. In this work, we extend the identity testing setup to a more
general domain that includes rankings over m items which can be viewed as a discrete distribution
testing problem over a domain with size m!. As a consequence, identity testing of ranking data
without any assumption is not feasible, since lower bound is known for identity testing for discrete
distribution [26, 11] that is Ω(

√
n) where n is the domain size. Therefore we study an important

subclass of ranking distributions, which is introduced by [20] and also known as the exponential
family on rankings. The model has two parameters, the central ranking π0 ∈ Sm and the spread
parameter φ ∈ [0, 1]. Based on these, the probability of observing a ranking π ∈ Sm is proportional
to φd(π,π0), where d is a ranking distance, such as the number of discordant pairs, a.k.a Kendall’s tau
distance. There are many applications of the Mallows model in Machine Learning, to name a few,
label ranking [18], online learning [3], recommendation systems [29, 15], clustering [23]. The focus
of this study is to devise identity tests for Mallows model that are scalable with the number of items
m. Identity testing is a central problem in analysing output of ranking systems where the goal is to
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decide whether the output ranking data deviates from some expected behaviour, or is biased towards
some group of object to be ranked or it is indeed fair ([24, 20, 32] and see Chapter 3-4 of [22]).

The hypothesis testing literature that is related to Mallows model, and more generally to ranking
distributions, such as Plackett-Luce [27, 19] or Babington-Smith [22], is not extensive. In our work,
we partially fill this gap by devising hypothesis tests for the Mallows model. We focus on identity
testing problem, where we assume that the ground truth parameters of a Mallows model are given;
this corresponds to the null hypothesis. Our goal is to decide whether the data we observe is generated
by the null model or by an alternative one. We show that this kind of goodness-of-fit testing task can
be tackled in the traditional asymptotic setting as well as in non-asymptotic scenario in an efficient
way regardless whether the central ranking is known. We can summarize our main results as follows:

• We devise a Uniformly Most Powerful Unbiased (UMPU) test for asymptotic case to test spread
parameter φ with known central ranking π0.
• We show that, in general, the UMPU test can be converted into a sample-optimal non-asymptotic

test which result may be of independent interest. Based on this result, we come up with an optimal
non-asymptotic test, however it is hard to apply even for medium sized data.
• Next, we propose a non-asymptotic test that is optimal for small φ and easy to compute.
• We also consider the case when the central ranking π0 is not given, but needs to be estimated, and

devise tests for both testing setups.
• We demonstrate the versatility of our algorithm running with large m on synthetic data, and we

show that for large m > 70 to test the spread parameter, only one single sample is enough.

The paper is organized as follows. Related work is presented in Section 2. Then, we recall the
Mallows model and introduce notations. In Section 4, we describe the asymptotic and non-asymptotic
testing setups and present our result on the relation of these two settings. In Section 5, we present our
algorithms for testing the spread parameter φ. In Section 6, we present tests where both parameter of
Mallows model are tested. Experiments are in Section 7 and finally conclude the paper in Section 8.

2 Related work

The asymptotic testing has a long history [16] dating back to Pearson’s fundamental work. To come
up with a asymptotic test for Mallows model is more challenging from a computational point of view
than methodological point of view. Testing ranking distribution can be viewed as multinomial testing
problem and thus applied, for example, [8], however the domain size is m!, so this approach becomes
hard to apply even for small m.

The non-asymptotic testing has also long history [9, 6, 5] and references therein, including testing for
discrete data. Nevertheless, sample optimal tests for wide range of parameter had been only devised
recently [11] which was further strengthened in [31] by showing that this lower bound is instance
optimal. Those results imply a sample complexity of order Θ(

√
m!/ε2) in our ranking setting if we

do not exploit the structure induced by Mallows model. In the non-asymptotic setting, testing and
learning are related problems. There are several so-called “testing by learning” algorithm which first
learns a model, and then decides whether the learnt model is close to the null model or far enough
from it which requires a tight lower bound on the total variation distance. Optimal learning, however,
does not necessarily imply optimal testing in general, as it is the case for identity testing of discrete
distributions (see Subsection 6.6 of [5] for further discussion). Nevertheless, it turned out that for
identity testing of Mallows model this is indeed to be the case for a wide range of parameters, since
interestingly, upper bound for sample complexity of optimal parameter learning of Mallows model
requires asymptotically as many samples as it is needed to show that two models are far from each
other in terms of total variation distance in a certain parameter regime. Optimal learning is recently
devised for Mallows model by [4] which result we rely on.

The testing literature is very limited for ranking distribution in general. Mallows came up with an
approximate solution, in [20, Section 11], to test uniformity against a single parameter Mallows
model in the non-asymptotic setting. His approach relies on a normal approximation of the sufficient
statistic. Cohen and Mallows [7] presents a goodness of fit test for ranking data in a way the ranking
data is handled as a sample from a discrete distribution with m! parameters. That is why their analysis
is restricted to m = 3 and m = 4. In addition to this, the authors presented a goodness of fit test for
pairwise marginals of various ranking models for larger m including Mallows model, Placket-Luce
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and the Thurstonian model, but their focus was to decide which model fits better to the data in terms
of pairwise marginals. Whereas we were interested in testing the parameters of Mallows model with
large m values. There are some recent paper for testing ranking data, but these works are not related
to parametric ranking models. For example, [21, 17] uses statistics based on permutation kernel
functions for testing the equality of two ranking distributions in the asymptotic setting. Finally, there
is a very recent paper which testing identity of preference matrices which are marginals of ranking
distributions [28].

3 Preliminaries and Notation

Single Parameter Mallows Model. The Mallows model or, more specifically, Mallows φ-
distribution is a parametrized, distance-based probability distribution that belongs to the family
of exponential distributions R = {Mφ,π | φ ∈ [0, 1], π ∈ Sm} with probability mass function
pφ,π0(π) = φd(π,π0)/Z(φ, π0) where φ and π0 are the parameters of the model: π0 ∈ Sm is the
location parameter also called center ranking and φ ∈ [0, 1] the spread parameter. Moreover, d(·, ·) is
a distance metric on permutations, which for our paper will be the Kendall tau distance, that is, the
number of discordant item pairs dK(π, π′) =

∑
1≤i<j≤m I {(π(i)− π(j))(π′(i)− π′(j)) < 0}.

The normalization factor in the definition of the model is equal to Z(φ, π0) =
∑
π∈Sm pφ,π0(π).

When the distance metric d is the Kendall tau distance we have the identity Z(φ, π0) = Z(φ) =∏m−1
i=1

∑i
j=0 φ

j . Observe that the family of distributions as stated is not an exponential family
because of the location parameter π0. If we fix the permutation parameter then the familyR(π0) =
{Mφ,π0 | φ ∈ [0, 1]} is an exponential family with natural parameter θ = lnφ. From now on,
if we use the neutral parametrization, we shall write θ, i.e. Z(θ) =

∏m−1
i=1

∑i
j=0 e

jθ. The log
partition function is denoted by α(θ) = logZ(θ). In Appendix A, we review the basic properties of
exponential families which we use in our work.

Metrics between distributions. Let p, q be two probability measures in the discrete probabil-
ity space (Ω,A) then the total variation distance between p and q is defined as dTV (p, q) =
1
2

∑
x∈Ω |p(x)− q(x)| = maxA∈A |p(A)− q(A)|, and the KL-divergence between p and q is de-

fined as DKL (p||q) =
∑
x∈Ω p(x) ln

(
p(x)
q(x)

)
.

4 Testing ranking distributions

We shall consider two types of identity tests: asymptotic and non-asymptotic tests. In the asymptotic
case, a set of observations and a significance level α > 0 are given in advance, and then our goal is
to come up with a test that maximizes the power, i.e. the probability of rejection, if the alternative
hypothesis is true, subject to the given level of significance α, i.e. the probability of rejection must
be below or equal to α if the null hypothesis is true [16]. More concretely, assume that we are
given a parametric family of ranking distribution R = {Mθ|θ ∈ Ω} where Ω denotes the set of
parameters. The observation consists of n rankings Dn = {π1, . . . , πn} from a ranking distribution
M. The null hypothesis is H0 :M∈ R0 whereR0 ⊂ R. As an alternative hypothesis, we consider
H1 :M∈ R1(⊂ R) such thatR0 ∩R1 = ∅. Then the test is a function f : SnM 7→ {0, 1} where 0
corresponds to the acceptance, and 1 to the rejection, such that probability of rejection E [f(Dn)] ≤ α
wheneverM ∈ R0 where the expectation is with respect toM. Our goal is to find a test f for
which the power βf (M) = E [f(Dn)] for allM ∈ R1 is as large as possible. We will deal with
randomized test so we consider tests in the form of f : SnM 7→ [0, 1] where the output means the
probability of rejection.

A test f is called most powerful for a given α andM′ ∈ R1, if there is no test f ′ such that βf (M′) <
βf ′(M′). A test is uniformly most powerful (UMP) if it is most powerful for any distribution
from the alternative hypothesis class. Furthermore, a test is unbiased, if supM∈R0

βf (M) ≤ α ≤
infM∈R1

βf (M). The unbiased UMP test is referred to as UMPU test.

In case of non-asymptotic setup, the input is a tolerance parameter ε > 0 and significance parameter
δ ∈ (0, 1), and we assume that the tester has sample access to the unknown distributionM. An (ε, δ)
non-asymptotic testing algorithm outputs a sample size n and a test function f : SnM 7→ {0, 1} such
that, generating Dn fromM, we have the following guaranties for f :

3



1. if the null hypothesis H0 is true, then it outputs reject (f(Dn) = 1) with probability at most δ, i.e.
E [f(Dn)] ≤ δ

2. ifM ∈ R1 such that dTV(M,R0) > ε, then it outputs reject (f(Dn) = 1) with probability at
least 1− δ where dTV(M,Ri) = infM′∈Ri dTV(M,M′)

Given ε and δ, we say that a testing algorithm is sample-optimal forR0 versusR1 , if no algorithm
can have the same confidence guarantee using less samples. If a testing algorithm sample-optimal for
any ε and δ, we say that it is uniformly sample-optimal (USO).

One can show that the existence of UMPU test implies the existence of sample-optimal non-asymptotic
test as follows with a particular (ε, δ).

Proposition 4.1 If there exists a UMPU test fn with a given significance level α for R0 versus
R1 for sample size n, n = 1, 2, . . . , then one can define a sample-optimal non-asymptotic testing
algorithm that outputs n and f on input δ = α and

εf = sup
M∈R1\R(f)

dTV(M,R0) (1)

whereR(f) = {M ∈ R1 : βf (M) ≥ 1− δ}.

The proof of Proposition 4.1 is deferred to Appendix B. The opposite direction does not hold, since a
non-asymptotic test does not guarantee anything for anyM∈ R1 such that dTV(M,R0) ≤ ε.

5 Testing spread parameter with known central ranking

In this section, we will focus on testing the spread parameter when the central ranking is known.

5.1 Asymptotic case: UMPU test for spread parameter

We will characterize an UMPU test for testing the spread parameter of Mallows model in the
asymptotic setting. The UMPU test simply rejects the null hypothesis when the Kendall distance
of the data deviates from its expected value under the null hypothesis by a certain margin. This is
formalized by Theorem 5.1 whose proof is deferred to Appendix C.

Theorem 5.1 Let us define a test fn(Dn) = gn(Tπ0
(Dn)) with Tπ(D) =

∑
π′∈D dK(π, π′) and

0 ≤ t1 ≤ t2 where gn(`) = 1{` /∈ [t1, t2]} + c1 · 1{` = t1} + c2 · 1{` = t2} with c1, c2 ∈ [0, 1]
such that

1− α

2
=

∑
`∈[t1,µ]

(1− gn(`))PMφ0,π0
(Tπ0

(Dn) = `) =
∑

`∈[µ,t2]

(1− gn(`))PMφ0,π0
(Tπ0

(Dn) = `) .

where µ = EMφ0,π0
[Tπ0

(Dn)]. Then fn is an UMPU level α test with sample size n for H0 :M∈
R0 = {Mφ0,π0} versus H1 :M∈ R1 = {Mφ,π : φ 6= φ0, π = π0}.

Even if the UMPU test fn defined in Theorem 5.1 plays central role in the asymptotic regime, it is
hard to compute exactly, as this is discussed next in Remark 1. However it can be approximated by
using χ2 distribution which is presented in Appendix D.

Remark 1 (Computational complexity) To determine the critical region of the test fn, one needs to
compute the distribution of the sufficient statistic Tπ0(Dn) based on n samples under null hypothesis
that is defined as

PMφ,π
(Tπ(Dn) = `) =

φ`

Z(φ)n
N(`, n) (2)

where Nk = Nk(m) = #{π ∈ Sm : dK(π, πid) = k} is the Mahonian number 1. One can
compute the Mahonian number in O(m2) time using the recursion formula. Similarly, N(`, n) can
be computed using recursion in O(m2n) time. From practical point of view, it is more challenging
to compute PMφ0,π

(T (Dn) = `) for some ` that depends on the fraction of large integers. In this
regime, the numerical error can get significant for large n or m.

1https://oeis.org/A008302
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5.2 An optimal non-asymptotic test based on UMPU test

To tackle the non-asymptotic case to test H0 : M ∈ R0 = {Mφ0,π0} versus H1 : M ∈ R1 =
{Mφ,π0 : dTV (Mφ,π0 ,Mφ0,π0) > ε}, first we convert the UMPU test fn into (ε, δ) non-asymptotic
test based on Proposition 4.1. For doing this, we pick the smallest n so as the dTV(Mφ0,π0

,Mφ,π) ≥
ε for where βfn(Mφ,π) ≥ 1− δ. This algorithm is defined in Algorithm 1.

Algorithm 1 Non-asymptotic test for spread parameter based on UMPU
1: Input: ε, δ
2: n∗ = min {n ∈ Z+ : s(n) ≥ ε} where s(n) = supM∈R1\R(fn) dTV (M,Mφ0,π0)

3: Take n∗ samples Dn∗ and ouput fn∗(Dn∗)

Based on the concentration of the sufficient statistic of exponential family one can compute an upper
bound on n∗. The proof of Theorem 5.2 is deferred to Appendix E.

Theorem 5.2 The sample size n∗ required by Algorithm 1 is at most 1
2ε2 log 2

δ .

According to Proposition 4.1, Algorithm 1 is a uniformly sample optimal non-asymptotic test, since
it was derived from an UMPU test. However, the upper bound for the sample complexity given in
Theorem 5.2 might not be tight. To show that it is indeed tight, we apply the result of [4] regarding
optimal learning of Mallows model in terms of total variation.

Corollary 5.3 Any non-asymptotic testing algorithm which distinguishes H0 : M ∈ R0 =
{Mφ0,π0} from H1 : M ∈ R1 = {Mφ,π0 : dTV (Mφ,π0 ,Mφ0,π0) > ε} requires Ω(1/ε2)
samples.

The proof of Corollary 5.3 is presented in Appendix F. The upper bound given in Theorem 5.2, on
the one hand is tight up to a logarithmic factor, and on the other hand it does not depend on m in an
explicit way, butR(fn) indeed does which is used in Line 2 of Algorithm 1 for computing s(n).

Algorithm 2 Non-asymptotic test for spread parameter
1: Input: ε, δ
2: εL = min {x ∈ [0, φ0] : h(x) ≥ ε} where h(x) = dTV (Mφ0,π0

,Mφ0−x,π0
)

3: εR = min {x ∈ [0, 1− φ0) : h(−x) ≥ ε}
4: ε0 = min{εL/2, εR/2}
5: Take n ∈ Ω

(
log(1/δ)
mε20

)
samples Dn and solve ∇ lnZ(φ)− 1

nTπ0
(Dn) = 0 to obtain φ̂

6: If |φ̂− φ0| ≤ ε0 Then Output 0 Else Output 1 . Based on Theorem 5.4

5.3 Scalable non-asymptotic test based on optimal learning

Algorithm 1 has nice optimality properties, however to solve the optimization in Line 2, the setR(fn)
has to be computed, that requires to compute the distribution of the sufficient statistic for n samples
which is not scalable according to Remark 1. Motivated by this fact, next we devise a more practical
algorithm with weaker optimality guaranty. We recall the result of [4] for optimal parameter learning
of Mallows models. For a known central ranking π0, one can compute an estimate for θ = lnφ by
finding the root of∇ lnZ(θ)− 1

nTπ0
(D) = 0. Since lnZ(θ) is monotone increasing in θ based on

Theorem A.1 2), we can find an estimate φ̂ such that |φ̂ − φ| < γ in O(log(1/γ)) time based on
binary search, therefore we shall neglect the numerical error. If we are given enough sample, the
parameter estimate φ̂ determines a Mallows model that is close to the true one. We recall this result
from [4] (see Theorem 7 therein for more details).

Theorem 5.4 For any φ < 1, if n ≥ Ω
(
log (1/δ)/(mε2

0)
)
, then P

(
|φ̂− φ| ≤ ε0

)
≥ 1− δ.

Theorem 5.4 implies that with n ≥ Ω
(
log (1/δ)/(mε2

0)
)

samples, we can estimate the true φ with
additive error that is of order ε0. This observation suggests a testing algorithm which is presented
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in Algorithm 2. The proposed testing algorithm first computes the neighborhood φ0 for which
the total variation is smaller than ε and then test whether the estimated spread parameter is in this
neighborhood. Therefore this test falls in the family of “testing by learning”. In fact, [4, Corollary 9]
implies that if ε0 = Ω(

√
log(1/δ)/m), Algorithm 2 requires a single sample.

To show that the sample complexity O
(
log (1/δ)/(mε2

0)
)

of Algorithm 2 is optimal, it is enough to
show that it matches to the lower bound given in Corollary 5.3. In other words, we have to show that
ε0 is of order ε/

√
m. This claim is shown next in the Theorem 5.5 for a wide range of parameters.

Theorem 5.5 There exists a constant c > 0 such that, for any φ, φ′ ∈ [0, 1] and for every π ∈ Sm, it
holds that

1. if |φ− φ′| ≤ c/m and φ, φ′ > c, then dTV(Mφ,π,Mφ′,π) ∈ Ω(
√
m|φ− φ′|),

2. if |φ− φ′| ≤ c/
√
m and φ, φ′ > c then dTV(Mφ,π,Mφ′,π) ∈ Ω(

√
m|φ− φ′|2).

The proof of Theorem 5.5 is deferred to Appendix G. Theorem 5.5 implies that Algorithm 2 is
optimal when the difference of parameters of the alternative and the null hypothesis is smaller than
c/m, because in this case, dTV(Mφ,π,Mφ0,π) > ε implies that ε0 = Ω(ε/

√
m). Thus the sample

complexity of Algorithm 2 is O(log(1/δ)/ε2) that matches the lower bound given in Corollary 5.3
up to a logarithmic factor. Albeit to show that Algorithm 2 is optimal for larger parameter values
is an interesting open question. Nevertheless, we believe that this algorithm is optimal based on
some numerical analysis that is shown in Figure 1.The lower bound that is linear in the difference
of the parameters seems to be a very tight approximation even if |φ0 − φ| � 1/m, whereas the
approximation based on the Hellinger distance, i.e. Theorem 5.5 seems to underestimate the total
variation distance for small |φ0 − φ|. On the other hand, the liner lower bound does not hold for large
value of |φ0 − φ|, and the lower bound based on Hellinger distances captures the non-linearity of the
total variation for larger |φ0 − φ|.

0.0 0.2 0.4 0.6 0.8 1.0
| 0|, 0 = 0.5

0.0

0.2

0.4

0.6

0.8

1.0 m = 50

m | 0|
Hellinger: m| 0|2
TV

Figure 1: Total variation distance and its approximation based on Theorem 5.5. We set m = 50 and
φ0 = 0.5. The x-axis shows the difference in parameters, i.e. |φ0 − φ|.

Remark 2 The Algorithm 1 and the Algorithm 2 are very close to each other when ε is small enough
and φ0 is bounded away from 0 and 1. In this case the upper bound dTV

(
Mφ0,π0

,Mφ′0,π0

)
≤√

m |φ0 − φ′0| is very tight and hence both the test and the sample complexity of the two tests are
essentially the same. When ε is larger or φ0 is close to either 1 or 0 then the testing problem becomes
easier and Algorithm 1 takes advantage of this fact and needs less samples, whereas Algorithm 2
requires the number of samples given by the worst-case bound.

Remark 3 (Scalable implementation of Algorithm 2.) The optimization tasks defined in Lines 2
and 3 of Algorithm 2 can be solved by using binary search since the total variation distance is
monotone increasing and decreasing function of ε′ with φ0 + ε′ and φ0 − ε′, respectively. More-
over, one can compute the total variation distance in an efficient way as dTV(Mφ0,π0

,Mφ,π0
) =

1
2

∑m(m−1)/2
`=0 N`

∣∣φ`0/Z(φ0)− φ`/Z(φ)
∣∣. This implementation works for moderate number of items,

i.e. m ≤ 30. However, based on Theorem 5.5, Algorithm 2 can be implemented in a more scalable
way without computing the total variation distance. More detailed, Theorem 5.5 provides an easy
way to decide whether the model with estimated parameter is ε-close to the null model in terms of
total variation distance.
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6 Testing for spread parameter with unknown central ranking

6.1 Asymptotic case

In this section, we consider that case when the null hypothesis consists of a single model H0 :M∈
R0 = {Mφ0,π0

} and the alternative hypothesis set is H1 :M∈ R1 = {Mφ,π : φ 6= φ0 ∨ π 6= π0}.
Let us consider a hypothetical test which knows the central ranking π of the underlying modelM and
it always applies the fπn (Dn) = gn(Tπ(D)) where gn is defined in Theorem 5.1. The power of this
test is clearly an upper bound for the UMPU tests for this testing problem– if there exists UMPU test
at all– since we know that fπn is UMPU if π is known based on Theorem 5.1. However, one can show
that in general there is no unbiased test in this case which follows from the following argument.

Remark 4 (Non-existence of UMPU test.) If there exists an α level unbiased test f for testing
H0 :M ∈ R0 = {Mφ0,π0

} vs H1 :M ∈ R1 = {Mφ,π : φ 6= φ0 ∨ π 6= π0}, based on Theorem
5.1 and the unbiasedness property, it necessarily accepts all sample D for which Tπ0

(D) ∈ (t1, t2)
where t1 and t2 is the border of the critical region of the α level test fπ0

n . By setting α small enough,
the critical region of fπ0

n will include Tπ0
({π′}) for some π′ such that dK(π0, π

′) ≥ 1. Consequently,
βf (M0,π′) = 0 < βf (Mφ0,π0

) = α which means that the test is biased.

Nevertheless, we will devise an easy-to-implement test with a small bias that is vanishing exponen-
tially fast in n. To devise such a test, we need to get an estimate of the central ranking with high
probability. To find the central ranking π0 that maximizes likelihood under Mallows model is known
to be an NP-hard, since there is a reduction to the weighted feedback are set problem [1]. Instead, we
shall consider an estimator of central ranking based average ranking which can recover the central
ranking with high probability as follows.

Lemma 6.1 Let Dn = {π1, . . . , πn} is a set of rankings generated i.i.d. fromMφ,π and let π̄ is the
ranking that sorts [m] descending order based on their average rank si = 1

n

∑n
i=1 πj(i). Then it

holds that P(π̄ 6= π) ≤ e−n(1−φ)/2+2 logm

The proof is based on [2] and presented in Appendix C. We would like to note that [30] analysed
P(π̄ 6= π) by giving lower bound and upper bound algorithm which approach can be used as well.
Based on Lemma 6.1, we can have a simple 2-stage test: 1) take first half of Dn to compute π̄, if
π̄ 6= π0 then reject else 2) apply f π̄n using the rest of Dn. Let us denote this 2-stage test by f̄n which
works with n samples. Based on Lemma 6.1, one can compute an upper bound on the bias of this test.

Theorem 6.2 Using the notation above, for any α ∈ (0, 1/2) and n > 2
1−φ log 2

αm2 , it holds that
f̄2n is an α level test and its bias is at most 1/2e−n(1−φ)/2+2 logm.

The proof is presented in Appendix I. The power of f̄n is at least 1− α if the the central ranking of
the alternative hypothesis does not coincide with π0.

6.2 Non-asymptotic case

Based on Lemma 6.1 it is easy to see that average ranking algorithm recovers the central ranking
with O

(
1

1−φ log m
δ

)
samples with probability at least 1 − δ, thus it can be applied in the non-

asymptotic case. This leads us to a two stage algorithm to test H0 : M ∈ R0 = {Mφ0,π0
}

versus H1 : {Mφ,π : dTV (Mφ0,π0
,Mφ,π) > ε} which first estimates the central ranking based on

the average ranking algorithm, and then runs Algorithm 1 or 2 with the estimated central ranking.
The sample complexity of this two stage algorithm is O(max{ 1

1−φ log(m/δ), 1
ε log(1/δ)}) which

remains optimal up to a logm factor since the lower bound presented in Corollary 5.3 applies in this
case as well.

7 Experiments

We shall present synthetic experiments to assess the performance asymptotic and non-asymptotic
tests. Each result are computed based on 100 repetitions.
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7.1 χ2 approximation of UMPU test

The goal of the first set of experiments is to compare the power of the non-asymptotic test fn defined
in Theorem 5.1 based on exact computation of the distribution of the sufficient statistic and its χ2

approximation. Figure 2 shows their power for various null and alternative hypothesis. We picked
the central ranking to be the identity ranking, since it has no impact on the results. One can see that
the approximation slightly deteriorates the power of fn for small sample size, but the difference is
marginal for n = 50. We could not compute fn with m > 10 and n = 50 in python. However the χ2

approximation can be run with larger m as well as n. As we can see from this experiment, the χ2

approximations is accurate already for small sample size and small number of items.

7.2 Testing parameters of Mallows model for m ≤ 30

In the second experiments we compare Algorithm 1 and 2. To implement Algorithm 1, we need
to compute s(n) = supM∈R1\R(fn) dTV (M,Mφ0,π0), which is based on the distribution of the
sufficient statistic. We used χ2 approximation for the sufficient statistic when we compute s(n).
More detailed, we carried out two nested binary searches, one over n and a second nested one over φ
to compute s(n). To compute s(n), the δ and 1− δ quantile of the distribution of sufficient statistic
based on n samples need to be estimated, so the χ2 approximation has to be good on the tails. With
this heuristic, there is no performance guaranty for Algorithm 1, that is why it is interesting to test its
performance empirically versus an optimal algorithm. The power of Algorithm 1 and 2 are shown in
Figure 3. We run Algorithm 2 with log (1/δ) /(2mε2

0). There are some general trends revealed by
these experiments. First, note that the sample sizes are not increasing with m, as one we expected
since the sample complexity of both algorithm is O(1/ε log(1/δ)). On the other hand, as we pointed
out in Remark 2, these two tests are very close to each other when φ0 is not close too neither 0 nor 1.
It can be seen that for φ0 = 0.5, the power of these two tests are very close to each other, and for
φ0 = 0.1 Algorithm 1 has higher power for almost the same number of samples. Note that we used
an χ2 approximation of Algorithm 1, whereas Algorithm 2 is based on exact computation. Hence,
we can verify that the χ2 approximation indeed does work well in our setting even for moderate m.

7.3 Scalable implementation, using single sample

As we observed Algorithm 2 requires only a single sample whenever ε0 = Ω(
√

log(1/δ)/m). In
addition to this, ε0 goes to zero as m goes to infinity, since with a fixed ε, the parameter φε converges
to φ when m goes to infinity. Therefore for large m single sample is enough for Algorithm 2. We
tested this observation with large m. If we run Algorithm 1 and 2 on a single ranking, they boil down
to a very simple algorithm which consists of estimating the φ based on a single sample and if the
estimate is far from φ0, i.e. |φ̂ − φ0| is bigger than a threshold, then it rejects. This threshold is
computed by using χ2 approximation for Algorithm 1 and based on Theorem 5.5 for Algorithm 2.
Figure 4 shows the results for m ∈ {100, 1000}. As we can see, very similar results can be obtained
for large m like before for m ≤ 30, using only a single ranking which indeed shows that these testing
algorithms do scale gracefully with m. For an intuitive explanation, our tests for the spread parameter
extract information about φ from the outcome of pairwise comparisons between items in π0, this is
how the Kendall-tau distance is computed. The larger m, the more pairwise comparisons available
that is why these tests can work based on a single sample intuitively.
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Figure 2: The power of asymptotic tests with m ∈ {5, 10} and φ0 ∈ {0.1, 0.5, 0.9}, α = 0.05 based
on n = {10, 50} random rankings. The x axis presents parameter φ of the underlying model. The
solid lines shows the power of the exact test fn wheres the dashed ones shows the power of the
approximate test when the likelihood ratio is approximated by χ2 distribution.
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Figure 3: Power function for non-asymptotic tests. The null hypothesis is φ0 ∈ [0.1, 0.5, 0.9] and
ε = 0.1, δ = 0.05. The sample size required by algorithms 2 and 1 is shown in the title of the plots,
respectively.

Figure 4: Power function for non-asymptotic tests with m ∈ {100, 1000} by using a single ranking
as input. The null hypothesis is φ0 ∈ [0.1, 0.5, 0.9] and ε = 0.1, δ = 0.05.

Figure 5: The sample size with error bar that average rank algorithms requires for recovering the
central ranking of Mallows model with various number of items ranged from 5 to 10000.
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7.4 Experiments with unknown central ranking

In the next set of experiments, we test the average ranking algorithm to recover the central ranking.
We run this algorithms with different input sample size and estimate their accuracy, i.e. how many
times they can recover the central ranking. The results are shown in Figure 5. Note that recovering
the central ranking can be done based on relatively small number of examples, that is we need only
≈ 100 to recover the central ranking with high probability, even if it is shown that this is an NP-hard
problem.

8 Conclusion and Future Work

We introduced several identity tests for Mallows model. We had found that the χ2 approximation
does not deteriorate the performance of the exact UMPU test fn by a significant margin. Based
on the asymptotic exact test, we devised a non-asymptotic test for which we applied the same χ2

approximation and we had found that this test achieves similar result to the non-asymptotic test based
on optimal learning. Our results clearly show that scalable identity test for Mallows model is indeed
feasible even for m = 1000, since the spread parameter can be tested based on a single ranking when
m is large and, moreover, the central ranking can be also recovered based on a small number of
samples when φ0 ≤ 0.5. This suggest a very simple and scalable approach for identity testing of
ranking data that generated from Mallows model: take ≈ 100 rankings, estimate the central ranking
on 100 rankings, and use only a single sample to test the spread parameter by using either Algorithm
1 with χ2 approximation or Algorithm 2.

One interesting future direction is to explore hypothesis testing for the Generalized Mallows Model
[12]. Apart from testing for the vector of the spread parameters, it would be interesting if we can test
whether the samples come from a simple Mallows model, with the alternative that the samples come
from a Generalized Mallows Model.
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Supplementary material for “Identity testing for Mallows
model”

A Exponential family and some properties of theirs

Mallows model falls in exponential family if the central ranking is fixed. We used several properties
of exponential family in our analysis. For sake of completeness we briefly recall these properties.

Exponential Families. In this section we summarize the basic definitions and properties of the
exponential families of distributions. We follow the formulation and the expressions of [14, 25]
where we also refer for complete proofs of the statements presented in this section. Let µ be a
measure of Rd and also h : Rd → R+, T : Rd → Rk be measurable functions. We define the
logarithmic partition function αT ,h : Rk → R+ as αT ,h(~η) = ln

(∫
exp

(
~ηTT (~x)

)
h(~x) dµ(~x)

)
.

We also define the range of natural parameters HT ,h as HT ,h =
{
~η ∈ Rk | αT ,h(~η) <∞

}
. The

exponential family E(T , h) with sufficient statistics T , carrier measure h and natural parameters ~η
is the family of distributions E(T , h) = {P~η | ~η ∈ HT ,h} where the probability distribution P~η has
density

p~η(~x) = exp
(
~ηTT (~x)− α(~η)

)
h(~x). (3)

Basic Properties of Exponential Families. We summarize in the next theorem the fundamental
properties of exponential families which we recall from [4].

Theorem A.1 Let E(T , h) be an exponential family parametrized by ~η ∈ Rk and for simplicity let
α(·) = αT ,h(·) andH = HT ,h then the following hold.

1. For all ~η ∈ H, it holds that
E

~x∼P~η
[T (~x)] = ∇α(~η). (4)

2. For all ~η ∈ H, it holds that
Var
~x∼P~η

[T (~x)] = ∇2α(~η). (5)

3. For all ~η ∈ H, ~s ∈ Rd, it holds that

E
x∼P~η

[
exp

(
sTT (x)

)]
= exp (α(~η + s)− α(~η)) . (6)

4. For all ~η, ~η′ ∈ H, and for some ~ξ ∈ L(~η, ~η′) it holds that

DKL (P~η′ ||P~η) = −(~η′ − ~η)T∇α(~η) + α(~η′)− α(~η) = (~η′ − ~η)
T ∇2α(~ξ) (~η′ − ~η) . (7)

B Proof of Proposition 4.1

Proof of Prop. 4.1. As defined above, for test f let R(f) = {M ∈ R1 : βf (M) ≥ 1− δ}. Now,
assume that fn is a UMPU test for sample size n. Consider another test f

′
for sample size at most

n. Since fn is a UMPU, it holds for its power function that βf ′(M) ≤ βfn(M) for allM ∈ R1.
(Note that f ′ can be interpreted as a test for sample size n by combining it with downsampling.)
ThereforeR(f

′
) ⊆ R(fn), and thus εfn ≤ εf ′with εf for test f is defined as in (1). Now, choosing

the smallest n for which ε ≥ εfn , it holds that fn is a sample optimal test for ε and δ.

C Omitted proofs from Subsection 5.1

We use the following technical lemma in the proof of Theorem 5.1.

Lemma C.1 For a fixed π ∈ Sm and φ1, φ0 ∈ [0, 1], it holds that

ln
PMφ1,π

(Tπ(D) = `)

PMφ0,π
(Tπ(D) = `)

= n
[
α(θ0)− α(θ1)

]
− `(θ0 − θ1)
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where Tπ0(D) =
∑n
i=1 dK(π0, πi) and θ0 = lnφ0 and θ1 = lnφ1. Thus, if φ1 < φ0, then the

likelihood ratio is increasing and if φ1 > φ0, then it is decreasing with `.

Proof of Lemma C.1. The distribution of the sufficient statistics Tπ(D) =
∑n
i=1 dK(π, πi) under a

Mallows modelMφ,π is

PMφ,π
(Tπ(D) = `) =

∑
k1+···+kn=`

0≤ki≤
m(m−1)

2

n∏
j=1

Nki
φkj

Z(φ)

=
φ`

Z(φ)n

∑
k1+···+kn=`

0≤ki≤
m(m−1)

2

n∏
j=1

Nki

=
φ`

Z(φ)n
N(`, n) (8)

whereNk = Nk(m) = #{π ∈ Sm : dK(π, πid) = k} is the Mahonian number.2 Given two Mallows
modelsMφ1,π andMφ0,π such that φ1 > φ0, the log likelihood ratio of sufficient statistic is

ln
PMφ1,π

(Tπ(D) = `)

PMφ0,π
(Tπ(D) = `)

= ln

[(
Z(φ0)

Z(φ1)

)n(
φ1

φ0

)`]
= n

[
lnZ(φ0)− lnZ(φ1)

]
− `(lnφ0 − lnφ1)

= n
[
α(θ0)− α(θ1)

]
− `(θ0 − θ1) (9)

= ndKL(Pφ0,π||Pφ1,π)−
(
`− n∇α(φ1)

)
(θ0 − θ1)

where the last step follows from Theorem A.1.4. which concludes the proof

Proof of Theorem 5.1. Let us choose an arbitrary φ1 6= φ0 and consider the following optimization
problem

maximize
f∈F

E
Mφ1,π0

[f(D)]

subject to E
Mφ0,π0

[f(D)] = α,

∂ EMφ,π0
[f(D)]

∂φ

∣∣∣∣
φ=φ0

= 0

where F is the set of measurable functions with respect to the product space in the form of f :
SnM 7→ [0, 1]. Note that the size of an UMP test is α which is represented by the first constraint,
and the second constraint denotes the unbiasedness, since the null hypothesis is simple. The power
function EMφ,π

[f(D)] is differentiable with respect to φ since (2) is differentiable. We can use
the sufficient statistics Tπ0(D) instead of the data D, so let us assume that the test is in the form of
f(D) = g(Tπ0(D)) with some g : [nm(m − 1)/2] 7→ [0, 1]. The Lagrange multiplier form of the
constraint optimization above is

L(g, λ1, λ2) = E
Mφ1,π0

[g(Tπ0
(D))]− λ1

(
E

Mφ0,π0

[g(Tπ0
(D))]− α

)
− λ2

∂ EMφ,π0
[g(Tπ0 (D))]

∂φ

∣∣∣∣
φ=φ0

(2)
=

nm(m−1)/2∑
`=1

g(`)N(`, n)

[
φ`1

Z(φ1)n
− λ1

φ`0
Z(φ0)n

− λ2
∂φ`/Z(φ)n

∂φ

∣∣∣
φ=φ0

]
+ λ1α

(4)
=

nm(m−1)/2∑
`=1

g(`)N(`, n)

[
φ`1

Z(φ1)n
− λ1

φ`0
Z(φ0)n

− λ2
`φ`−1

0 − φ`−1
0 nµ

Z(φ0)n

]
+ λ1α

2https://oeis.org/A008302
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As g(`) and N(`, n) are always nonnegative, for any fixed λ1 and λ2, L(g, λ1, λ2) is maximized for
g that takes 1 on{

` ∈ [nm(m− 1)/2] :
φ`1

Z(φ1)n
Z(φ0)n

φ`0
>

[
λ1 + λ2

`− nµ
φ0

]}
.

and 0 otherwise. Therefore, this set is the critical region of the test g for λ1 and λ2. The likelihood
ratio φ`1

Z(φ1)n
Z(φ0)n

φ`0
is monotonically decreasing in ` when φ1 < φ0, and monotonically increasing

when φ1 > φ0. Therefore, the critical region of the UMPU test is in the form of [0, . . . , t1] ∪
[t2, . . . , nm(m− 1)/2] for some t1 < t2. In addition, because of the unbiasdness constraint, it must
hold that

nm(m−1)/2∑
`=1

g(`)PMφ0,π0
(Tπ0(D) = `)

`− nµ
φ0

= 0

Therefore the critical region is centered around µ such that

t2∑
`=t1

(1− g(`))PMφ0,π0
(Tπ0

(D) = `) = 1− α

and

bµc∑
`=t1

(1− g(`))PMφ0,π0
(Tπ0

(D) = `) |`− nµ| =
t2∑

`=dµe

(1− g(`))PMφ0,π0
(Tπ0

(D) = `) |`− nµ|

which concludes the proof.

D Approximation of fn

The test fn can be naturally written as a likelihood ratio test, since the null hypotheses is simple,
consisting of a single modelMφ0,π0 . In this case, the likelihood ratio is

sup
Mφ,π0

∈R1

log

∏n
i=1 PMφ,π0

(πi)∏n
i=1 PMφ0,π0

(πi)
= sup
φ∈[0,1],φ6=φ0

− logZ(φ) +
1

n
Tπ0(Dn) log φ (10)

where the alternative hypothesis class is R1 = {Mφ,π : φ 6= φ0, π = π0}. The solution of (10) is
φ̂ such that ∇ logZ(φ̂) − 1

nTπ0
(Dn) = 0. As a consequence, the test fn can be approximated by

using χ2 distribution as a surrogate for the likelihood ratio instead of computing the distribution of
the sufficient statistic given in Remark 1. We will use this approxaimation in our experiments.

E Proof of Theorem 5.2

Proof. Assume that the optimization task in Line 2 of Algorithm 1 is solved and the optimal sample
size is n∗ which is achieved by the modelMφ∗,π0

such that φ∗ < φ0 over

R1 \ R(fn) =

{
Mφ,π0 :

∑
`

(1− gn(`)) P
Mφ,π0

(Tπ0
(Dn∗) = `) < δ

}
.

Note that h(φ) =
∑
`(1− gn(`))PMφ,π0

(Tπ0(Dn∗) = `) is a continuous function in φ, therefore it
holds that ∑

`

(1− gn(`)) P
Mφ∗,π0

(Tπ0
(Dn∗) = `) = δ.
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Let us denote the border of the critical region by t1 and t2 for n∗. Therefore, we have that (not taken
into account the randomization on the border of critical region)

δ = P
Mφ∗,π0

(Tπ0
(Dn∗) ∈ [t1, t2])

=2 P
Mφ∗,π0

(
Tπ0

(Dn∗) ∈ [n∗ · E
Mφ0,π0

[T (π)], t2]

)
(11)

≤2 P
Mφ∗,π0

(
1

n∗
Tπ0

(Dn∗) ≥ E
Mφ0,π0

[T (π)]

)
≤2e

−n∗ DKL

(
PMφ∗,π0

||PMφ0,π0

)
(12)

≤2e
−n∗2 dTV

(
PMφ∗,π0

,PMφ0,π0

)2

(13)

=2e−n
∗2ε2 (14)

where (11) follows from the fact that the critical region is symmetric around n∗ ·EMφ0,π0
[T (π)], (12)

follows from the concentration inequality of sufficient statistic of exponential family, e.g. Theorem
19.2 of [13], and (13) follows from Pinsker’s inequality and (14) holds because of the definition of
φ∗. This concludes the proof.

F Proof of Corroallry 5.3

Proof. According to Proposition 4.1, Algorithm 1 is optimal for H0 :M∈ R0 = {Mφ0,π0
} versus

H1 :M∈ R1 = {Mφ,π0
: dTV (Mφ,π0

,Mφ0,π0
) > ε} , therefore a lower bound on n∗ provides a

lower bound on the sample complexity of the testing problem. Consider the optimization task defined
in Line 2 of Algorithm 1

n∗ = min {n ∈ Z+ : s(n) ≥ ε}
where

s(n) = sup
M∈R1\R(fn)

dTV (M,Mφ0,π0)

Theorem 15 of [4] can be restated as follows: for all testing function f : Snm 7→ {0, 1} with
n = o(1/ε2) which solves the testing at hand, there exists a permutation π0 and φ0 ∈ [0, 1) such that

P(f(Dn) = 1) ≥ 1/3

where Dn is generated from aMφ0,π0
. This implies that n∗ ∈ Ω(1/ε2).

G The proof of Theorem 5.5

Proof. The first claim of the Theorem follows from D.12 of [4]. To proof the second part, first we
can lower bound the total variation distance by using the Hellinger distance.

1

2
dH(Mφ0,π0 ,Mφ,π0)2 ≤ dTV(Mφ0,π0 ,Mφ,π0)

and

1

2
dH(Mφ0,π0

,Mφ,π0
)2 = 1−

M∑
i=0

Ni

√
φiφi0

Z(φ)Z(φ0)

= 1− 1√
Z(φ)Z(φ0)

M∑
i=0

Ni(φφ0)i/2

= 1− Z(
√
φφ0)√

Z(φ)Z(φ0)

= 1−

√
Z(
√
φφ0)

Z(φ)

√
Z(
√
φφ0)

Z(φ0)
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= 1−

√
exp

(
α

(
θ + θ0

2

)
− α(θ)

)√
exp

(
α

(
θ + θ0

2

)
− α(θ0)

)

= 1−

√
exp

[
2α

(
θ + θ0

2

)
− α(θ)− α(θ0)

]

≥ 1−

√√√√exp

[
−2∇2α

(
θ + θ0

2

)(
θ − θ0

2

)2
]

(15)

where in (15) we used the strong-convexity of the log partition function of the exponential family:

α(θ) ≥ α
(
θ + θ0

2

)
+∇α

(
θ + θ0

2

)(
θ − θ0

2

)
+∇2α

(
θ + θ0

2

)(
θ − θ0

2

)2

and

α(θ0) ≥ α
(
θ + θ0

2

)
+∇α

(
θ + θ0

2

)(
θ0 − θ

2

)
+∇2α

(
θ + θ0

2

)(
θ − θ0

2

)2

.

From (15), using that
1− e−x ≥ 1− (1− x+ x2/2) = x(1− x/2) ≥ x/2

for every x ∈ [0, 1], we obtain that

1

2
dH(Mφ0,π0 ,Mφ,π0)2 ≥ 1− exp

[
−∇2α

(
θ + θ0

2

)(
θ − θ0

2

)2
]

(16)

≥ −1

2
∇2α

(
θ + θ0

2

)(
θ − θ0

2

)2

(17)

whenever |θ − θ0| ≤
√

2
/
∇2α

(
θ+θ0

2

)
.

Due to [4], in particular Equation (2.3), Lemma 21, Section 2.1 and the beginning of Section 5
therein,

∇2α (φ) = m
φ

(1− φ)2
−

m∑
k=1

(k + 1)2φk+1

(1− φk+1)2
.

Therefore,∇2α ((θ + θ0)/2) = Θ(m) for θ and θ0 bounded away from 0 and 1. This, together with
(16) proves the second claim of the theorem.

H Proof of Lemma 6.1

Proof of Lemma 6.1. The proof is straightforward based on Eq. (17) from the proof of Claim 19 of
[2] which we recall here: for the ranking based on average score, with probability at least 1− n−α, it
holds that

|π̄(i)− π0(i)| < 2
α+ 2

φn
logm

for all i ∈ m. Note that 2α+2
φn logm < 1 implies that the central ranking is recovered. Therefore,

α < φn
2 logm − 2 which concludes to proof.

I Proof of Theorem 6.2

Proof of Corollary 6.2 . Let us denote n′ = dn/2e. Under the null H0, we have
βf̄n(Mφ0,π0

) = P
Mφ0,π0

(f̄n(Dn) = 1)

= P
Mφ0,π0

(π̄ 6= π0) + P
Mφ0,π0

(fn′(Dn) = 1, π̄ = π)

≤ δ +
α

2
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Therefore if δ < α/2, then f̄n is an α level test. Based on Lemma 6.1, we have that if n >
2

1−φ log 2
αm2 then PMφ0,π

(π̄ 6= π) ≤ α/2.

As a next step, we upper bound the bias of f̄n. When the alternative model isMφ,π0 where φ 6= φ0,
we have

βf̄n(Mφ,π0) = P
Mφ,π0

(π̄ 6= π0) + P
Mφ,π0

(f π̄n′(Dn) = 1, π̄ = π0)

= P
Mφ,π0

(π̄ 6= π0) + P
Mφ,π0

(fn′(Dn) = 1|π̄ = π0) P
Mφ,π0

(π̄ = π0)

≥ P
Mφ,π0

(fn′(Dn) = 1) P
Mφ,π0

(π̄ = π0) (18)

≥ βf ′n(Mφ,π0
)(1− δ)

≥ βf ′n(Mφ,π0
)− δ

So the bias is at most δ in this case. When the alternative model isMφ,π where π 6= π0, we have

βf̄n(Mφ,π) ≥ P
Mφ,π

(π̄ = π) ≥ 1− δ ≥ 1− α

2
≥ α

where we used that δ < α
2 . Finally, we can apply Lemma 6.1 with n > 2

1−φ log 2
αm2 to get an upper

bound of δ which concludes the proof.
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