
NEUROMLR: Robust & Reliable Route
Recommendation on Road Networks

Jayant Jain∗, Vrittika Bagadia∗, Sahil Manchanda, Sayan Ranu
Indian Institute of Technology Delhi

{jayantjain100,vrittikabagadia}@gmail.com
{sahil.manchanda,sayanranu}@cse.iitd.ac.in

Abstract

Predicting the most likely route from a source location to a destination is a core
functionality in mapping services. Although the problem has been studied in the
literature, two key limitations remain to be addressed. First, our study reveals
that a significant portion of the routes recommended by existing methods fail to
reach the destination. Second, existing techniques are transductive in nature; hence,
they fail to recommend routes if unseen roads are encountered at inference time.
In this paper, we address these limitations through an inductive algorithm called
NEUROMLR. NEUROMLR learns a generative model from historical trajectories
by conditioning on three explanatory factors: the current location, the destination,
and real-time traffic conditions. The conditional distributions are learned through a
novel combination of Lipschitz embeddings with Graph Convolutional Networks
(GCN) using historical trajectory data. Through in-depth experiments on real-
world datasets, we establish that NEUROMLR imparts significant improvement
in accuracy over the state of the art. More importantly, NEUROMLR generalizes
dramatically better to unseen data and the recommended routes reach the destination
with much higher likelihood than existing techniques.

1 Introduction and Related Work
Given historical trajectory data, we study the problem of predicting the most likely route from a
source node to a destination node in a road network. This problem has two prominent applications:
route recommendation and route recovery. Route recommendation is one of the core functionalities in
GPS-aided mapping applications. They are routinely used in the cab and food-delivery industry [26,
7, 34, 6], as well as by common people through navigation systems when they are unfamiliar with
their surroundings [30]. Route recovery, as the name suggests, focuses on recovering the actual
traversed route from a partially observed GPS trajectory [9]. Due to various reasons, for instance,
limiting the power consumption of GPS devices, trajectories are often recorded at low sampling rate.

1.1 Existing work
The simplest approach is to predict the shortest or the quickest path (route) between the source
and destination. However, several studies have shown that human beings rarely travel in shortest
paths [21]. Rather, the probability of a path being taken is a complex mixture of several latent
factors such as road quality [5, 22], road scenery [21, 14], pollution levels [23], presence of road
tolls, etc. Furthermore, it has also been shown that human beings systematically misperceive travel
time[20]. Modeling these complex factors is challenging. Consequently, a large body of work exists
on predicting the most likely route [1, 28, 33, 4, 10, 27], with DEEPST [10] and CSSRNN [27] being
the best performing algorithms. CSSRNN models the trajectory patterns through a Recurrent Neural
Network and exploits the topological constraints presented by the road network. DEEPST learns
representations for the trajectories, destination and traffic conditions using variational autoencoders.
∗denotes equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

𝑣2

𝑣3

𝑣7

𝑣4

𝑣8

𝑣1

𝑣6

𝑣5

𝑣10

𝑇1: 𝑣1 → 𝑣2 → 𝑣3 → 𝑣4 → 𝑣6
𝑇2: 𝑣2 → 𝑣3 → 𝑣4
𝑇3: 𝑣1 → 𝑣2 → 𝑣7 → 𝑣8
𝑇4: 𝑣1 → 𝑣2 → 𝑣7 → 𝑣8 → 𝑣10

𝑣11𝑣12𝑣13

Routes obtained from Historical
Trajectory database 𝓓

(a)

1 2 5 10 20 50 100
Percent of training data kept

0

10

20

30

40

50

60

P
er

ce
nt

ag
e

of
un

se
en

no
de

s
(b)

9k
(CHG)

16k
(HRB)

72k
(BJG)

281k
(CTI)

Number of road segments

40

50

60

70

80

90

100

R
ea

ch
ab

ili
ty

(%
)

NeuroMLR-G

CSSRNN

(c) Reachability

Figure 1: (a) A sample road network and historical database D. For simplicity, we ignore edge
weights. (b) Percentage of unseen nodes in the road network of Beijing against the size of the training
data (c) Impact of road network size on performance of CSSRNN and NEUROMLR-G.

1.2 Limitations of existing work
• Reachability: Existing techniques have primarily used recall and precision to measure accuracy
of predictions [10, 27]. Critically, these ignore whether the predicted trajectory actually reaches the
destination. The deployability of any route recommendation algorithm is severely compromised if
the recommended route does not reach the destination. Our experiments reveal that for both DEEPST
and CSSRNN, a significant portion of recommended routes fail to reach the destination (See Table. 2).
Further, the state of the art does not scale well to large road networks (see Fig. 1c). The performance
gap between CSSRNN and NEUROMLR becomes more prominent with increasing network size.

• Inductive Learning: A good prediction model should be capable of making predictions on parts
of the road network which were unseen or rarely seen during training. From Fig 1b we can observe
that there is a significant percentage of nodes in the road network that remain unseen even if we
use the entire training data. Both CSSRNN and DEEPST learn node embeddings in a transductive
manner, limiting knowledge sharing across nodes. Hence, quality on unseen/lesser seen nodes suffers.
DEEPST employs a clustering-inspired approach for sharing statistical strength across trips having
similar destinations. However, this introduces a limitation that different destinations get mapped to
identical representations, impairing reachability. .

• Prediction Accuracy: The accuracy of even the best performing techniques is often below
50% [10]. Consequently, there is scope for improvement.

1.3 Contributions
• Decoupled route prediction: Our proposed problem formulation (§ 2) allows decoupling the
problem into two independent subproblems of route search (§ 3) and predicting transition probabilities
(§ 4). This allows us to reduce the problem of finding the most likely route to that of identifying the
shortest path in a modified road network, thus guaranteeing destination reachability (§ 3).

• Generalization capability: We propose an inductive learning method using a novel combination
of Lipschitz embeddings with Graph Convolutional Networks. Lipschitz embeddings serve as a rich
initialisation derived from the global road network structure, independent of historical data. GCNs,
via message passing, further propagate information learnt during training, to unseen and rarely seen
nodes.

• Empirical Evaluation: Extensive experiments on five large, real datasets establish: (1) NEU-
ROMLR is up to 100% more accurate and 4 times faster, (2) the recommended route reaches
destination with > 0.96 probability, which is up to 90% better than the state of the art, and (3)
NEUROMLR is dramatically more effective in generalizing to unseen data.

2 Problem Formulation

Definition 1 (Road Network). A road network is a directed graph G = (V, E , δ, τt), where V is
the set of nodes representing road intersections, E ⊆ V × V is the set of edges representing road

2

segments, a distance function δ : E → R representing the length (weight) of each road segment, and
function τt : E → R representing the average time taken to traverse each road segment at time t.

We use the notation e = (u, v) to denote a road segment (edge) from node u to v and its length is
denoted by δ(e).
Definition 2 (Route). A route (a.k.a path) R(s, d) = {v1, · · · , vk} corresponds to a simple path
from the source node s = v1 to destination d = vk in the road network G, i.e., path without cycles.
Analogously, a route can also be expressed in terms of a sequence of edgesR(s, d) = {e1, · · · , ek−1},
where ei = (vi, vi+1).

To denote a generic route between any arbitrary source and destination nodes, we useR instead of
R(s, d). We use the notation |R| to denote the number of edges inR and R.ei to refer to the ith edge
inR. Furthermore, e ∈ R denotes thatR goes through edge e. The above notations are analogously
extended from edges to nodes.

We assume we have access to a dataset of historical trajectories. A trajectory is a sequence of GPS
pings, made by a vehichle, which corresponds to a path in the road network. Each GPS ping is a tuple
of the form 〈latitude, longitude, time〉, which records a vehicle’s location at a particular time.
Definition 3 (Query). In a route recommendation query, the input is a tuple q : 〈s, d, t〉, where
s, d ∈ V are the source and destination nodes respectively, and t is the time at which the journey is to
be taken.
Problem: Most Likely Route: Given a road network G, a historical database D of trajectories, and
query q : 〈s, d, t〉, we would like to infer the mostly likely routeR∗(s, d) based on the traffic patterns
embodied in D. Formally,

R∗(s, d) = arg max
∀R(s,d)∈G

Pr(R(s, d) | q) (1)

2.1 Problem Characterization

The route recommendation problem can be framed as a path search problem on the graph correspond-
ing to the road network. Mathematically, the probability of a routeR can be expressed in terms of its
constituent edges.

Pr(R | q) =

|R|∏
i=1

Pr(R.ei | R.e0 → R.ei−1, s, d, t) (2)

Here, Pr(R.ei | R.e0 → R.ei−1, s, d, t) represents the probability that routeR goes through edge
R.ei given the path taken so far and the query parameters q : 〈s, d, t〉 Past studies have shown that
human mobility patterns conform to the Markovian assumption [1, 25]. Thus, Eq. 2 reduces to:

Pr(R | q) =

|R|∏
i=1

Pr(R.ei | vi, d, t) (3)

With these simplifications, Eq. 1 reduces to:

R∗(s, d) = arg max
∀R∈G

|R|∏
i=1

Pr(R.ei | vi, d, t) = arg min
∀R∈G

|R|∑
i=1

− log(Pr(R.ei | vi, d, t)) (4)

To summarize the above observations, there are two key challenges that we need to tackle:

• Route Search: Given the conditional transition probability distribution, searching the route (path)
minimizing Eq. 4.
•Modeling: Learning the conditional distribution that governs transitions in the road network, from
the historical trajectory dataset D.

Henceforth, while talking about transitions in the road network, we will use the notation curr to refer
to the current location(node), curr ∈ V .

3 Route Search
In this section, we assume that the transition probability Pr(e|curr, d, t) for any edge e ∈ E is known.
Our algorithm to learn this distribution is discussed in § 4.

The Optimal Search: We first note that the negative log likelihood of a transition probability (see
Eq. 4) would be non-negative. Thus, we have an edge weight for each edge in the road network and

3

Road Network
Lipschitz

Embedding
Raw Traffic

Vector
Traffic

Representation

GCN
Historical

trajectories
𝒟

𝔃𝑐𝑢𝑟𝑟

𝔃𝑑

𝔃𝑇

MLP ∀𝑇 ∈ 𝒟

𝑄(𝑒 = (𝑐𝑢𝑟𝑟, 𝑣) ∣ 𝑐𝑢𝑟𝑟, 𝑑, 𝑡; Θ)

𝔃𝑣

Neural Model

Data Pre-processing

Iterate
∀ 𝒆 ∈ 𝑻

PCA

Figure 2: Architecture of NEUROMLR.

our goal is to identify the path from the source to the destination that has the minimum cumulative
weight. This computational task maps to the problem of finding the shortest path in a graph and can
be solved using Dijkstra’s Algorithm. More importantly, the optimal path is guaranteed to reach the
destination. The pseudocode for this search algorithm is provided in App. A.
Computational Complexity: The complexity of the Dijkstra’s Algorithm is O(|V| + |E| log(|V|)).
This may be prohibitively expensive on large road networks where real-time predictions are desired.

Greedy Approach: We start from the source node and greedily choose the transition with the
highest probability till the destination is reached. Inaccurate estimation of transition probabilities
may however divert us towards the wrong direction and we may never reach the destination. This
may result in |V| iterations in the worst case. To handle cases of this nature, we terminate when
either the destination is reached or the Haversine distance from the current node to the destination
is significantly higher than the closest point in the current route to the destination. This idea is
motivated from the fact that, in general, a vehicle progressively moves closer to the destination with
each transition [31]. The pseudocode of the greedy approach can be found in Alg. 2 in App. B .
Computational Complexity: At each node inR∗, we evaluate each neighbor and select the one with
highest likelihood. Hence, the complexity is O(g|R∗|), where g is the average degree in G.

4 NEUROMLR: The Neural Approach to the Most Likely Route Problem

Revisiting Eq. 4, the key requirement is to accurately model the conditional transition probability
function Pr(e | curr, d, t) where e = (curr, v). We want to estimate the true distribution that
governs transitions in the road network. However, this distribution is hidden from us and we only
have access to D, which is a sample drawn from this distribution.

Mathematically, we wish to estimate the underlying transition probability distribution from D using a
surrogate function Q(n|c, d, t; Θ), such that, Q(e|curr, d, t; Θ) ≈ Pr(e|curr, d, t).

We learn Θ using the neural network depicted in Fig. 2. Our core idea is to learn useful representations
of road intersections (nodes) and real-time traffic conditions, and use them to infer the transition
probabilities. To learn inductive node representations, we use a novel combination of GCN [8] with
Lipschitz embeddings [2]. In addition, a low-dimensional traffic representation of the road network
at any time t is learned using Principal Component Analysis (PCA). To predict P (e = (curr, v) |
curr, d, t), we concatenate the representations of v, curr, d and traffic status at time t, and pass them
through a Multi-layered Perceptron (MLP) to predict the transition probability. The entire network is
trained end-to-end. We next discuss each of the sub-components. By convention, we used bold font
for vectors and matrices.

4.1 Constructing Node Attributes

In this section, we describe the process of constructing node attributes for our GCN. We wish to learn
embeddings where nodes with similar routes to common destinations are close in the embedding
space. While latitude and longitude may be used as node attributes, they do not characterize node
positions accurately since movement of vehicles is constrained by the network structure. Rather, we
need to learn node attributes that reflect road network distances. Towards that end, we use Lipschitz
embeddings.

4

Definition 4 (Attribute Embedding). Let A = {a1, · · · , ak} ⊆ V be a randomly selected subset
of nodes. We call them anchors. The distance d(u, v) between two nodes u, v ∈ V is defined as
sp(u,v)+sp(v,u)

2 , where sp(u, v) is the spatial shortest path distance2 from u to v. We embed all nodes
in V in a k-dimensional feature space νL(u) = [x1, · · · , xk], where xi = d(u, ai).

The dimensionality of the attribute space dictates how well the original shortest path distances are
preserved. To gain a formal understanding of distance preservation, we introduce the definition of
distortion.
Definition 5 (Distortion). Given two metric spaces (O, d) and (O′, d′) and an embedding function
f : O → O′, f has a distortion α if ∀o1, o2 ∈ O, 1

αd(o1, o2) ≤ d′(f(o1), f(o2)) ≤ d(o1, o2).

In our case, d(o1, o2) is the average two-way shortest path distance. d′(), along with dimensionality
k, remains to be defined. To define them, we use Bourgain’s Theorem. Bourgain’s Theorem [2]
establishes that a low distortion Lipschitz embedding exists for any metric space.
Theorem 1 (Bourgain’s Theorem [2]). Given any finite metric space (O, d) with distance function
d(·), there exists an embedding of in (O, d) into Rk under any lp metric, where k = O(log2 n) and
the distortion of the embedding is O(log n), where n = |O|.
To apply Bourgain’s Theorem on our problem, we need to show that d(u, v) is metric.
Lemma 1. d(u, v) is a metric distance function. For proof, refer App. C

4.2 Learning Node Representations through GCN
In addition to capturing road network distances in node representations through Lipschitz embeddings,
we would also like to generalize to unseen nodes in the road network. To illustrate, let us assume
node v13 in Fig. 1a has not appeared in any training trajectory. If we fine-tune representations for only
seen nodes, then the representation of v13 would remain unchanged from its Lipschitz embedding. A
GCN avoids this scenario by message passing among neighbors. More specifically, information is
shared among L-hop neighbors in GCN, where L is the number of layers. Thus, if a subset of these
neighbors have appeared in training trajectories, then this information is shared in its neighborhood,
which infuses information beyond Lipschitz embeddings even for unseen nodes.

To train the GCN, Lipschitz embeddings ν(·) corresponding to |V| nodes are stacked as original input
features. Specifically, ∀u ∈ V, h0

u = ν(u). Next, we compute:

hl
u = σ

Wl

∑
v∈N(u)∪u

hl−1
v√

(|N(v)|+ 1)(|N(u)|+ 1)

 (5)

Here,Wl stands for layer-specific learnable weight matrix for lth layer, hl
u is the embedding of node

u at layer l and σ(·) denotes an activation function (ReLU in our implementation). Furthermore,
N(u) = {v ∈ V | (u, v) ∈ E} denotes the neighbors of node u in the road network. The vector
formed in the final layer L is zu = hL

u .

4.3 Traffic representation

The simplest option is to partition D into various time slots (Ex: 8AM-11AM, 11-AM-2PM, etc.)
and learn a model separately for each time slot. This strategy, however, assumes that traffic is
homogeneous in each time slot on all days. Clearly, this assumption is not true in real life (Ex:
weekends vs. week days). Further, this scheme is data inefficient since the traffic-dependent travel
patterns across different time-slots might be similar.

In order to characterize the real-time traffic conditions for the entire road network at time t, we obtain
the top-5% of the most frequently traversed edges E ⊆ E in D. The raw traffic representation at time
t is the |E|-dimensional vector of speeds on these edges. Specifically, rt = [τt(e) | e ∈ E]. We use
only the top-5% edges since the frequency distribution of edges follows a power-law (See App. H).
Consequently, we do not use noisy speed information on less-travelled edges.

It is natural for neighboring road segments (edges) to exhibit co-variance in speed. To remove such
information redundancy, we learn a low-dimensional representation of rt through PCA. Specifically,
let the training trajectories in D span the time range [tmin, tmax]. Thus, we have a collection of

2We assume that the road network is strongly connected, which is typically true.

5

traffic representations in the form of R = {rt | t ∈ [tmin, tmax]}. We perform PCA to learn the
eigenvectors on R. Given any raw traffic vector rt, it is projected on the top-k eigenvectors to
construct the low-dimensional representation zt. Mathematically, zt = rt V , where V ∈ R|E|×k.
The columns of V contain the eigenvectors with the k largest eigenvalues.

4.4 Aggregating Node embedding with Traffic representation
Q(e|curr, d, t; Θ) is a function of four input features: current node curr, destination d, traffic
condition at time t, and the transition node v corresponding to edge e = (curr, v). GCN provides the
embeddings zcurr, zv, zd of curr, v, d respectively and the traffic representation zt is constructed
as discussed above. All these embeddings are concatenated 3 as :

z = [zcurr||zv||zd||zt] (6)

4.5 Model Training
Following the pass through GCN, the concatenated embedding z (Eq. 6) is passed through an
MLP to convert the vector into a scalar (unnormalised) confidence value i.e f(v, curr, d, t) =
MLP (z). The predicted transition value is defined as a softmax over all possible transitions from
curr. Mathematically,

Q ((curr, v)|curr, d, t; Θ) =
exp (f (v, curr, d, t))∑

v′∈N(curr) exp (f (v′, curr, d, t))
(7)

Loss(Θ) = − 1

|D|
∑
∀R∈D

|R|−1∑
j=1

log Q(R.ej+1|R.ej ,R.d,R.t; Θ) (8)

Finally, in Eq. 8 above, the model parameters Θ are optimized through cross-entropy loss over
trajectories in D. The pseudocode of the training procedure can be found in Alg. 3 in App. D.

4.6 Inference Phase
Given any query q : 〈s, d, t〉, we follow one of the route search algorithms discussed in § 3. Both
search mechanisms require only the transition probabilities as edge weights. Prediction of a transition
probability Pr(e = (curr, v) | curr, d, t) simply involves a forward pass through the architecture.
Complexity analysis: Time complexity of predicting Pr(e = (curr, v) | curr, d, t) isO(g ·LM ·d2

f).
Here, LM is the number of the layers in the MLP, g is the average degree in the road network, df is
the output feature vector dimension of the GCN. Refer Appendix. E for detailed derivation.

5 Experiments
In this section, we benchmark NEUROMLR against DEEPST and CSSRNN and establish that:

• Accuracy: NEUROMLR is more accurate in terms of precision and recall when compared to the
state-of-the-art algorithms of DEEPST [10] and CSSRNN [27].

• Reachability: NEUROMLR, with its greedy route search mechanism, is more efficient, and
achieves significantly higher reachability than DEEPST and CSSRNN.

• Inductive Learning: Due to its inductive learning capability, NEUROMLR learns more effectively
and generalizes significantly better to unseen/lesser seen parts of the road network.

• Scalability: NEUROMLR generates high quality routes on large road networks. The performance
of CSSRNN, on the contrary, deteriorates heavily with increase in road network size(Fig. 1c).

Our code-base is available at https://github.com/idea-iitd/NeuroMLR.

5.1 Experimental Setup
The system configuration details are present in App. F. All experiments are repeated 5 times and we
report the average of the metric being measured.
Datasets: We use publicly available real datasets from five different cities. Table 1 summarizes
the statistics of the datasets. The first four cities namely Chengdu4, Porto[15], Harbin [11] and

3We also tried the Attention mechanism [24] to capture the importance of each of the explanatory factors.
Details can be found in Appendix. N.

4Chengdu dataset link

6

https://github.com/idea-iitd/NeuroMLR
https://gaia.didichuxing.com/

Statistics Chengdu(CHG) Porto(PT) Harbin(HRB) Beijing(BJG) CityIndia(CTI)
No. of nodes 3, 973 5, 330 6, 598 31, 199 105, 873
No. of edges 9, 255 11, 491 16, 292 72, 156 281, 086
No. of trajectories 3, 600, 503 1, 426, 312 1, 133, 548 1, 382, 948 451, 443
Avg trip length (km) 4.54 5.27 10.92 7.39 3.27
Avg number of edges/trip 22.93 51.07 56.81 36.08 42.68

Table 1: Dataset statistics after pre-processing.

Algorithm Precision (%) Recall (%) Reachability (%) Reachability Distance(km)
HRB BJG CTI HRB BJG CTI HRB BJG CTI HRB BJG CTI

NEUROMLR-D 66.1 77.9 77.9 49.6 76.5 73.1 — — — — — —
NEUROMLR-G 59.6 75.6 74.3 48.6 74.5 70.1 99.1 99.1 96.1 0.02 0.01 0.03
CSSRNN 49.8 59.5 36.9 51.1 68.8 53.2 95.3 91.7 50.2 0.16 0.83 2.03
DEEPST 51.9 60.3 67.4 27.3 33.2 34.9 8.1 8.7 6.7 1.96 2.75 1.07
SP 46.4 59.2 62.1 31.3 55.5 53.7 — — — — — —
QP 40.7 51.4 47.6 28.6 50.0 44.0 — — — — — —

Table 2: Comparison of NEUROMLR against the benchmarked algorithms on the four different
metrics of average precision, average recall, percentage of trips that reached destination, and average
distance from the true destination. The best performance for each dataset is highlighted in bold.

Beijing[12] are taxi datasets. The fifth dataset is a publicly available food delivery dataset[7]. The
authors did not reveal the name of the city, other than the fact that, in terms of food delivery
volume, this city ranks among the highest in India. We extract the road network of each city from
OpenStreetMap [17]. To align the GPS sequences to the road network we use map-matching[29].
The temporal edge weight τt(e) is set to the average travel time of all vehicles going over e in the
past one hour.

Baselines: We benchmark the performance of NEUROMLR against, (1) DEEPST, (2) CSSRNN, (3)
shortest path (SP), and (4) the quickest path (QP). For NEUROMLR, we consider two versions:
NEUROMLR-Dijkstra (NEUROMLR-D) and NEUROMLR-Greedy (NEUROMLR-G) correspond-
ing to the two route search algorithms described in § 3. We do not consider personalized route
recommendation algorithms [25], since we do not consider the personalization aspect. The codebase
of CSSRNN, shared by the authors, is implemented in TensorFlow 1.15. DEEPST and NEUROMLR
are implemented in PyTorch 1.6.0.

Train-Validation-Test setup: For a fair comparison of NEUROMLR with DEEPST and CSSRNN,we
train all models till convergence of the validation loss. Before splitting, we sort the trajectories on the
basis of the start timestamp. Unless specifically mentioned, we use the first 60% of the trajectories
for training, next 20% for validation and remaining 20% for inference.

Evaluation metrics: For evaluation, we pick each routeR in the test set and issue the corresponding
query q : 〈s, d, t〉, where s = R.v1, d = R.v|R|, and t is the time at which R was initiated. The
predicted trajectoryR∗ for q is then generated and compared withR. We use four metrics to evaluate
prediction quality.

Precision =

∑
e∈(R∩R∗) δ(e)∑
e∈R∗ δ(e)

, Recall =

∑
e∈(R∩R∗) δ(e)∑

e∈R δ(e)

Reachability =

{
1 if d = d∗

0 otherwise
, Reachability Distance = Haversine (d, d∗)

In the above equations, δ(e) denotes the length of edge e and d∗ denotes the last node inR∗. Note
that the reachability metrics are relevant for only NEUROMLR-Greedy, DEEPST and CSSRNN since
the rest of the algorithms guarantee reachability.

Parameters: The default parameters for NEUROMLR are provided in App. G.

5.2 Accuracy and Reachability

Table 2 presents the performance of the various algorithms across the three larger datasets - Harbin,
Beijing and City India5. The following observations emerge from Table 2.

5Due to space limitations, the results for the other datasets (Porto, Chengdu) can be found in App. L

7

0-2 2-5 5-10 10-25 25-100
True trip length (km)

0

25

50

75

100

F
1-

sc
or

e
(%

)

(a) F1-score

0-2 2-5 5-10 10-25 25-100
True trip length (km)

0

25

50

75

100

R
ea

ch
ab

ili
ty

(%
)

NeuroMLR-D

NeuroMLR-G

CSSRNN

DeepST

SP

QP

(b) Reachability

Figure 3: Impact of trip length on accuracy and reachability on the Beijing dataset.

Precision and Recall: Both versions of NEUROMLR consistently outperform the baselines6. As
expected, NEUROMLR-Dijkstra is marginally better than NEUROMLR-Greedy. Among the four
considered baselines, CSSRNN achieves the best result. Furthermore, NEUROMLR significantly
outperform both SP and QP, which validates past work that people rarely follow shortest/quickest
paths: automobile travellers select routes based on several latent factors such as the presence of tolls
[16, 19], travel time reliability [3], traffic lights [18], and road aesthetics [21, 32].

Reachability: NEUROMLR-Greedy outperforms both DEEPST and CSSRNN and achieves more
than 96% reachability across all datasets. This superior performance of NEUROMLR-Greedy
establishes the efficacy of Lipschitz embeddings with GCN in modeling transitions that govern
vehicle movements. The reachability performance is weakest in DEEPST due to the clustering based
approach it adopts. Specifically, several nodes are allotted the same destination representation and
hence reachability is compromised.

Impact of Trip Length: To further evaluate robustness, we examine the performance against the
distance between the source and destination in the query. As the trip length increases, more possible
paths emerge, and the modeling task gets harder. This pattern is visible in Fig. 3 7. Consistent with
previous results, NeuroMLR continues to be the most accurate algorithm.

5.3 Inductive Learning

To showcase the benefits of inductive learning, we compare the two best performing algorithms of
NEUROMLR with CSSRNN8.

Impact of training data: In Figs. 4a- 4b, we examine how effectively each algorithm learns as
the volume of training data is varied. As clearly evident, NEUROMLR obtains significantly more
accurate performance at low volumes of training data than CSSRNN. This is a direct consequence of
the inductive ability to share information among nodes and thereby generalize for unseen test data.

Performance on unseen data: In Figs. 4c-4i 9, we investigate how NEUROMLR and CSSRNN
perform on test trips that originate or end at unpopular nodes. A node is termed unpopular if its
frequency of occurrence in the training trips is less than a threshold frequency. We segregate the test
trips into four categories based on the popularity of source and destination nodes: P-P, U-P, P-U and
U-U. For example, P-U refers to trips starting at a popular node and ending at an unpopular one.
As expected, the majority of test trips are of type P-P and thus the performance on P-P (Figures 4d,
4g) is similar to the aggregate results mentioned in Table 2. We have not included the performance
variation of trips of type U-U for different thresholds, since the percentage of such trips is relatively
insignificant (Fig.4c). The performance on P-U trips (Figs. 4i, 4f) undergoes a dramatic drop for
CSSRNN since the destination is unpopular and there is not much information to direct the model.
For U-P (Figs. 4h, 4e), the performance lies between P-P and P-U since even after a rocky start, it
could transit to a popular node and from there may reach the destination. In all cases NEUROMLR
adapts more gracefully and highlights the benefits of inductive learning. Note that at zero threshold
frequency, unpopular nodes are equivalent to nodes unseen during training.

6In absolute terms, the precision and recall might seem low. This is because, for the same input (source-
destination pair), we may have different outputs (routes). For more details, refer to App. P.

7For similar analysis on other datasets, refer to App. I
8Here, we have restricted our model’s comparisons to CSSRNN since DEEPST performed poorly on all

metrics. Some potential reasons can be found in App. M.
9For similar analysis on other datasets, refer to App. O.

8

1 2 5 10 20 100
Percent of training data kept

0

20

40

60

80

F
1-

sc
or

e
(%

)

NeuroMLR-G

CSSRNN

(a) F1-score

1 2 5 10 20 100
Percent of training data kept

0

20

40

60

80

100

R
ea

ch
ab

ili
ty

(%
)

NeuroMLR-G

CSSRNN

(b) Reachability

0 10 20 30 40
Threshold frequency

0

1

2

3

4

5

6

7

P
er

ce
nt

ag
e

of
tr

ip
s

P-U

U-P

U-U

(c) Percentage of trips

0 2 5 10 20 30 40
Threshold frequency

0

10

20

30

40

50

60

70

80

90

100

R
ea

ch
ab

ili
ty

(%
)

NeuroMLR-G

CSSRNN

(d) Popular to Popular

0 2 5 10 20 30 40
Threshold frequency

0

10

20

30

40

50

60

70

80

90

100
R

ea
ch

ab
ili

ty
(%

)

NeuroMLR-G

CSSRNN

(e) Unpopular to Popular

0 2 5 10 20 30 40
Threshold frequency

0

10

20

30

40

50

60

70

80

90

100

R
ea

ch
ab

ili
ty

(%
)

NeuroMLR-G

CSSRNN

(f) Popular to Unpopular

0 2 5 10 20 30 40
Threshold frequency

0

10

20

30

40

50

60

70

80

F
1-

sc
or

e
(%

)

NeuroMLR-G

CSSRNN

(g) Popular to Popular

0 2 5 10 20 30 40
Threshold frequency

0

10

20

30

40

50

60

70

80

F
1-

sc
or

e
(%

)

NeuroMLR-G

CSSRNN

(h) Unpopular to Popular

0 2 5 10 20 30 40
Threshold frequency

0

10

20

30

40

50

60

70

80

F
1-

sc
or

e
(%

)

NeuroMLR-G

CSSRNN

(i) Popular to Unpopular

Figure 4: All these experiments are performed on the Beijing dataset. (a, b) Performance of
NEUROMLR-G and CSSRNN with different percentages of training data. (c) Percentage of test data
trips in P-U, U-P and U-U categories. (d-i) Variation of Reachability & F1-score with the threshold
frequency for different popularity categories.

5.4 Ablation study

Impact of GCN and Lipschitz Embeddings: We investigate the individual impact of using Lips-
chitz embeddings and employing GCNs in Figs. 5a-5b by comparing the performance of NEUROMLR
on the four possible combinations. As visible, the combined combination of Lipschitz embeddings
and GCN imparts a significant improvement in both prediction accuracy and reachability. Employing
either one individually also enhances the model’s performance, thereby justifying their importance.
For similar studies on other datasets see App. J.

Impact of Traffic: The impact of traffic on route prediction can be found in App. J.

9

5 10 15 20 25 30 35 40 45 50
Number of epochs

30

35

40

45

50

55

60

65

70

75

80

F
1-

sc
or

e
(%

)
Lipschitz+GCN
Random+GCN

Lipschitz
Random

(a) F1-score

5 10 15 20 25 30 35 40 45 50
Number of epochs

0

10

20

30

40

50

60

70

80

90

100

R
ea

ch
ab

ili
ty

(%
)

Lipschitz+GCN
Random+GCN

Lipschitz
Random

(b) Reachability

Figure 5: Impact of GCN on further fine-tuning Lipschitz embeddings in NEUROMLR-Greedy. All
plots in this figure use the Beijing dataset.

5.5 Inference Time

Table 3 presents the number of queries solved by the three best performing algorithms per second.
Since the performance of DEEPST was found to be much inferior to these three algorithms (Table 2),
we skip its efficiency analysis. As evident, NEUROMLR-Greedy is the fastest. Consistent with its
computational complexity, NEUROMLR-Dijkstra is slower. CSSRNN is slower than NEUROMLR-
Greedy since it uses a more complex auto-regressive model where each transition is also conditioned
on the path taken so far. Owing to significantly faster inference and accuracy that is almost identical to
NEUROMLR-Dijkstra, our recommendation is to use NEUROMLR-Greedy as the default algorithm.

Algorithm Chengdu Porto Harbin Beijing CityIndia
NEUROMLR-D 11.38 10.11 7.62 1.08 0.28
NEUROMLR-G 5612 4539 3286 2084 1522
CSSRNN 4425 1684 1355 522 467

Table 3: Inference speed (trips processed per second).

6 Conclusion
For a route recommendation algorithm to be deployable in the real world, it must ensure that the rec-
ommended route reaches the destination. In addition, it must show good generalization performance
on queries over unseen/rarely seen data. Existing techniques for predicting the most likely route
lack the above mentioned abilities. In this paper, we propose NEUROMLR which overcomes these
limitations through a novel combination of Lipschitz embedding and Graph Convolutional networks.
This strategy ensures inductive learning and enhances reachability. Specifically, even those nodes
that are not seen adequately in training data, get good representations due to Lipschitz embedding
capturing network position and GCN ensuring information propagation from neighboring nodes.
Further, the model decouples probability transition modelling and route search, allowing us to use
popular route search algorithms to guarantee reachability. All-in-all, NEUROMLR is more reliable,
scales to larger cities, robust to unseen data and more effective in learning from low volume of data.

Limitations: In the future, we would like to work on capturing the personalization aspect of the
problem and learn to transfer knowledge from one city to another.

Potential for Negative Societal Impact: Our proposed work facilitates robust and reliable computa-
tion of the mostly likely route in road networks. To the best of our understanding, we do not see any
potential of negative societal impact from this work.

10

References
[1] Prithu Banerjee, Sayan Ranu, and Sriram Raghavan. Inferring uncertain trajectories from partial

observations. In ICDM, pages 30–39, 2014.

[2] Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal
of Mathematics, 52(1-2):46–52, 1985.

[3] Carlos Carrion and David Levinson. Value of travel time reliability: A review of current
evidence. Transportation research part A: policy and practice, 46(4):720–741, 2012.

[4] Z. Chen, H. T. Shen, and X. Zhou. Discovering popular routes from trajectories. In ICDE,
pages 900–911, 2011.

[5] Esther Galbrun, Konstantinos Pelechrinis, and Evimaria Terzi. Urban navigation beyond shortest
route: The case of safe paths. Information Systems, 57:160 – 171, 2016.

[6] Nandani Garg and Sayan Ranu. Route recommendations for idle taxi drivers: Find me the
shortest route to a customer! In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 1425–1434, 2018.

[7] Manas Joshi, Arshdeep Singh, Sayan Ranu, Amitabha Bagchi, Priyank Karia, and Puneet
Kala. Batching and matching for food delivery in dynamic road networks. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE), pages 2099–2104. IEEE, 2021.

[8] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In ICLR, 2017.

[9] Vinay Kolar, Sayan Ranu, Anand Prabhu Subramainan, Yedendra Shrinivasan, Aditya Telang,
Ravi Kokku, and Sriram Raghavan. People in motion: Spatio-temporal analytics on call detail
records. In COMSNETS, pages 1–4, 2014.

[10] Xiucheng Li, Gao Cong, and Yun Cheng. Spatial transition learning on road networks with
deep probabilistic models. In ICDE, pages 349–360, 2020.

[11] Xiucheng Li, Gao Cong, Aixin Sun, and Yun Cheng. Learning travel time distributions with
deep generative model. In The World Wide Web Conference, pages 1017–1027, 2019.

[12] Jing Lian and Lin Zhang. One-month beijing taxi gps trajectory dataset with taxi ids and vehicle
status. In Proceedings of the First Workshop on Data Acquisition To Analysis, pages 3–4, 2018.

[13] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2):215–245, 1995.

[14] Ying Lu and Cyrus Shahabi. An arc orienteering algorithm to find the most scenic path on a
large-scale road network. In SIGSPATIAL, 2015.

[15] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas. Predicting
taxi–passenger demand using streaming data. IEEE Transactions on Intelligent Transportation
Systems, 14(3):1393–1402, 2013.

[16] Takayuki Morikawa, Tomio Miwa, Shinya Kurauchi, Toshiyuki Yamamoto, and Kei Kobayashi.
Driver’s route choice behavior and its implications on network simulation and traffic assignment.
In Simulation approaches in transportation analysis, pages 341–369. Springer, 2005.

[17] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https:
//www.openstreetmap.org, 2017.

[18] Blazej Palat, Patricia Delhomme, and Guillaume Saint Pierre. Numerosity heuristic in route
choice based on the presence of traffic lights. Transportation Research Part F: Traffic Psychology
and Behaviour, 22:104–112, 2014.

[19] Dominik Papinski, Darren M Scott, and Sean T Doherty. Exploring the route choice decision-
making process: A comparison of planned and observed routes obtained using person-based
gps. Transportation research part F: traffic psychology and behaviour, 12(4):347–358, 2009.

11

 https://www.openstreetmap.org
 https://www.openstreetmap.org

[20] Pavithra Parthasarathi, David Levinson, and Hartwig Hochmair. Network structure and travel
time perception. PloS one, 8(10):e77718, 2013.

[21] Daniele Quercia, Rossano Schifanella, and Luca Maria Aiello. The shortest path to happiness:
Recommending beautiful, quiet, and happy routes in the city. In Proceedings of the 25th ACM
Conference on Hypertext and Social Media, page 116–125, 2014.

[22] Mohammad Saiedur Rahaman, Yi Mei, Margaret Hamilton, and Flora D. Salim. Capra: A
contour-based accessible path routing algorithm. Information Sciences, 385-386:157 – 173,
2017.

[23] Wouter Souffriau, Pieter Vansteenwegen, Greet Vanden Berghe, and Dirk Van Oudheusden.
The planning of cycle trips in the province of east flanders. Omega, 39(2):209 – 213, 2011.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

[25] Jingyuan Wang, Ning Wu, Wayne Xin Zhao, Fanzhang Peng, and Xin Lin. Empowering a*
search algorithms with neural networks for personalized route recommendation. In KDD, page
539–547, 2019.

[26] Ling-Yin Wei, Yu Zheng, and Wen-Chih Peng. Constructing Popular Routes from Uncertain
Trajectories, page 195–203. 2012.

[27] Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. Modeling trajectories with
recurrent neural networks. In IJCAI, pages 3083–3090, 2017.

[28] Hao Wu, Jiangyun Mao, Weiwei Sun, Baihua Zheng, Hanyuan Zhang, Ziyang Chen, and Wei
Wang. Probabilistic robust route recovery with spatio-temporal dynamics. In KDD, page
1915–1924, 2016.

[29] Can Yang and Gyozo Gidofalvi. Fast map matching, an algorithm integrating hidden markov
model with precomputation. International Journal of Geographical Information Science,
32(3):547–570, 2018.

[30] Pranali Yawalkar and Sayan Ranu. Route recommendations on road networks for arbitrary
user preference functions. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 602–613. IEEE, 2019.

[31] Chak Fai Yuen, Abhishek Pratap Singh, Sagar Goyal, Sayan Ranu, and Amitabha Bagchi.
Beyond shortest paths: Route recommendations for ride-sharing. In WWW, pages 2258–2269,
2019.

[32] Lei Zhang and David Levinson. Determinants of route choice and value of traveler information:
a field experiment. Transportation Research Record, 2086(1):81–92, 2008.

[33] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing uncertainty of low-sampling-rate trajecto-
ries. In ICDE, pages 1144–1155, 2012.

[34] Yu Zheng, Xing Xie, and Wei-Ying Ma. Mining interesting locations and travel sequences from
gps trajectories. In WWW, 2009.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
2. If you are including theoretical results...

12

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were

chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type of

GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13

	Introduction and Related Work
	Existing work
	Limitations of existing work
	Contributions

	Problem Formulation
	Problem Characterization

	Route Search
	NeuroMLR: The Neural Approach to the Most Likely Route Problem
	Constructing Node Attributes
	Learning Node Representations through GCN
	Traffic representation
	Aggregating Node embedding with Traffic representation
	Model Training
	Inference Phase

	Experiments
	Experimental Setup
	Accuracy and Reachability
	Inductive Learning
	Ablation study
	Inference Time

	Conclusion

