A Algorithm and Theory for Unobserved Confounder

In this section, we extend DOVI to handle the case where the confounders are unobserved in both the
online setting and the offline setting. We then characterize the regret of such an extension of DOVI,
namely DOVI*. In comparison with DOVI, DOVI* additionally incorporates an intermediate state
at each step, which extends the length of each episode from H to 2H.

A.1 Algorithm

Frontdoor Adjustment. Since the confounders {wy, }5c[x] are unobserved in the offline setting,
the confounded observational data {(s¢, al, 7’2)}(@ n)eln]x (] are insufficient for the identification
of the causal effect P(sy,41 | sp, do(ayp,)) [32, 33]. However, such a causal effect is identifiable if we
observe the intermediate states {1y, } ez that satisfy the following frontdoor criterion.

Assumption A.1 (Frontdoor Criterion [32, 33]). In the SCM defined in §2, for all h € [H], there
additionally exists an observed intermediate state m, that satisfies the frontdoor criterion, that is,

e my, intercepts every directed path from ay, to sp41,
e conditioning on sy, no path between a;, and mj, has an incoming arrow into ay,, and

e conditioning on s, aj d-separates every path between my, and sp,1 that has an incoming
arrow into my,.

Sh an Mhn Sh+1 Sh an Mn Sh+1
(a) Offline Setting (b) Online Setting

Figure 3: Causal diagrams of the h-th step of the confounded MDP with the intermediate state (a) in the offline
setting and (b) in the online setting, respectively.

an Mh Sh+1

Figure 4: An illustration of the frontdoor criterion. The causal diagram corresponds to the h-th step of the
confounded MDP conditioning on sp. Here w, = {w1,n, w2,n, w3, r} is the confounder and the intermediate
state my, satisfies the frontdoor criterion.

See Figure 3 for the causal diagram that describes such an SCM and Figure 4 for an example that
satisfies the frontdoor criterion. Intuitively, Assumption A.l ensures that, conditioning on sp, (i)
the intermediate state my, is caused by the action a;, and the causal effect of the action aj on the
next state sp4; is summarized by my, while (ii) the action aj;, and the intermediate state m;, are
not confounded. In the sequel, we denote by M the space of intermediate states and 75h( |-,-) the
transition kernel that determines my, given s, and aj. The causal effect P(sp,41 | sp,do(ay)) is
identified as follows.

Proposition A.2 (Frontdoor Adjustment [32]). Under Assumption A.1, it holds that

P(sni1 | sn,do(an)) = En, o [P(sni1|sn, aj,mn)],
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where the expectation E,,, ., is taken with respect to myp ~ 75h(-|sh7ah) and aj, ~

Ewhw;h’(, | sh)[Vh(' | $n,wy)]. Here (Spt1,Sh,an, mp,) follows the SCM define in §2 with the in-

termediate states {my, } e[z in the offline setting.

Frontdoor-Adjusted Bellman Equation. In the sequel, we assume without loss of generality that
the reward 7, is deterministic and only depends on the state s;, and the action ay,. In parallel to (3.3),
we have

QF (snyan) = rn(sn,an) + B,y [Vil (sn41)], (A.1)

where the expectation Ey, | is taken with respect to s,1 ~ P(-|sp,do(ar)). We define the the
following transition operators,

(Pry1/2V)(sh,mn) =B, o ob(- | spdo(ma)) [V (Sn41)], YV : S = R, (sp,mp) € S X M,
(th/)(sh»ah) = Epp~P(- | s1,do(an)) [V(Smmh)], YW :S x M R, (sp,an) € S x A.
We highlight that, under Assumption A.1, the causal effect P(my, | sp,do(ay)) coincides with the

conditional probability P(my, | sp, ar), since ap, and my, are not confounded given sy,. In the sequel,
we define the value function at the intermediate state by V;7, ; , (sn,mn) = (Phg12Vi 1) (Sh, mn).

We have the following Bellman equation,

Qr (snyan) =rn(snan) + (Pr(Pri1/2Vir1)) (sn,an)
= rh(sh, ah) + (Pthﬂ+1/2)(S}L,ah). (A.2)

Correspondingly, the Bellman optimality equation takes the following form,

@n(snyan) = rr(sn, an) + (PaViiy /o) (sh, an),

Visy2(snmn) = (Brga/2Viga) (snymn), - Vi(sn) = max Qj (sn, an). (A3)
an

Linear Function Approximation. In parallel to Assumption 3.3, we focus on the following setting
with linear transition kernels and reward functions [7, 16, 42, 43], which corresponds to a linear
SCM [33].

Assumption A.3 (Linear Confounded MDP). We assume that

Pr(Sh+1 | Sh, mn, wn) = (pn(Sh,s Mn, wh), in(Sht1)),  Vh € [H], (sp,mp,wp) €S X M xW,
Pu(mn | sn,an) = (yu(sn, an), T, (mn)),  Vh € [H], (mp, sp,an) € M xS x A.

where pn (), Y (s )s pn(-) = (pan()s - pan() T and 7, (-) = (Fy 4 (), - - g (-) T are

)
R-valued functions. We assume that || ps (s, mn, wp)ll2 < 1, [|[a(sn, an)ll2 < 1, 50, [lpinl? <

d, and Zle |72 n I3 < dforall h € [H] and (sp, an, mp, wy) € S x A x M x W. Meanwhile,
we assume that

T}L(Shva'h) = ’Yh(Sh,ah)Tah, V(h,k) € [H} X [KL
where 0, € R? and ||0},||2 < V/d for all h € [H].
PI‘OpOSitiOH A.4. We define ﬁh(ah | Sh) = ]Ewhw,];h(_ | sh)[Vh(ah | Sh, wh)}, where v = {Vh}he[H]

is the behavior policy. With a slight abuse of notation, we define the frontdoor-adjusted feature as
follows,

E B (- sn) PR (805 s w0n) - v (an | snywn)]

ShyGpyMp) = — , Yhe|[H]. (A4)
én(sh, an, mp) T (an [5n) [H]
Under Assumption A.3, it holds that
P(sht1| 80, an, mn) = (dn(Sh, an, mn), pn(She1))- (A5)
Proof. See §F.2 for a detailed proof. O
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Algorithm 2 DOVTI* for Confounded MDP.

Require: Observational data {(s},,aj,,m},,7})}ic[n),ne(m), tuning parameters X, 3 > 0, features
{&n}herr) and {¥n }re(m), which are defined in (A.4) and (A.6), respectively.
1: Initialization: Set {Q%, V}? 127 V,? }he(m) as zero functions and % 41 as a zero function for
k€ [K].

2: fork=1,..., K do
3: forh=H,...,1do
4.
5

Update V;", | Jat
Set wf ), ¢ argmin,cpa Z’j;}(v}jﬂ(sgﬂ) — w'Pn(sy,mp))? + Mwllz + L, (w),
where L]f,h is defined in (A.9).
6: Set VIFy p(snomn) < min{yn(sn,mn) wh ), + 5 5(sn,mn), H — h} for all
(sn,mp) €S x M, where Fllz+1/2 is defined in (A.12).
Update Q%:
s k—1 T T T T
Set wy), « argmingega Yoy (ry + Vi1 jp(shmp) — w (sh, af))® + Awl3 +
L% ), (w), where L , is defined in (A.14).

9: Set Q¥ (sp, ap) <+ min{vyy (s, ah)Twlgyh +T%(sn,an), H— h} forall (sy,an) €S x A,
where I'¥ is defined in (A.15).

10: Update 7 and V}*:

11: Set 7 (- | sp,) < argmax,, ¢ 4 QF (sp, ap) forall s, € S.

2 SetVEC) e (b1, QE

13:  end for

14:  Obtain s} from the environment.
15 forh=1,...,Hdo

16: Take af ~ (- | sy). Obtain ry = ry(sk, af), my, and s ;.
17:  end for
18: end for

DOVI*: Update of th 120 With a slight abuse of notation, we define the following feature,

Un(snmn) =B, 5, (| oy [Pr(Shy M, wp)]. (A.6)
Conditioning on the state sy, the confounder wy, satisfies the backdoor criterion for identifying the
causal effect P(sp41 | sp,do(mp)), although it is unobserved. In the sequel, we assume that either

the density of {Py, (- | 5h) } ne[m) is known to us or the features {¢y, }ne[m) and {4n, } e[ are known
to us. Following from (A.6), Proposition 3.2, and Assumption A.3, it holds for all h € [H] and
(Sh+1,Shymp) € S X S x M that

P(sh+1 | sn,do(mn)) = (n(sn,mn), pn(she1))- (A7)
Hence, by the Bellman equation and the Bellman optimality equation in (A.2) and (A.3), respec-
tively, the value functions at the intermediate state Vh7,T+1 /2 and V¥ 10 are linear in the feature 1)y,
for all 7. To solve for V)7, | /2 in the Bellman optimality equation in (A.3), we minimize the follow-
ing empirical mean-squared Bellman error as follows at each step,

k—1
. 2
wh ¢ argmin STV (5F) = T en(sFomh)* Al + LEa(w), h= 1,
WeRT 7=

(A.8)

where we set Vi, | = 0 forall k € [K] and Vi/y1 is defined in Line 12 of Algorithm 2 for all
(7,h) € [K] x [H — 1]. Here k is the index of episode, A > 0 is a tuning parameter, and L}  is a
regularizer, which is constructed based on the confounded observational data. More specifically, we
define
- T i i, i) 2
LY (w) = Z(Vh+1(5h+1) —w' on(sh,ah,my))", V(k,h) € [K] x [H], (A9)

=1
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which corresponds to the least-squares loss for regressing V,7, (s}, ,) against ¢ (s}, aj,, mj,) for
all i € [n]. Here {(s,a}, mh,rh)}(Z hyeln]x (] are the confounded observational data, where
Sh+1 ~ Pu(-| s, al, wi), mi ~ Pu(- | s5,a), and aj, ~ vy (- | sp, w)) with v = {v), } e[ being
the behavior policy.
The update in (A.8) takes the following explicit form,

k—1

wip, < (Af ) (th shymp) - Vi (shi) + Z% Shy Q) - Vh+1(3h+1))a (A.10)

T=1 i=1

where

1 = ZU’h Sh’mh)wh(shvmh + Zgbh(s};,afmm}ll)th(sﬁa};,m%)T + AL (A1)
T=1 i=1

Meanwhile, we employ the following UCB of ¢y, (s, mZ)Tw’f’h for all (s, mF) € S x M,

1/2
Tk ja(shmb) = 8- (logdet (AL, + wn(sh, mh)on(sh, mb)T) — logdet(Af,)) . (A.12)
The update of V ht1/2 is defined in Line 6 of Algorithm 2.

DOVI*: Update of Q¥. Upon obtaining Vh t1/20 WE solve for Q¥ by minimizing the following
empirical mean-squared Bellman error as follows at each step,

k—1
T T 2
w2 n— argmmz rh + Vh+1/2(sh,mh) wT'yh(sh,ah))
weR? T=1
+ Mw|3 + L5 p(w), h=H,. .. 1 (A.13)

Here L’Qﬂ ;, 1s a regularizer, which is defined as follows,

n

Lé:,h(w) = Z(T;L + foJrl/Z(S;wm;L) - wT’Yh(S;wa’iiL))27 V(k7h) € [K] X [H] (A14)

i=1

The update in (A.13) takes the following explicit form,

n
k k i i '
whp, = (A5 ,) (Z% ShyQp) Vh+1/2(siumh) +77) +Z% Shy ) - (Vi1 j2(sh,my,) +7‘;L)>a
=1
where
k—1 n
A5y = Z% shyap)yn(sh,ap) " + Z%(S%GZ)%(SL%)T + AL
=1 i=1

We employ the following UCB of (s, a’,?t)—rwé“,h for all (s¥,af) € S x A,

AR 1/2
Fﬁ(s#aﬁ) =4 (logdet(Agﬁh + vh(s]}f, alfb)vh(si,ai)j—) —log det(Ag’h)) . (A.15)

The update of Q’,?L is defined in Line 9 of Algorithm 2.

A.2 Theory

In parallel to Theorem 3.5, the following theorem characterizes the regret of DOVI*, which is defined
in (2.3)
Theorem A.5 (Regret of DOVI*). Let 3 = CdH+/log(d(T +nH)/¢) and A = 1, where C > 0

and ¢ € (0, 1] are absolute constants. Under Assumptions A.1 and A.3, it holds with probability at
least 1 — 5( that

Regret(T) < C"- (A1 g + Ao ) - VAP H3T - \/10g(d(T+nH)/§),

16



where C’ > 0 is an absolute constant and

H
1 1/2
Avir = ——— " (logdet (A1) — logdet(a] ),
dH? h=1 ,
1 1 1/2
O Z(log det(A5 1) —logdet(A} )"
dH? +— '
Proof. See §F.4 for a detailed proof. O

See the discussion of Theorem 3.5 in §3, where Ay corresponds to Ay g and Ay g in Theorem
A.5. In particular, Ay 5 and Ay g admit the same information-theoretic interpretation.

B Literature Review on Causal Bandit

In this section, we present literature review on causal bandit that are closely related to our work.
[26] propose the causal upper confidence bound (C-UCB) and causal Thompson Sampling (C-TS)
algorithms, which attain the v/T-regret. [34] propose an algorithm based on importance sampling
in policy evaluation. In the pure offline setting, [17, 18] propose algorithms for contextual bandit
with confounders in the observational data. Their algorithms are based on the analysis of sensitivity
[3, 27, 38, 44], which characterizes the worst-case difference between the causal effect and the
conditional density obtained from the confounded observational data. In a combination of the online
setting and the offline setting, [11] study multi-armed bandit with both the interventional data and the
confounded observational data. In contrast to this line of work, we study causal RL in a combination
of the online setting and the offline setting. Causal RL is more challenging than causal bandit, which
corresponds to H = 1, as it involves the transition dynamics and is more challenging in exploration.

C Connection Between Confounded MDP and Other Extensions of MDP

In what follows, we discuss the connection between confounded MDP and other extensions of MDP
and SCM.

e Dynamic Treatment Regimes (DTR). In a DTR [45], all the states {s, }c[z] are con-
founded by a global confounder w, whereas in a confounded MDP, each state s;, depends
on an individual confounder wy,_1, which further depends on the previous state s;_1. If
wp—1 does not depend on sj_1, the confounded MDP reduces to a DTR by summarizing
the confounders into w = (wy, ..., wy). In addition, we remark that our proposed DOVI
and DOVI™ can handle global confounders as long as the backdoor and frontdoor criterion
holds, respectively.

e Contextual MDP (CMDP). A confounded MDP is similar to a CMDP [12] if we cast the
confounders {wy, } () as the context therein. In a CMDP, which focuses on the online
setting, the context is fixed throughout an episode, whereas in a confounded MDP, the
confounders {wp }nep) Vary across the H steps. Moreover, in a CMDP, the goal is to
minimize the regret against the globally optimal policy that depends on the context, which
is a stronger benchmark than 7* in (2.3), since 7* does not depend on the confounders
{wh}he[H ]-

e Partially Observable MDP (POMDP). A confounded MDP is a simplified POMDP [39]
if we cast the confounders {wp, } nepm) as the hidden states therein (assuming that the con-
founders are unobserved in the offline setting as in §A). A POMDP is more challenging to
solve, since marginalizing over the hidden states does not yield an MDP, which is the case
in a confounded MDP.

D Mechanism of Utilizing Confounded Observational Data

In this section, we discuss the mechanism of incorporating the confounded observational data.
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D.1 Partially Observed Confounder

Corresponding to Line 4 of Algorithm 1, DOVI effectively estimates the causal effect
P(- | sn, do(an)) using

k—1 n
Un(sh, ah)T(Alfi)_l (z_:l Un(sp, ap,) - 5%“ ()+ ; djh(sﬁu aﬁm U’Z) ) 582+1 ()>a (D.1)

where we denote by J(-) the Dirac measure at s. To see why it works, let the tuning parameter A be
sufficiently small. By the definition of AZ in (3.10), we have

P(-| sn,do(an)) = (Wn(sn,an), pn(-))

k—1
~ P (snan) ' (AF) 7" (Z Un(sh,ap) - (Un(sh,ap), k()
T=1
+ 3 onlshuthoud) - @nlshoahb)n()). ©D
1=1

Meanwhile, Assumption 3.3 and Proposition 3.4 imply

P(' | Sh,dO(ah)) = <¢h(3h>ah)7/‘h(')>>
Pr(- | shyan, un) = (on(sn, an, un), pn(-)),

which rely on the backdoor adjustment. Since s}, and st 41 in (D.1) are sampled following
P(-|s7,do(a})) and Py (- | 5%, at , ul ), respectively, (D.1) approximates the right-hand side of (D.2)
as its empirical version. As k,n — 400, (D.1) converges to the right-hand side of (D.2) as well as
the causal effect P(- | sp,, do(ap)).

D.2 Unobserved Confounder

If the confounders {wp, } () are unobserved in the offline setting, the backdoor adjustment in §3
is not applicable. Alternatively, the intermediate states {1y, } ne[z] allow us to estimate the causal
effect without observing the confounders. The key is that the frontdoor criterion in Assumption A.1
implies

IP’(sh+1 | Sh, do(ah)) = /M ]P)(Sh+1 | sh,do(mh)) . IP’(mh | Sh, do(ah))dmh. (D.3)

It remains to estimate P(spy1 | sp, do(mp,)) and P(my, | sp, do(ap)) on the right-hand side of (D.3).
Since aj, and my, are not confounded given sy, the causal effect P(my, | s, do(ap,)) coincides with
the conditional distribution P(my, | sy, ay ), which can be estimated based on the observational data.
To estimate the causal effect P(sp41 | sp,do(mp)), we utilize the backdoor adjustment in Proposi-
tion 3.2 with uy, replaced by ay, which is enabled by Assumption A.1. More specifically, it holds
that

P(Sh_,_l | Sh, dO(mh)) = ]E‘I;LN]P(‘ | sn) [Ph(Sh+1 | Sh, a;l, mh)] . (D.4)

Correspondingly, we construct the value function at the intermediate state V11, and adapt the
value iteration following the Bellman optimality equation in (A.3). To estimate the value functions
{ V}f 1 /2} nepm) based on the confounded observational data, we utilize the adjustment in (D.4). Cor-

responding to Line 5 of Algorithm 2, DOVI* effectively estimates the causal effect P(- | s, do(my,))
using

k—1 n
Gnlsnma) T(AE ) (Z nlsimi) -0 () + > Gnlsh, alymb) 58;,+1<->), (D5)
=1 =1
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To see why it works, let the tuning parameter \ be sufficiently small. By the definition of A’i p in
(A.11), we have

P(-| sn,do(mn)) = (Wn(sh, ma), tn(-))

k-1
~ (s mn) T(AR ) (Z Un(sEam) - (s mE), i ()

£S5 Onlsh by md) - (Gn(si i m;;mc»). D.6)

i=1
Meanwhile, Assumption A.3 and Proposition A.4 imply

IP(~ | Sh, do(mh)) = (Wn(sn,mn), un(-)),
P(- | shyan,mn) = (Gn(8hs an,mn), pa(-))-

Since s7_; and s}, in (D.6) are sampled following P(- | s}, do(my},)) and P(-| s}, aj,, m},), re-
spectively, (D.5) approximates the right-hand side of (D.6) as its empirical version. As k,n — +o0,
(D.5) converges to the right-hand side of (D.6) as well as the causal effect P(- | sp,, do(mp,)).

E Limitation and Future Study

In this paper, we propose confounded MDP, which captures the data generating processes in both
the offline setting and the online setting as well as their mismatch due to the confounding issue. We
propose DOVI and DOVI*, which handles the confounding issue if backdoor or frontdoor criteria
hold, respectively. Nevertheless, our work requires knowing the linear features in the transition dy-
namics. Moreover, our work requires taking expectations over the feature embeddings with respect
to the variable for adjustment. In reality, such feature and expectation are in general unavailable. It
remains unknown if efficient reinforcement learning is possible without knowning the features a pri-
ori, which we left as our future study. Moreover, our study is restricted to two types of adjustment,
namely, the backdoor and frontdoor adjustment, respectively. The design of DOVI and DOVI™ is
tightly related to the estimation equation corresponding to the backdoor and frontdoor adjustments,
respectively, which estimates the counterfactual effect of actions on the cumulative rewards. In our
future study, we also want to generalize our work for general adjustment with estimation equations
given.

F Proof of Main Result

F.1 Proof of Proposition 3.4

Proof. Following from Assumption 3.3 and Proposition 3.2, it holds for all (s, ar) € S x A that

P(sht1 | s, do(an)) = BB (- 50) (Pu(- | sn,an,un)] = BB 50) [{dn(sns ansun), i (sh+1))]
= (Yn(sn, an), pn(sn+1)),
where
Ur(sp,an) = ]Euh~ﬁh(»\sh) [¢h(sh,ah7uh)}, V(spn,apg) € S x A.
Similarly, following from Assumption 3.3 and Proposition 3.2, it holds for all (s;,ar) € S x A that
Ry (sp,ap) = E[rh ’ sh,do(ah)] = Euhw;h(, sn) [qﬁh(sh,ah, uh)Tﬁh] = (sn,an) ' 0.
Hence, following from the Bellman equations in (3.3) and (3.4), the action-value functions Q7

and )}, are linear in the backdoor-adjusted feature 1/, for all 7. Thus, we complete the proof of
Proposition 3.4. O
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F.2 Proof of Proposition A.4
Proof. Ttholds for all h € [H] and (spt1, Sh, ap,mp) € S X S X A x M that
P(spt1, 8hy an, mn)
= /W Pr(sh+1 | Shy @uswn) - vr(ap | sy, wp) - ”ﬁh(wh | sp) - 75h(mh | sp,an) - P(sp)dwy,.

Meanwhile, it holds for all h € [H] and (s}, an, mp) € S x A x M that

P(sn, an, mp) = / vp(an | Sh, wp) ';ﬁh(wh | 51) - Pr(mup | sn, an) - P(sp)dwp.
W

Hence, we have

P(Sh+1, Shyan, mp)
P(sph,an, ms)

P(shy1|8n,an, mp) =

. fW Pr(Sh+1 | Shy @us W) - Vh(an | sh, wh) 'ﬁh(wh | sp)dwp,

— (E.1)
Jop vn(an | sh,wn) - Pr(wp | sp)dwy,
Meanwhile, following from Assumption A.3, we have
Pr(8h+1|8nsanswn) = (pr(Sh; ans wn), fin(Sh+1))- (F2)

Recall that we define 7y, (ap | sp) =
(E.1), we obtain that

B | sh)[w(ah | sn,un)]. Hence, by plugging (F.2) into
P(sht1 | sh, an,mn) = (G (s, an, ma), pr(sh+1)),
where we define for all h € [H] and (sp, ap,mp) € S x A X M that
Shy Qo Wh) - Vp(ap | Sh,w - Pp(wp | sp)dw
G (5nan,mn) = Jop o1 (81 awswr) - vp(an | h n) - Pr(wp | sp)dwp
S vn(an | sn,wn) - Pr(ws | sp)dwn
B B ) [on (s M, wh) - vi(an | sn, wh)]

ﬁh(ah | Sh)

Thus, we complete the proof of Proposition A.4. [

F.3 Proof of Theorem 3.5
Proof. We first define for all (k, h) € [K] x [H] the model prediction error (¥ as follows,

Lﬁ(sh,ah) = foL(s;,,ah) + Rp(sp,an) + (Pth+1)(sh,ah), V(sp,an) €S x A (E3)
We define the filtrations associated with Algorithm 1 as follows.

Definition F.1 (Filtration). For all (k, h) € [K| x [H], we define F}, , 1 the o-algebra generated by
the following set,

T

Bi.ha :{(527a;i’“;thZ)}(i,h)e[n]x[H} U {(Sj’a;’r;)}(f,j)e[kq]xm]

U{(S?,a?,rf)}je[hiu U{(Sf,aﬁ)}. (F4)
Similarly, we define F 5, o the o-algebra generated by the following set,
Biona = Bina U{si1} U{r}}. (F5)

Moreover, we define Fy j, » the o-algebra generated by the set {(s},, aj,, uj,, 7%,) }i,n)en] (1] for all
h € [H]. We define the timestep index as follows,

t(k,h,m) =2H -k +2(h — 1) +m. (E6)

It then holds for ¢(k, h,m) < t(k',h’',m’) that Fi j,m C Frrnm. Hence, the set of o-algebra
{Fkhm } (ke hm)e[K]x [H] x[2] 18 a filtration with the timestep index ¢(-, -, -) defined in (F.6).
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The following lemma characterizes the model prediction errors defined in (F.3).

Lemma F.2. Let 3 = CdH\/log(d(T +nH)/¢) and ¢ € (0, 1]. Under Assumption 3.3, it holds
with probability at least 1 — 2( that

—2T% (s, an) < i (sp,a) <0, Y(k,h) € [K]x[H], (sn,an) €S x A.

Proof. See §G.1 for a detailed proof. O

In the sequel, we define the following operators,
@nf)(s) = (f(s. ) mi(C 1)) Tenf)(s) = (f(5,),mh(-|s)a, Vs €S.
Meanwhile, recall that we define
(PLV)(sh,an) = B, (| spido(an)) [V (Sn41)],  V(sn,an) € S x A.
We define the following martingale adapted to the filtration {]:k,h,m}(k, h,m)€[K] x [H]x[2]>

M hm = E D; iy,

(,i,0)€[K] x [H] x 2]
t(7,i,0)<t(k,h,m)

where
Din = (D@ — QF 1)) — (@ — QF %)) (shoaf), ¥(kh) € [K] x [H],
Dina = (Pa(Vify = ViEH)) (s af) = (Vily = Vi) (sk40), ¥(k.h) € [K] x [H].
The following lemma is adapted from [7].
Lemma F.3 (Lemma 4.2 of [7]). It holds that

Regret(T Z VI (ah) — v (k)
K H
=Y +Mgua+ ) Z( o [t (s an) | s1 = st] — ufi (s}, aﬁ)), (E7)
k=1h=1
where
K H
Y =3 B [(QF(sn, ), i (- I 5n) — 7 (- [ 5)) | s1 = sf]. (F.8)
k=1h=1
Proof. See [7] for a detailed proof. O

In what follows, we upper bound the right-hand side of (F.7) in Lemma F.3. By Algorithm 1, it holds
that 7}’ is the greedy policy with respect to the action-value function QF. Hence, for Y defined in
(F.8) of Lemma F.3, we have

Y =30 S B [(@Fsn ) mi L s1) — wh(- s} | s = 5] < 0. (F9)
k=1 h=1

Meanwhile, following from the proof of Theorem 3.1 in [7], it holds with probability at least 1 — (/2
that

M o < Co - Vd3H3T - \/log(1/¢), (F.10)

where Cy > 0 is an absolute constant. In addition, following from Lemma F.2, it holds with
probability at least 1 — 2 that

K H
Z ( Lh Sh,ap |51 = slf] — Lﬁ(s]fb,alﬁ)) < QZZF sk ak). (F11)

k=1h=1 k=1 h=1
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Recall that for all (s, ap) € S x A, we define

1/2
T (sh,an) =53 (1Ogdet(/\’;§ + Un(sns an)¥n(sn, an) ") — log det(Aﬁ)) : (F.12)

Hence, by the Cauchy-Schwartz inequality, we obtain that

K H 1/2
ZF sk af) = BZ Z(logdet(AZ +¢n(sy, af)n(sk,af) ") — log det(AZ))

k=1h=1 k=1 h=

\/\
&Mm

K 1/2
Z log det(AF) — log det(Aﬁ)))
k=1

\F (log det(AX+1) — log det(A})) /. (F.13)

&Mm

In what follows, we define

m

(AKHY) —logdet(A}))"/2. (F.14)

h:

Thus, by plugging (F.14) and 8 = CdH - \/log(d(T + nH)/() into (F.13), it holds with probability
at least 1 — 2( that,

ZZF skoaf) < - Ay - VBHT - \log(d(T +nH)/C), (F.15)

k=1h=1

where recall that we define T' = H K. By further plugging (F.15) into (F.11), it holds with probabil-
ity at least 1 — 2( that,

K H
553 (B o an) [ 52 = o] — ko o)
k=1h=1
<20 Ay - Vd3H3T - \/log (T +nH)/C). (F.16)

Finally, combining Lemma F.3, (F.9), (F.10), and (F.16), it holds with probability at least 1 — 5¢/2
that

Regrel(T) < C' - Ay - VBHT - \[log(d(T + nH)/C).

where C’ > 0 is an absolute constant and

/2
Ag = log det(Ay ) — log det(A},) 2,
am Ll V)
Thus, we complete the proof of Theorem 3.5. O

F.4 Proof of Theorem A.5

Proof. In the sequel, we define the following operators,

@nf)(s) = (fls, ) mi(-1s)as @enf)(s) = (f(s.),mh( | s))a. (F17)

Meanwhile, recall that we define the following transition operators,

P12V (shymy) = ]E[V(shH) ‘ sha1 ~P(:| sh,do(mh))], YV S R, (sp,mp) €S x M.

PRV (sh,an) = E[V/(sp,mp) | mp ~ Pr(-]s,a)], V' :Sx MR, (sp,an) €S x A.

We further define for all (k, h) € [K] x [H] the following transition operator,

ﬁ’hﬂ/g‘/(sh,ah,mh) = ]E[V(sh+1) | Shy1 ~ P(+] sh,ah,mh)], YV S =R, (sp,ap, mp) €S X A x M.
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We define the following model prediction errors,
LZ(Sh,ah) = —QZ’(S}“ ah) + Th(Sh, Cbh) + (thlfgrl/z)(sh, ah), V(sh,ah) €S x .A,
LZ_,'_l/Q(Sh, mh) = —th+1/2(sh,mh) + (Ph+1/2V}f+1)(Sh7mh), V(sh,mh) €S x M. (F18)

In parallel to Definition F.1, we define the following filtrations that correspond to Algorithm 2.

Definition F.4 (Filtration). For (k, h) € [K] x [H], we define F ;, | the o-algebra generated by the
following set,

/ = {(si,al,m,ri)
By pa = {(sh, ah,mpy, 1) }(i nyen]x[H] {( (s5,a5,mj,rj }(T,j)e[k—l]x[H]
k : k
U {( SJ’aJ’m]’r])}je[hfl]U{ Shva'h)}~ (F.19)
Similarly, we define F, ,’C n.o the o-algebra generated by the following set,
Bj.nz = Bina U{mi} U{ri}, (F.20)
and we define F, ,'C n,3 the o-algebra generated by the following set,

Bins =BinaU{siii}, (F21)

Moreover, we define F{ ,, 5 the o-algebra generated by the set {(s},, al,,mi,, 75)} (i, n)en) x (1] For
all h € [H|. We define the timestep index as follows,

t'(k,hym) = 3H -k +3(h — 1) + m. (F.22)
It then holds for t'(k, h,m) < ¢'(k',n',m’) that 7} ;, .. C Fj, ;... Hence, the set of o-algebra
{-Fllc,h,m}(k,h,m)e[K] «[H]x[3] is a filtration with the timestep index #'(-, -, -) defined in (F.22).
The following lemma characterizes the model prediction errors defined in (F.18).

Lemma F.5. Let 3 = CdH+/log(d(T +nH)/() and ¢ € (0, 1]. Under Assumption A.3, it holds
with probability at least 1 — 4( that

2Fh+1/2(3h,mh) < L,L+1/2(sh,mh) 0, V(k,h) € [K] x [H], (sh,mp) €S x M, (F23)
— 2% (sp,an) < 1f(sp,an) <0, V(k,h) € [K] x [H], (sn,an) €S x A. (F.24)
Proof. See §G.2 for a detailed proof. O

Our goal is to upper bound the regret, which takes the following form,

K
Regret(T') = Z VI (s1) = VI* (1)

K

K
— V) + 3T (V) - v b)), (F.25)
k:l k=1

(i) (ii)

where {V}f}( k,h)e[K]x[H] 18 the output of Algorithm 2. In what follows, we calculate terms (i) and
(ii) on the right-hand side of (F.25) separately.

Term (i). We now calculate term (i) on the right-hand side of (F.25). By (F.17), for all h € [H], it
holds that

Vil = Vi = InQF +JenQf = In(QF — Q1) + (I — Jin) Q5. (F.26)
We first calculate the term QZ* — Qﬁ on the right-hand side of (F.26). Recall that we define

h=—Qn+rht Pthk#1/27 LZ+1/2 = _fo+1/2 + Pri1/2 Vs
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Meanwhile, following from the Bellman equation in (A.2), we obtain that
Qn =rnt PhVI"ZrJrl/Q’ V}:r+1/2 =Puy12Vilr-
Thus, it holds that
QZ* - QZ = Lﬁ + IF’h(VfZil/z - Viichl/Q) = Lﬁ + Phbﬁﬂ/z + PhPhH/Q(VfZil - Vif+1)~ (F.27)

Recall that we set Vﬁju =V 11 = 0. Hence, upon recursion, we obtain from (F.26) and (F.27)
that

H H ,h—1
Vv = (H JnPuPy gy /2) Vi = Vi) + >, (H JPiP; /2>Jh4§§ (F.28)
h=1 h=1 “i=1
h—1

H ,h—1 H
+ Z(H J P; P1+1/2)JhPth+1/2 + Z(H JlP ]P)1+1/2) (Jh — Jk: h)Q

h=1 “i=1 h=1
H H ,h—1
=> (H JiPi]Pi+1/2) nth + InPuthyy o) + > (H JiPiPiJrl/Q) Jn = Jen)@F-
h=1 Vi=1 h=1 Ni=1
By the definition of J;, and Jy j in (F.17), we further obtain from (F.28) that

K K H

SOV (sh) = ViF(sh) =

k=1 k=1h

(]

B [0 (5h, an) + th 41 jo(sn,mn) | 51 = s7] (E.29)

Il
—

H
Z]EW* Qh Shs - ) W;(|Sh) _Wﬁ('lsh) ‘ 51 = S}ﬂ,

1h=1

M) >

+

=
Il

which completes the calculation of term (i) on the right-hand side of (F.25).

Term (ii). We now calculate term (ii) on the right-hand side of (F.25). By (F.17), for all h € [H],
we have

k k
ViE(sh) = Vi (s) = (B (@5 — QR)) (s7)- (F.30)
Meanwhile, by (F.18) it holds that
Lﬁ(Sﬁ, aﬁ) = Th(slfcw all—i) (thhk—&-l/Q)(Sﬁv aﬁ) - QZ(SE7 GZ)
= Th(sfw ah) Qh (sh7 ah) + PthH/z(Sm ah) (Qh QZ)(S;?’ aﬁ)(SI;; aﬁ)

= (]Ph(VhH/z - Vh+1/2))(shvah) @ — Qh )(sk,ar,), (F31)

where the second equality follows from the Bellman equation ng(sh,ah) = rp(sp,an) +
(IP’thH/Q)(sh, ap). Similarly, we have

ﬂ_k ﬂ_k
Llﬁ+1/2(5ﬁamlﬁ) = (Ph+1/2(vhk+1 - Vh+1))(5§amlﬁ) - (th+1/2 - Vh+1/2)(5;€’ my).  (F32)
Thus, by combining (F.30), (F.31), and (F.32), we have

(VIE = Vi) () + B (s af) by s omb)
— (VE = Vi) (b)) + (Ten(QF — QF)) (s5) — (QF — QF ) (sh,af)  (F33)

Dy na
+ (Ph(vhk+1/2 - V;ffl/z))(S’Z» aﬁ) - (Viichl/Q - Vh’ilm)(sﬁ,mﬁ)
Dy b2
 Prs/a(Vits = Vi) (shomf) = (Vi = Vi) (sh ).
Dy h3
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Meanwhile, note that Vgil =Vk 11 = 0. Hence, by recursively applying (F.33), we obtain that
k
(Vlk -V )(S]f)
H H
= (Din1 + Dinz+ D) Z (skaf) + tf 1 o (sk,mp)). (F34)
h=1 h=1
By the definition of filtration in (F.4), for the terms Dy, j, 1, Dy 2 and Dy, ;3 on the right-hand side
of (F.33), it holds for all (k, h) € [K] x [H] that
Dyni € Fenis Drn2 € Fin2, Dinsz € Fings.
Moreover, it holds that

E[Dih | Frn—1,3) = E|

1] = E|

h2]=0.

Hence, the terms Dy, 5, 1, Di j, 2 and Dy, j, 3 defines a martingale M, , .- with respect to the timestep
index t'(-, -, -) as follows,

My pyom = > Dy.iv, (E.35)
(ryi,0)E[K] < [H]x[3]
¢/ (7,i,0) <t’ (k,hym)

where (-, -, -) is defined in (F.22) of Definition F.4. In specific, we have

K H

M g3 = Z Z(Dk,h,l + Dy h2+ Dy ns)- (F.36)
k=1 h=1

By further taking sum of (F.34) over k € [K], we obtain from (F.36) that

K K H

‘ﬂ'k
Z(Vlk -V )(sh) = M}(,H,;’» - Z Z(LZ(SZ@Z) + LfL-’rl/Q(Si? mlii)% (E.37)

k=1 k=1h=1
which completes the calculation of term (ii) on the right-hand side of (F.25).
Finally, by plugging (F.29) and (F.37) into (F.25), we conclude that

K H
Regret(T) = 33 B [(@8 (s, i ([ 3) — 7k L) | 51 = 58] + My (E38)
k=1h=1
K H
+ Z ZE’T [t (sn,an) + Upy1/2(Sh, M ’ s1 = st
k=1h=1
K H
- Z Z(ﬁﬁ(slﬁa ar) + thi1/2(Shs m))
k=1h=1

where M p 5 is defined in (F.36).

‘We now upper bound the right-hand side of (F.38). The following proof is similar to that of Theorem
3.5 in §F.3. In the sequel, we define

= Z ZEW* [(QZ(Shv ')’ﬂ-}t(' ‘ Sh) - Wﬁ( | sh) ’ S1 = Slf]v

k=1h=
K H K H
E E Ew* ' Shyah)+L;L+1/2(5hamh |31 —51 E E W (shsar) +Lh+1/2(sh7mh))
k=1h=1 k=1h=1

It then follows from (F.38) that
Regret(T) =Y' + My 5+ Z'. (F.39)
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Recall that we set wﬁ to be the greedy policy with respect to the action-value function Q’g. Thus, it
holds that

vy’ — ZZETF [(QF (s, ), mh(-|sn) — mi (-] sn) | s1 = st] < 0. (F.40)

Meanwhile, following from the truncation of Q¥ in Algorithm 2 and the assumption that ry, € [0, 1],
for terms Dy, 5, ; defined in (F.33), we have

|Di.ni| <2H, V(k, h,i) € [K] x [H] x [3].
Hence, by the Azumas-Hoeffding lemma, it holds with probability at least 1 — ( that

Mjc 3 < Cy - VAB3H3T - \/log(dT'/(), (F41)

where M }( H3 is the martingale defined in (F.35), C; > 0 is an absolute constant, and 7' = HK.
Following from Lemma F.5, it holds with probability at least 1 — 4( that

K H K H
Z' <23 N TE L p(shmE) +2> 0> Th(sE, af). (F42)

k=1h=1 k=1 h=1

Following from the definition of Tk h41/2 in (A.12), we obtain that

K H 12
Z Z I",fLH/Q(sZ, mF) =23 Z Z(log det(A’ih + i (¥, m) e (s, mh)T) — log det(A’ih))

k=1h=1 k=1h=1

K H
=25 Z Z log det AkJrl —log det(A]ih)) 12, (F43)
k=1h=1
Thus, by the Cauchy-Schwartz inequality, we obtain from (F.43) that
K H K 1/2
2D Tharja(sh,mp) < B Z ( - (log det(A7}") — log det(A},;J))
k=1h=1 k=1
<pg- \/EZ(log det(Af}fl) —log det(A}’h))lﬂ. (F.44)

Similarly, we obtain that

ZZFk shoaf)y < p- \/>Z log det( AkJrl 1ogdet(A§,h))1/2. (F45)

k=1h=1

In what follows, we define

Ay g= Z log det( AKjlrl) — log det(Aih))l/Q,
h=1

ﬁ

: /2
Ao g = g log det AkJ,rll) —log det(/\%ﬁh))1 .
VdH? ;=

By plugging (F.44), (F.45), and 8 = CdH - \/log(d(T +nH)/() into (F.42), we obtain that

7' <20 (Dvy + Dy yr) - VBHT - \[log(d(T +nH) /(). (F.46)

which holds with probability at least 1 — 4(. Here recall that we define 7' = HK. Finally, by
plugging (F.40), (F.41), and (F.46) into (F.39), it holds with probability at least 1 — 5¢ that

Regret(T) < C'- (A1, g + Ao g) - VA3HT - \/log(d(T—i—nH)/C),

where C’ > 0 is an absolute constant. Thus, we complete the proof of Theorem A.5. O
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G Proof of Auxiliary Result

G.1 Proof of Lemma F.2

Proof. Recall that we define
(B V) (sn, an) = E[V(shﬂ) \ sha1 ~ P(-| s, do(ah))}

= E[V(snt1) | snt1 ~ Pl | sn, ansun), un ~ Pal- | sn)],
where the second equality follows from Proposition 3.2. In the sequel, we define
(BuV)(sns an, un) = B[V (sn41)
By Assumption 3.3, we obtain that

th}f—&-l = w}TWhv V}f+1> = ¢}T(AZ)71A§<WM th+1>a th}f—i—l = ¢Z (tn, V}f+1>~ (G.1)
Recall that

k-1 n
A]}i = Z ¥n(shy ah)n(sE, GIL)T + Z On(Sh, ap, up)On(Shs ap, U;L)T + AL
T=1

i=1

Sh+1 ™~ Ph( | sh,ah,uh)} .

Therefore, by (G.1), we obtain that
k—1

(]P)hvfic-l—l)(W ) = d)h(ﬁ ')T(Aﬁ)il (Z wh(S;—m GE)WL(S}TN a}:)TWha th+1> +A- <,uha th+1>
T=1
©3" Gnlshral ) bn(sh al, ub) T (un, vh’11>>
=1

k—1
= ¢n() (A7)~ (Z Un(shyap) - (PuViien)(shy ah) + A= {un, Vi) (G2)
=1

£ dnlshral ) - BV )(si, az,um).

i=1
Recall that we define the counterfactual reward as follows,
Rh(sh, ah) = Euh, [T(Sh, ap, ’LLh) | Sy = Sh], V(s;“ah) eSS x A (G.3)

It then follows from Assumption 3.3 and Proposition 3.4 that Ry, (-, -) = ¥ (,-) " 6),. Hence, it holds
for all h € [H] that

rh('v K ) = ¢h('7 D) -)TGh = ¢h(', . )T(Aﬁ)—lAﬁeh

k-1
= ) TR (X n (o D (sh D) 00+ A Gns Vi)
T=1
+ Z d’h(séw a;m uﬁz)¢h(527 aéza U;L)Tgh)
i=1
k-1
=on(, ')T(AZ)71 (Z Un(sh,ap,) - Ru(sp,ap) + A Oy
T=1
+Z¢h(s§l,a2,u2) -E[rp |S§L,a27u§l]). (G.4)
i=1

Meanwhile, following from the explicit update of w}’j in (3.9), we obtain that

k—1
() Twh = en(s) T(AR) T (Z Un(shap) - (Vi (sh40) +77) (G3)
T=1

T3 dnlshal ) - (Vi (shan) + ri)).

i=1
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Hence, combining (G.2), (G.4), and (G.5), we obtain that
'(/Jh(') ')Tw}li - Rh('7 ) - (th}fﬂ—l)(" )
= () T(AR) T (Sun + Son + Ssn 4 San) = n() A ((n, Vitks) +60n), (G.6)
where we define

k—1
Sin =Y Unlsq,ah) - (Vi (shia) — (BrViEa) (sh, 7)), G.7)
T=1

SZ,h = Z ¢h(52a CL;;, U;L) : (Viﬁrl(sﬁwl) - (th}ﬁrl)(s;w a%“%)%
=1

k—1 n
S37h = Zlﬁh(sﬁﬂﬁ) : (Ti: - R(SZ’ a;))’ and S4,h = Z ¢h(5§z’ aéw U;L) ) (T;L - E[Th | S;u aﬁwuz])
=1 =1

In what follows, we upper bound the right-hand side of (G.6). By the Cauchy-Schwartz inequality,
we obtain that

[Yn () Twh = Ru(,) = (PaVii) ()l (G.8)
< (¢h(~,~)T(A’,§)_1wh(','))1/2- ( ZSM
=1

where Si p, S2.p. S35, and Sy, are defined in (G.7). By Lemma H.6, for A = 1, it holds with
probability at least 1 — 2( that

4

> Sen

=1

where C' > 0 and C’ > 0 are absolute constants. Meanwhile, by Assumption 3.3, it holds that
ns Vil Dl ay - < I n, Vi) ll2/ VA

d 1/2
< (Z ||uz,h||%> NV o/ VA < Hyd/A, (G.10)
=1

o P gy g )
Ap)~

< C'dH,\log(2(C + Dd(T +nH)/C), (G.9)

(Ap)~

where the first inequality follows from the fact that A’,j > AI, the second inequality follows from the

Holder’s inequality, and the third inequality follows from Assumption 3.3 and the fact that th+1 <
H. Similarly, it holds from Assumption 3.3 that

[0nll(axy-—1 < 10nl2/vX < V/d/. (G.11)

Finally, by plugging (G.9), (G.10), and (G.11) into (G.8) with A = 1, it holds with probability at
least 1 — 2(¢ that

1/2

W)h('a ')Twi - Rh('ﬂ ) - (thiﬁrl)('v )| < 6/\/5 (wh('v ')T(A]fi)_lwh('ﬂ )) ’ (G.IZ)

where we set 3 = C"'dH+/log(d(T +nH)/C) for a sufficiently large absolute constant C”" > 0.
By further applying Lemma H.7 to (G.12), for A = 1, it holds with probability at least 1 — 2( that

[Wn () Twh = Ra(,-) = (BrVise) (o)
<8 (log det (A}, +¥n()en() ") — logdet(A’g))l/2 =Tk(.,.). (G.13)

Recall that we set

Qﬁ(’ ) = min{wh<'7 ')TWZ + F;CL(.’ ')’H - h}
Hence, by (G.13), it holds with probability at least 1 — 2¢ that
~th () = Qh() = Bu() = (BuVi) ()
< '(/}h('7 ')Twilf + FII?L(.’ ) - Rh('? ) - (thhk+l)('a ) < QFE(" ')7
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and
() ==QF(,) + Ru(, )+ (PuViF ) ()

< max{(IP’hV,f+1)(~, ) + Rh(-, ) - 1/Jh(', ')TWZ - FQ,RMH ) + (thhk+1)('7 ) - H+ h} <0,

where the second inequality follows from (G.13) the facts that th+1 <H-h-—1land R, <1.In
conclusion, it holds with probability at least 1 — 2¢ that

_QFZ(W ) < LZ(') ) <0,
which concludes the proof of Lemma F.2. O
G.2 Proof of Lemma F.5

Proof. Recall that we define the following transition operators,

IP’hH/gV(sh,mh) = E[V(S}H_l) ‘ Sh41 ™~ P( | Shy do(mh))}

E~Dh+1/2v(3h7 an,mp) =E[V(spi1) | Sn1 ~ P(-| sp, an, mp)]. (G.14)

Following from Assumption A.3 and (A.7), we have
Ph+1/2vf{€+1 =1y, (ph, ViFs 1) = w;T(A]f, )TIAY wltn,s ViEa), (G.15)
Phr1/2Vitr = on (tn, Vi), (G.16)

where we define

1h - Z¢h Shamh Sh’m;)—r +Z(ﬁh(szva;zvméz)th(s;lva;lvm;L)T + AL (G.17)
i=1

Hence, following from (G.15), it holds for all (s, mp) € S X M that

Phi1/2Viees (Shomn)

= Yn(sn,mn) " (th sty mi)O(s7,mp) " (s Viin) + A (s Vida) - (G.18)

30 onlsh o ) Vi)
i=1
By plugging (G.15) and (G.16) into (G.18), we further obtain that

Phi1/2ViEy (shmy)

= U’h(sh:mh 1 h <Z Yn(sh,mp) Ph+1/2Vh+1)(Sh7mh) +A- <:uhvvhk+1> (G.19)

+ Z%(Sﬁm ah,my,) - (PryajoVi) (s, a%?ﬂi))-
i=1

Following from the update of w’fyh in (A.10), it holds for all h € [H] and (s}, mp) € S x M that

k—1
(s mn) Tty = b (smymn) (AR, (Z (s mE) - Vi (s5a0) (G.20)

T=1

+ Z ¢h(3§u a%;, m%) ) th+1(52+1)>-
i=1
Hence, combining (G.19) and (G.20), we obtain for all h € [H] and (sp,, mp) € S X M that
Un(snmn) T wi g, = Pri12Vidis (snma)
= Un(sn.mn) (AT )7 (ST + S50) + A ton(s,m) T (un, Vil 1), (G21)
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where we define
k—1
i,h = th(szvm;) ! (Vlerl(s;Jrl) - (Ph+1/2vhk+1)(si:vmg))7
=1

Sé,h = ¢h (S;w aéz’ m;L) : (Viﬁrl(séwrl) - (Ph+1/2vhk+1)(8§w a;w m;z))
We now upper bound the right-hand side of (G.21). By the Cauchy-Schwartz inequality, we obtain
from (G.21) that

T k k
[Un Win — Ph+1/2Vh+1‘

_ 1/2
< (¢n (AY )" en) 2. (I1S1n + Sz nllary-1 +A- ||<Mh,V;f+1>||(A§)—1)~ (G.22)

Following from similar analysis to the proof of Lemma H.6 in §H, for A = 1, it holds with probability
at least 1 — 2( that

1S5+ Ss.ullas) -+ < C'dHlog(2(C + Dd(T +nH)/C). (G.23)
Meanwhile, by Assumption A.3, we have
s Vil lay-1 < 1, Vil M2/ VA
(A%)

d 1/2
< (Z IIW,hH%) NVl / VA < H/d)A, (G.24)
/=1

where the first inequality follows from the fact that A]f’ n = A, the second inequality follows from

the Holder’s inequality, and the third inequality follows from Assumption A.3 and the fact that
th+1 < H. Finally, by plugging (G.23) and (G.24) into (G.22), we obtain for all (sp, mp) € S x M
that

n(shmn) TwE ) — (Prg12Vider) (s, ma)|
<B/V2- (T/Jh(sh,mh)T(Alf,h)71¢h(8h,mh))
< 8- (logdet (AL, + wn(sn, ma ) (sn,mn) ) — log det (AL ,))
=T y1/2(sn,mn), (G.25)

where we set 3 = C”dH/log(d(T +nH)/() for a sufficiently large absolute constant C” > 0
and the last inequality follows from Lemma H.7. Here Fﬁj +1/2 is the UCB defined in (A.12). Recall
that for all (s, mp) € S x M, we define

1/2

1/2

th’+1/2(sh,mh) = min{wh(sh,mh)—rwf)h + F’fbﬂ/z(sh,mh),H — h}.

Hence, by (G.25), for all (s, mp) € S x M, it holds with probability at least 1 — 2¢ that
—th 1o (snymn) = Vi o (snymn) — (Prgay2Vieed) (s, mi)

< (sn,mn) "Wl + Ty jo(snma) = Prgay2Vicer) (snymn) < 2054 o (sh,ma),
and

L]I§+1/2(5ha mp) = *th-s-l/z(shvmh) + (]Ph+1/2vif+1)(5h7mh)
< max{(Pry1/2Vis1) (5hsmn) = Unlsnmn) "wh = Thiy ja(sn,ma),

(Pps1/2Vitir)(snymn) — H +h} <0,

where the second inequality follows from (G.25) and the fact that th 1 < H- h — 1. In conclusion,
it holds with probability at least 1 — 2( that

_2F2+1/2(5h’mh) < LZ+1/2(5ha mp) < 0.

Similarly, following from the proof of Lemma F.2 with Lemma H.5 in place of Lemma H.4, the
reward 7, in place of Ry, and the feature ;, in place of both vy, and ¢y, for all (s, ap) € S X A,
it holds with probability at least 1 — 2( that

—QFE(Sh,ah) < LZ(sh,ah) <0

Thus, we complete the proof of Lemma F.5. O



H Auxiliary Lemma

Lemma H.1 (Concentration of Self-Normalized Process [1, 16]). Let {e;}72; be a real-valued
stochastic process adapted to the filtration {F; }$2. Let ¢, | F;—1 be zero-mean and o-sub- Gaussian

Let {1:}22, be an R%valued stochastic process with 1; € F;_;. Let Ay = A + ZT 1 VL

where Ay is a positive definite matrix. Let 6 > 0 be an absolute constant. It then holds with
probability at least 1 — ¢ that

2
§202-10g( det(Kt)/det(Ko)-afl), Vit > 0.
At

Proof. See [1] for a detailed proof. O
Lemma H.2 (Lemma D.4 of [16]). Let {s:}7°; and {}2, with [[¢)¢]]2 < 1 be S-valued and

R<-valued stochastic processes adopted to the filtration {F;}°, respectively. Let A, = Ag +

S W], where Ay = A is a positive definite matrix. Let sup,cg |V (s)] < H forall V € V.
Let § > 0 be an absolute constant. It then holds with probability at least 1 — § that

-( s) —E[V(s) | Fri])

< 4H?. (d/Q -log(det(A¢)/ det(Ag)) + log(Ne/(S)) + 8t2e2 /N

2

AY

Here . is the e-covering number of V with respect to the metric d(V, V') = sup,c5 |V (s) —V'(s)]
forall V.V’ € V.

Proof. The proof technique is similar to that of Lemma D.4 by [16]. For all V' € V), there exist an
element V in the e-covering of V satisfying

d(V,V) =sup|V(s) - V(s)| <e. (H.1)
SES

In the sequel, we define
Ay()=V()=V(). (H.2)

It then holds that
2

-( 5r) = E[V(s,) | Fra])

“~-—1

Af,
2
D (R CIE) | "
o (Ao - Bl |7 |
Ay

Note that |V (s)| < H for all s € S. Hence, following from Lemma H.1 and a union bound
argument, it holds with probability at least 1 — ¢ that

-( 57) ~E[V(s,) | o))

< 4H?. (d/2 -log(det(A;)/ det(Ag)) + log(Ne /5)), (H.4)

2

At

where N, is the e-covering number of V. Meanwhile, it follows from (H.1) and (H.2) that |Ay (s)| <
e for all s € S. Hence, we have

2

. (AV s) —E[Ay(s,) | fH}) <8, (H.5)
-
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where the inequality follows from the fact that A; = AI. By plugging (H.4) and (H.5) into (H.3), it
holds with probability at least 1 — § that

Zijm : (V<sT> ~E[V(s,) | fT_l])

2

At
< 4H?. (d/z log(det(A;)/ det(Ro)) + log(V, /5)) 1 82e2/A,
which concludes the proof of Lemma H.2. O

Lemma H.3 (Upper Bound of Parameter [16]). Under Assumption 3.3, It holds that

lwkll2 < H(d(k +n)/X)"%, V(k,h) € [K] x [H]. (H.6)
Proof. See [16] for a detailed proof. O

Lemma H.4 (Covering Number of V [16]). Let V be a class of functions V satisfying
V()= min{maj‘(w(-, a)'w+T(-,a), H—h}, (H.7)

ac
where
T 1/2

(-, =v28- (log det(A+ (-, )y(,) ") — logdet(A)) ) (H.8)

Here the function V' is parameterized by (w,A) and the parameter § is fixed. Let (-,-) be an
R<-valued function and A € R?*4. Let |[1(s,a)|2 < 1 forall (s,a) € S x A. For ||w|l2 < L,
A= M, B €0,B],and € > 0, there exist an e-covering of V with respect to the metric d(V, V') =
sup,cs |V (s) — V'(s)], such that the covering number N is upper bounded as follows,

log N, < d-log(1 +4L/e) + d* - log(1 + 16B%d"/?/(*\)).
Proof. The proof technique is similar to that of Lemma D.6 by [16]. Let V; and V3 be the functions
defined in (H.7), which are parameterized by (w1, A1) and (w2, A2), respectively. Note that
d(V1,Va) < sup|min{maj{:w(s, a)'wi +Ty(s,a), H — h}
seS ac

- min{raneaj(z/)(s, a) w4+ Ta(s,a), H — h}’

< sup  J(s,a) (w1 —wo) +T1(s,a) — Ta(s,a)l, (H.9)
(s,a)eSx.A

where the second inequality follows from the fact that min{-, H — h} and max,¢ 4 are contraction
mappings. Here we define I'; and I'; in (H.8) with A = A; and A = A,, respectively. Meanwhile,
following from the matrix determinant lemma, we have

Ti(s,a) =V28- (log det(A1 + ¢(s,a)¥(s,a) ") — logdet(Al))

1/2

=23- (log(l + w(s,a)TAflw(s,a))>1/2, V(s,a) € S x A.

Thus, following from the inequalities [/z —/y| < v/|z — y|and |log(14+2)—log(1+y)| < [z —y|
for all z,y > 0, we have

Pys.) — oo, )l < V38 - (Jlog (1 + (s, ) AT (s, ) — Tox(1+ (s, ) A7 p(s,)])

1/2
< V28 (lv(s,a) (AT = A7 (s, 0)]) (H.10)
Combining (H.14) and (H.10), we have
d(Vi,V2) < sup  [ih(s,a) T (w1 —wg2) + T1(s,a) — a(s, a)|

(s,a)eSxA
< sup |07 (Wi —wo)| + V2B sup (0T (AT - Ayl
[lll2<1 [lll2<1
= [lwr —walla + 1287 - AT - 282 - A 60
< flwn —wall2 + 1282 - ATY — 282 - AF Y, (H.11)

32



where we denote by || - ||op and || - ||r the operator norm and Frobenius norm, respectively. For
A = X and 8 € [0, B], it holds that ||28% - A~!||g < 2B2d'/?A~'. Meanwhile, let A, . be
the €/2-covering number of {w € R? : ||w|s < L}, and N4 be the € /4-covering number of
{A € R ||A||p < 2B2d"/2X\~1}. It is known that [41]
2
Noe < (1+4LJe)%,  Nao < (1+16B%dY2 /()"
Hence, by (H.11), we obtain that
log N; < 1og(Nu,e - Na o) < d-log(1+4L/e) +d* - log(1 4 16B°d"/? /(€*))),
which concludes the proof of Lemma H.4. O
Lemma H.5 (Covering Number of @) [16]). Let Q be a class of functions ) satisfying
Q(7) :mln{¢(7)Tw+F(7)7H—h}, (H.12)

where
() =v28- (log det (A + (-, )y (-, )T) —log det(A)) 1/2. (H.13)

Here the function () is parameterized by (w, A) and the parameter 3 is fixed. Let ¢)(-,-) be an R%-
valued function and A € R4, Let ||[¢o(s,m)||2 < 1 for all (s,m) € S x M. For ||jw|2 < L,
A = A, B €0, B], and € > 0, there exist an e-covering of Q with respect to the metric d(V, V') =
SUD(s myesxm |Q(s,m)—Q’ (s, m)], such that the covering number /. is upper bounded as follows,

log N, < d-log(1 +4L/e) + d* - log(1 + 16B%d"/?/(€*\)).

Proof. The proof is similar to that of Lemma H.4. Let Q)1 and ()5 be the functions defined in (H.12),
which are parameterized by (w1, A1) and (w2, A2), respectively. Note that

d(Q1,Q2) < sup |v(s,m) "wi +T1(s,m), H — h}
min{(s,m)ESXM
—min{¢(s,m) "ws + (s, m), H — h}|

< sup  |Y(s,m) T (w1 — w2) 4+ Ti(s,m) — Ta(s,m)], (H.14)

(s,m)eSXM
where the second inequality follows from the fact that min{-, H — h} is a contraction mapping.
Here we define I'; and I's in (H.13) with A = Ay and A = As, respectively. The rest of the proof
is the same as that of Lemma H.4. We omit the proof and refer to the proof of Lemma H.4 for the
details. O

Lemma H.6 (Concentration of Self-Normalized Process). Let A = 1 and g =
CdH+\/log(d(T + nH)/¢). Let ¢ > 0 be an absolute constant. It holds with probability at least
1 — 2( that

4
D Sen
=1

where C and C’ are positive absolute constants and C’ is independent of C.

< C'dH\log(2(C + Dd(T +nH)/C), V(k,h) € [K] x [H].
(af)-?

Proof. Recall that we define

k—1
Sin=>_tn(sh,ah) - (Vilri(shyn) = (PaViE ) (55 a7)),

T=1

SQJL = Z ¢h(827 a;w Uﬁz) : (Viﬁrl(sﬁwl) - (th}ﬁrl)(séw a;wuéz)%
=1

k—1 n
Sah = Z¢h(82>a;—z) ) (TZ — R(sp, a;;))v San = Z(bh(séw a;wuéz) ) (T;L —Elrn | Séw az, Uﬂ)
=1 i=1
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We define F_,,; the o-algebra generated by the set {(s}, af, uf,h)}(e,n)e[i)x[m] With timestep
index —n + 4. The set of o-algebra { F_,, 1 };c[n) captures the data generation process in the offline
setting. We attach {F_,,1;}ic[n) to the o-algebra {Fi . m }(k,h,m)e[k,m,2] With timestep index ¢
defined in Definition F.1 to obtain the complete filtration. By Lemma H.I with such a complete
filtration, it holds with probability at least 1 — ( that

1511 + S2,nll(ar)-2
< 412 - (d/2 - og(det(A})/ det(Ao)) +log(2N-/Q)) +8(n + k)%, (HIS)

where Ag = Al and
k—1 n
Ay = Z wh<5;—v a;)wh(s;—w a;—L>T + Z (bh(sﬁw a;w U;L)(bh(sﬁu a;m UZ)T + AL
T=1 =1
Similarly, by Lemma H.1, it holds with probability at least 1 — ( that
1S5, + Sanllary—r < 4H? - (d/2 : log(det(A’,fL)/det(Ao))). (H.16)

Note that

k—1 n
Aj = Zzbh(s;—m a;)wh(s}rz’a}:)—r + Z (bh(‘s;wa;wu}h)(bh(szvaﬁwu;z)—r + A
T=1

i=1
< (k+n+ NI
Meanwhile, recall that Ag = AI. Thus, we obtain that
det(AF)/ det(Ag) < (k+n 4+ \)/\. (H.17)

On the other hand, we obtain from Lemma H.3 and Lemma H.4 that
log N, < d- (1+4H/d(n+k)/(eV)) +d* - log(1 + 168*Vd/(*N)), (H.18)

where we set 3 = CdH+/log(d(T +nH)/(). Finally, by setting ¢ = dH/(n + k) in (H.15),
plugging (H.17) and (H.18) into (H.15) and (H.16), respectively, and setting A = 1, we obtain that

4
E Se.n
=1

S NSt + Sznllary-1 + 1538 + Sanllary—
(AF)—1

< C'dH \[log(2(C + 1)d(T + nH)/C),

which holds with probability at least 1 —2¢. Here T' = H K and C, C" are absolute constants, where
(" is independent of C'. Thus, we complete the proof of Lemma H.6. O

Lemma H.7. Let A; € R%*? be a positive definite matrix satisfying A; = I. Let ¥4(-,-) be a
R?-valued function such that [|1;(-,-)||2 < 1. Let Ayr1(-,+) = Ay + (-, )¢ (-, ) 7. It then holds
that

th(', ')T(At)_lwt('7 ) S 210gdet(At+1(-, )) — 210gdet(At)
Proof. Note that A; > I. Thus, it holds that

0 < () T (A) () < e, ) 13 < 1
It then follows from the inequality < 2log(1 + x) for all z € [0, 1] that

V() T (M) b, 0) < 210%(1 + () T (M) (- )) (H.19)
Meanwhile, it follows from the matrix determinant lemma that
det(Aeg (-, 7)) = det(Ag) - (1+ e () T (M) (-, ). (H.20)

Finally, combining (H.19) and (H.20), we conclude that

th(', ')T(At)_lwt('7 ) S 2 lOg det (At+1(', )) -2 IOg det(At),
which concludes the proof of Lemma H.7. O
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