
Appendix1

1 NORESQA Architecture2

NORESQA’s architecture comprises of three key components: a feature-extraction block, a3

temporal-learning block and task-specific heads.4

Feature-Extraction Block.5

We use the Inception architecture in the feature extraction block. It consists of 4-block Inception6

modules: each module consisting of 64 convolutional filters - 24 1x1 filters, 32 3x3 filters, and 8 5x57

filters. These filters are concatenated and finally passed through a 1x4 maxpool block, preserving the8

temporal dimension. This is repeated for each of the 4 inception blocks. The final output dimensions9

of the model is B × 64× T × 2, where B is the batch size, and T is the number of frames. ReLU is10

used as the activation function after each layer.11

Temporal Learning Block.12

We use temporal convolutional networks (TCNs) in the temporal learning block. The network13

consists of 4 temporal blocks. Each block consists of 2 convolutional layers with a kernel size of14

1x3, with each layer consisting of 32, 64, 64 and 128 channels for each of the 4 blocks respectively.15

After the convolutional layers, each layer uses weight normalization which is a reparameterization16

trick that decouples the magnitude of a weight tensor from its direction. The outputs are then passed17

to ReLU as an activation function, and finally to dropout having a value of 0.2. The convolutional18

layers in each block consist of dilated convolutions with dilation factors of 2, 4, 8 and 16 for each19

of the 4 blocks. Use of dilated convolutions increases the effective history of our model. The initial20

weights of this network are chosen from the normal distribution N (0, 1e−2).21

The parameters for both these blocks (feature-extraction and temporal-learning) are shared between22

the two inputs to our model. The embeddings for each input are concatenated (along the channel23

dimension), and are then passed next to the task-specific heads. The input to this model is24

B × T × 128, and the output is also B × T × 128, since TCNs can maintain the same length25

of the signal.26

Task Specific Heads.27

Each of the two tasks (preference-task amd quantification-task) each has a separate head. Their28

architecture is described next:29

Preference Task: The output of the preference task is a frame-level prediction of which input is30

cleaner. This head consists of 3 convolutional layers, each consisting of 32, 8 and 2 channels31

respectively. The kernel size for each layer is 1x5, with each layer also having BatchNorm and32

dropout (0.2). The input to this model is B × T × 256 (after concatenating along the channel33

dimension of the two inputs) and the output is B×T ×2 with a framewise prediction of which input34

is cleaner.35

Quantification Task: Refer to Sec 3.3 (main paper). The objective of the quantification task is36

to quantify the framewise quality difference between the two inputs. Here we formulate this37

as a classification problem, where we divide the whole range of SNR (∆snrmax) and SI-SDR38

(∆sdrmax) into K equal intervals. The output of this head is a probability distribution over all K39

classes. Similar to the Preference task, this network also produces frame-level distributions. For40

both objectives (SNR and SI-SDR), we take K = 40. This head consists of 3 convolutional layers,41

each consisting of 64, 50 and 40 channels respectively. The kernel size for each layer is 1x5, with42

each layer also having BatchNorm and dropout (0.2). The input to this model is again B × T × 25643

(after concatenating along the channel dimension of the two inputs) and the outputs are B× T × 4044

for both SI-SDR and SNR for a framewise prediction of relative quality.45

2 Experimental setup46

Dataset. For the training and validation set, we choose the clean audio recordings from the DNS47

Challenge. The noise perturbations are sampled from the FSDK50 dataset that consists of over 51k48

audio samples encompassing around 100 hours of audio manually labelled using 200 classes drawn49
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from the Audioset ontology. As additional examples of distortions, we also use Clipping distortion,50

and Frequency masking as very common examples of distortions found in audio processing tasks.51

All data is divided into 90% train and 10% validation so that there is no overlap of train and52

validation data.53

For the test set, we use the TIMIT dataset for the clean recordings. The noise perturbations are54

sampled from the ESC-50 dataset that consists of 2000 labeled recordings equally balanced between55

50 classes (exactly 40 clips per class). We also use Gaussian noise and Mu law compression as two56

examples of unseen test distortions.57

The training and testing pairs are created by adding the same type/category of noise to both58

recordings, but at two different noise levels to two different clean recordings. We design a simulation59

environment where we sample the clean recordings and noisy recordings from their respective60

datasets, and create the degraded recordings at differences levels of noise.61

We also include reverberations in our audio recordings to make them more realistic and help62

the model generalize better. We sample impulse responses from the DNS Challenge dataset and63

convolve with the noisy recordings before input to the model. We use the “medium-room” and64

“small-room” RIRs, where the length and width of the room are sampled from 1 to 30m.65

3 Objective Evaluations66

3.1 In-variance to language67

Fig 1 shows our metric’s outputs with increasing SNR and SI-SDR difference for an unseen set of68

clean recordings that were randomly chosen from various languages including Mandarin, French69

- Arabic - Turkish - Spanish, Indian languages - Bengali, Gujarati, Hindi and Marathi, and noise70

recordings from ESC-50. Note that, the model itself was trained on English speech and we are testing71

with different languages. We see that the model performs fairly well for these unseen languages.72

We studied robustness with respect to language by using non-matching references as well. In73

this case our test recording is always randomly selected from the English TIMIT dataset, and our74

reference recording is randomly chosen from any of the multi-langauge datasets (Fig 2). We observe75

that the general trend of the model is quite similar to Fig 2(a) and (b), (from the main paper, that76

showed the variation with English) which suggests that the model is invariant to language, and only77

considers acoustic differences to assess relative quality. Overall, these evaluations show that the78

trained model is not only robust to the language of test recording but can also compare quality of79

two speech signals with different languages.80

(a) (b)

Figure 1: Variation of our models output with increasing (a) SNR and (b) SI-SDR using test and reference
recordings randomly chosen from Mandarin, French, Arabic, Turkish, Spanish, Bengali, Gujarati, Hindi and
Marathi.
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(a) (b)

Figure 2: Variation of our models output with increasing (a) SNR and (b) SI-SDR using test speech from
English (TIMIT), and reference recordings from Mandarin, French, Arabic, Turkish, Spanish, Bengali, Gujarati,
Hindi and Marathi.

(a) (b)

Figure 3: Variation of our models output with increasing (a) SNR and (b) SI-SDR using unseen clean male
speech from the DAPS dataset.

3.2 In-variance to gender81

We now evaluate how NORESQA behaves with respect to speaker’s gender. Once again we try82

to disentangle behaviour w.r.t to speaker’s gender through two experiments. First, we see how the83

trained models behave for each gender, male and female. We test the models in male-only speaker84

condition (test and references are all male speeches) as well as in female-only speaker condition.85

Fig 3 shows the trends for male and 4 shows it for female. We note that the model works well in86

both cases.87

Second, we evaluate how stable NORESQA is when the gender of the test recording does not match88

the reference, i.e., test recording is male speech, and reference recording is female speech and vice-89

versa (Fig 5). Once again, we observe that mis-matching speaker’s gender in test and references does90

not adversely affect model’s behaviour. Overall, based on these evaluation, we conclude that the91

model is invariant to gender of the speaker and is primarily learning quality related characteristics.92

3.3 Commutativity: N (xtest, xref ) = N (xref , xtest)93

We empirically evaluate the model to check if it satisfies the commutative property i.e.,94

N (xtest, xref ) = N (xref , xtest)95
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(a) (b)

Figure 4: Variation of our models output with increasing (a) SNR and (b) SI-SDR using clean female speech
from the DAPS dataset.

(a) (b)

Figure 5: Variation of our models output with increasing (a) SNR and (b) SI-SDR under mismatched gender
conditions (i.e., test recording is male speech, and reference recording is female speech and vice-versa)

To evaluate the preference-task, we check the overall recording-wise predictions of both cases (i.e.,96

N (xtest, xref ) and N (xref , xtest) and see how well does the quality preference order swap when97

swapping the order of the inputs. We calculate accuracy by counting the number of times the98

preference order correctly gets swapped, and divide it by the total number of recordings. Our metric99

gets an accuracy of 98.3% that empirically shows that it obeys the commutative property.100

To evaluate the quantification task (Fig 6), we compute the predictions of both cases (i.e., d1 =101

N (xtest, xref ) and d2 = N (xref , xtest)). We then plot the distribution abs(d1 − d2) for 1000102

different pairs of recordings. We observe that the distribution is centered around 0dB which103

empirically suggests that it obeys the commutative property.104

Overall, our model learns these two desirable properties without any specific training, and this105

suggests the usefulness of our framework for audio quality judgment.106

3.4 Indiscernibility of Identicals: N (xtest, xtest)107

Here, we show the output of our model when passed the same inputs (Refer to Sec 5.1 in the108

main paper). Ideally, the model should predict no quality difference when passed the same inputs.109

However, since our learning mechanism does not explicitly enforce the framework to have this110

property, so small errors are expected. For a fair comparison, we calculate the recording-level111
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Figure 6: Commutative Property: Histogram plot of abs(N (xtest, xref ) - N (xref , xtest))

predictions from our model. Fig 7(a) shows the probability outputs on the preference-task. The112

outputs are close to 0.5 that suggests that the model is unable to confidently identify which output113

is cleaner. Fig 7(b) shows the output from the quantification-task. The distribution of the scores is114

centered around zero that suggests that the model correctly predicts that the two same inputs have115

similar quality levels, hence the near-zero quality difference.116

(a) (b)

Figure 7: Indiscernibility of Identicals: (a) Evaluating our metric’s performance on the preference-task and (b)
quantification-task for the same inputs

3.5 Framewise detection117

We also analyse the framewise performance of our model (Fig 8), using the same test bench that118

we created earlier, that consists of different recordings at various noise levels where each recording119

is 3 seconds. We concatenate different recordings together in decreasing levels of noise (i.e from120

high noise to low noise equally spaced from -10dB to +30dB) which becomes the test input to121

our model. Equivalently, the reference input to our model consists of a random concatenation122

of NMRs at +30dB. We observe that the framewise output of task 1 (preference-task) is almost123

97% accurate in the preference task of predicting which frame is cleaner between the two input124

recordings, which suggests that it learns this quite well. We also compare the framewise outputs from125

task 2 (quantitative-task) that predicts their relative quality difference. We find that the framewise126

predictions are not monotonic but still follow the general trend. This is expected, since we always127

optimize on a recording level, and not on a frame level. This findings suggest that our metric can128

detect and quantify which frames are degraded in quality between the inputs.129
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Figure 8: Framewise Predictions: Evaluating the framewise predictions of our model using a test recording
that has decreasing levels of noise (from -10dB to +30dB) and the reference set consists of NMRs at +30dB.

4 Subjective Evaluation Datasets130

Refer to Sec 5.2 in the main paper. We evaluate our framework subjectively on two tasks: (i)131

Correlation with MOS across 8 existing datasets, and (ii) 2AFC accuracy, where we show the132

performance of our metric on triplet comparison questions from 4 different datasets. MOS checks133

for aggregated ordering, scale and consistency, whereas 2AFC checks for exact ordering of similarity134

at per sample basis. Most of the datasets lie within the range of -15dB to 60dB SNR and -15dB to135

25dB SI-SDR, which also roughly matches our chosen training intervals.136

The following are the datasets that we used for evaluation:137

1. VoCo: This dataset is based on comparing 6 different word synthesis and insertion algorithms.138

The MOS tests were asked to rate which algorithm could synthesize a new word such that it139

blends seamlessly in the context of the existing narration. This consists of non-sample aligned140

pairs of recordings.141

2. Dereverberation: This dataset is based on evaluating improvements across 5 deep-learning142

based speech enhancement models including BLSTM, Wavenet, StarGAN-VC etc. MOS143

tests were done to evaluate which algorithm was rated the highest by subjects from Amazon144

Mechanical Turk (AMT). They obtained more than 100 ratings per condition.145

3. PEASS: The dataset contains separated sources and specifically defined anchor signals to assess146

audio source separation performance across 4 metrics: global quality, preservation of target147

source, suppression of other sources, and absence of additional artifacts. Here, we only look148

at global quality. It consists of scores from 20 subjects over a set of 80 sounds.149

4. Voice Conversion (VC): c This objective of this dataset is to compare the performance on150

speaker (voice) conversion. It consists of two tasks: (i) parallel (HUB) and (ii) non-parallel151

data (SPO). Here we only consider HUB. The dataset consists of 4 source and 4 target speakers,152

where each speaker utters the same sentence set consisting of around 80 sentences.153

5. Noizeus: The dataset was developed to encourage comparison of non-deep learning based154

speech enhancement algorithms, and consists of 30 IEEE sentences from 3 male and female155

speakers. The recordings are corrupted by 8 real-world noises, where the noises are taken from156

the AURORA database. The evaluation is done across 3 metrics: SIG-speech signal alone;157

BAK-background noise; and OVRL-overall quality. Here, we only look at OVRL.158

6. TCD-VoIP: This dataset was developed to help assess degradations that can occur in VoIP159

(Voice over IP calls). IT contains speech samples with a range of common VoIP degradations160

background noise, echo, chop (packet loss), clipping etc., and the corresponding set of161

subjective scores from 24 listeners.162

7. HiFi-GAN: This dataset is based on evaluating the improvement across 10 deep-learning based163

speech enhancement models including BLSTM, Wavenet, MetricGAN, SpecGAN etc. MOS164

tests were done to evaluate which algorithm was rated the highest by subjects from Amazon165
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Mechanical Turk (AMT), with each method receiving around 14k ratings. Further, it also166

consists of a 2AFC preference dataset consisting of around 1200 triplets, where each triplet167

received around 900 judgment ratings.168

8. FFTnet: This dataset is based on evaluating the performance of 5 speech synthesis algorithms169

across 2 male and female speakers. It introduces artifacts specific to synthesis and are not170

sample-aligned due to phase change. Further, it also consists of a 2AFC preference dataset171

consisting of around 2050 triplets, where each triplet received around 480 ratings.172

9. Bandwidth Expansion: This dataset consists of subjective tests for 3 different bandwidth173

expansion algorithms, aiming at increasing sample rate by filling in the missing high-frequency174

information. These audio samples consist of very subtle high-frequency differences. Further,175

it also consists of a 2AFC preference dataset consisting of around 1020 triplets, where each176

triplet received around 400 judgments.177

10. Simulated: This dataset consists of 2AFC preference triplets, totalling to 1210. These are all178

based on adding common-realistic degradations like background noises, speech distortions like179

clipping and other miscellaneous types of degradation’s like compression and EQ.180

5 Ablations181

In this section, we evaluate the influence of different components of our framework.182

5.1 Relative vs Absolute Quantification Task183

One key aspect of NORESQA is that it tries to model relative quality differences rather absolute184

quality measures in terms of SNR and SI-SDR. We discussed motivations and intuitive reasons for185

it in the main paper. We empirically study the relative vs absolute modeling of the quality measures186

here. We compare our framework to models that are trained to predict SNR and SI-SDR directly.187

For the absolute quality prediction models, we consider two cases (i) [Single Input Absolute188

Quantification]: a single input model that takes a test recording and directly predicts the absolute189

quality measure , SNR and SI-SDR. It resembles the conventional formulation of a non-intrusive190

metric, and (ii) [Two Input Absolute Quantification]: a pairwise model that takes a test recording191

and a non-matching clean reference and predicts the absolute score. This is oriented towards our192

NORESQA framework but instead of learning relative differences it tries to learn absolute quality193

measures.194

Results are shown in Table 1. We observe that our relative quality prediction model NORESQA195

performs the best by a considerable margin. This empirically corroborate our hypothesis that196

learning to model relative differences is much better than absolute measures. Their correlations197

with MOS turns out to be much better than “absolute methods". Moreover, we also observe that198

providing any (even a non-matched) clean reference to the model improves the performance over199

the Single case even for absolute quantification tasks. This demonstrates the inherent challenge of200

the conventional formulation of the non-intrusive metric that does not provide any reference. This201

highlights the usefulness of two features of our metric: (i) predicting relative quality scores, and (ii)202

providing non-matching references.203

Name Type VoCo Dereverb HiFi-GAN FFTnet
PC SC PC SC PC SC PC SC

Absolute Sing. Inp. 0.32 0.31 0.19 0.17 0.19 0.30 0.16 0.15
Two Inp. 0.41±0.15 0.35±0.03 0.26±0.08 0.27±0.01 0.42±0.07 0.45±0.06 0.17±0.01 0.09±0.01

NORESQA 0.85±0.01 0.68±0.03 0.66±0.02 0.67±0.02 0.68±0.01 0.78±0.01 0.33±0.01 0.44±0.01

Table 1: Ablations (1): Understanding the influence of predicting quality measures (single and pairwise) with
our NORESQA using Global-Fixed100 strategy. MOS Correlations: Spearman (SC), Pearson (PC). ↑ is better.

5.2 Multi-objective Learning of Quantification Task204

To evaluate the impact of the multi-objective optimization (i.e., optimizing over both SI-SDR205

and SNR) for the quantification task on correlation to subjective ratings, we compare our trained206

7



metric: (i) only using the SNR head; (ii) only using the SI-SDR head; and (iii) after combining207

both SNR and SI-SDR heads. Results are shown in Table 2. For simplicity, we only look at the208

Unpaired-Global-Fixed100 strategy, which is evaluating a test recording using 100 clean NMRs209

randomly chosen from the DAPS dataset. We observe that using either head alone performs worse210

than using both together, which suggests that using a multi-objective optimization helps learn a211

better general representation.212

Type Name VoCo Dereverb HiFi-GAN FFTnet
PC SC PC SC PC SC PC SC

NORESQA
SNR only 0.43 0.39 0.39 0.38 0.49 0.42 0.2 0.1
SI-SDR only 0.6 0.48 0.48 0.49 0.54 0.65 0.25 0.28
SNR and SI-SDR 0.85 0.68 0.66 0.67 0.68 0.78 0.33 0.44

Table 2: Ablations (2): Understanding the influence of using (multi-objective) SI-SDR and SNR for Task 2
using Global-Fixed100 strategy. MOS Correlations: Spearman (SC), Pearson (PC). ↑ is better.

5.3 Number of NMRs213

Here we report the MOS correlation scores obtained when considering a set of 1, 10 and 100 NMRs214

for each test recording. This is shown for all 3 unpaired strategies described in Sec 5.2 (of the215

main paper) - Unpaired, Unpaired-Local-Fixed, and Unpaired-Global-Fixed. Results are shown216

in Table 3. We observe that averaging the scores over a larger set of NMRs reduces the standard217

deviation in the scores which leads to more stable predictions. We also observe that PC values are218

more consistent and stable over many iterations, and have a lower standard deviation than SC values.219

Since SC measures monotonic relationships, it can easily overfit to a complex function, leading to220

a higher standard deviation per iteration. However, since PC maps linear relationships, it is more221

stable. Finally, we observe no significant difference between the scores from Unpaired-Local-fixed222

and Unpaired-Global-fixed which suggests that our metric works equally well for scenarios where223

we take any random set of clean recordings as NMRs.224

Type Category VoCo Dereverb HiFi-GAN FFTnet
PC SC PC SC PC SC PC SC

Unpaired
NMR1 0.76±0.1 0.27±0.2 0.57±0.03 0.62±0.04 0.63±0.01 0.70±0.02 0.43±0.10 0.45±0.11
NMR10 0.87±0.01 0.43±0.07 0.64±0.01 0.73±0.03 0.63±0.01 0.70±0.01 0.45±0.03 0.48±0.06
NMR100 0.88±0.01 0.41±0.06 0.63±0.01 0.75±0.02 0.63±0.01 0.71±0.01 0.46±0.01 0.51±0.02

+Local-Fixed
NMR1 0.65±0.23 0.40±0.23 0.53±0.10 0.57±0.15 0.56±0.08 0.64±0.08 0.38±0.10 0.31±0.13
NMR10 0.79±0.1 0.44±0.2 0.61±0.05 0.69±0.05 0.61±0.02 0.67±0.03 0.48±0.03 0.50±0.04
NMR100 0.89±0.01 0.44±0.06 0.63±0.01 0.75±0.01 0.61±0.01 0.73±0.01 0.46±0.01 0.51±0.02

+Global-Fixed
NMR1 0.79±0.20 0.54±0.20 0.44±0.16 0.41±0.19 0.56±0.08 0.63±0.10 0.29±0.10 0.36±0.12
NMR10 0.84±0.05 0.63±0.08 0.62±0.08 0.62±0.09 0.63±0.01 0.71±0.02 0.33±0.03 0.41±0.07
NMR100 0.85±0.01 0.68±0.03 0.66±0.02 0.67±0.02 0.68±0.01 0.78±0.01 0.33±0.01 0.44±0.02

Table 3: Ablations (3): Understanding the effect of number of recordings used as non-matching references
(NMR). MOS Correlations: Pearson (PC), Spearman (SC). Each cell shows the mean and standard deviation
after 10 iterations. ↑ is better.

6 Speech enhancement225

We use the VCTK dataset that consists of around 11,572 utterances for training and 824 files for226

validation. The dataset consists of 28 speakers equally split between male and female speakers,227

containing 10 unique background noise types across 4 different SNR conditions. Our denoising228

network is similar to Tan et al. and consists of a multi-layer convolutional encoder and decoder with229

U-Net skip connections, and a sequence modeling network applied on the encoders output. The230

input to the model are the real and imaginary components of the STFT of the signal, and the outputs231

are the complex ratio mask. The encoder (and decoder) consists of 5 gated convolutional layers with232

a filter size of 2 × 6, and use sigmoid activation for the gating mechanism. The sequence modeling233

network takes the encoders output and outputs a non-linear transformation of the same size. Since234

we design a causal model, the network consists of 2 uni-directional LSTM layers with 256 hidden235

units in each layer.236
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For evaluation, we use the audio clips from the VCTK test set and evaluate scores on that dataset.237

We evaluate the quality of enhanced speech using objective measures. We use: i) PESQ (from 0.5238

to 4.5); (ii) Short-Time Objective Intelligibility (STOI) (from 0 to 100); (iii) Segmental Signal-to-239

Noise Ratio (SNRseg): average of SNR values of short segments (15 to 20ms) ; (iv) CSIG: MOS240

prediction of the signal distortion attending only to the speech signal (from 1 to 5); (v) CBAK: MOS241

prediction of the intrusiveness of background noise (from 1 to 5); (vi) COVL: MOS prediction of the242

overall effect (from 1 to 5). We compare the baseline approach with our model across the various243

paired-data constrained strategies.244

As shown in Table 4 (main paper), SE models trained using NORESQA obtain higher objective245

scores than the baseline models across all three strategies. We observe that the difference between246

the scores from our model and the baseline keeps increasing as we get more paired data which247

shows the usefulness of our metric, especially for sparse labeled-data situations (e.g., low-resource248

languages) since our approach leverages unlimited unpaired data.249

Most notable is the improvement in STOI that shows our metrics’ utility as an optimization objective250

for pretraining. Given sparse-labeled data, the baseline model can fit the test set only as much.251

However, since our model can effectively leverage unlimited unpaired data during pretraining, given252

a model of sufficient capacity, it has the flexibility to learn a more complex mapping. This is253

precisely why we observe higher objective scores for quality and intelligibility than the baseline254

approaches which also highlights the usefulness of our framework.255
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