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Abstract

Deep learning (DL) systems are notoriously difficult to test and debug due to1

the lack of correctness proof and the huge test input space to cover. Given the2

ubiquitous unlabeled test data and high labeling cost, in this paper, we propose3

a novel test prioritization technique, namely TestRank, which aims at revealing4

more model failures with less labeling effort. TestRank brings order into the5

unlabeled test data according to their likelihood of being a failure, i.e., their failure-6

revealing capabilities. Different from existing solutions, TestRank leverages both7

intrinsic and contextual attributes of the unlabeled test data when prioritizing8

them. To be specific, we first build a similarity graph on both unlabeled test9

samples and labeled samples (e.g., training or previously labeled test samples).10

Then, we conduct graph-based semi-supervised learning to extract contextual11

features from the correctness of similar labeled samples. For a particular test12

instance, the contextual features extracted with the graph neural network and the13

intrinsic features obtained with the DL model itself are combined to predict its14

failure-revealing capability. Finally, TestRank prioritizes unlabeled test inputs in15

descending order of the above probability value. We evaluate TestRank on three16

popular image classification datasets, and results show that TestRank significantly17

outperforms existing test prioritization techniques.18

1 Introduction19

Deep learning (DL) systems are prone to errors due to many factors, such as the biased train-20

ing/validation dataset, the limitations of the model architecture, and the constraints on training cost.21

Needless to say, it is essential to conduct high-quality testing before DL models are deployed in the22

field; otherwise, the behaviors of DL models can be unpredictable and result in severe accidents after23

deployment. However, the cost of building test oracles (i.e., the ground-truth output) by manually24

labeling a massive set of test instances is prohibitive, especially for tasks requiring experts for accurate25

labeling, such as medical images and malware executables.26

To tackle the above problem, various test prioritization techniques [6, 2, 20] are proposed to identify27

‘high-quality’ test instances from a large amount of unlabeled data, which facilitates revealing more28

failures (e.g., misclassification) of the DL model with reasonable labeling effort. These methods try to29

derive the failure-revealing capability of a test instance with its intrinsic attributes extracted from the30

responses of the model under test (e.g., the softmax-based probabilities given by the target DL model31

to this specific input). DeepGini [6] feeds the unlabeled data to the target DL model and calculates32

confidence-related scores based on the model’s output probabilities to rank the unlabeled test cases.33

Test cases with nearly equal probabilities on all output classes are regarded as less confident ones and34

are likely to reveal model failures. Similarly, Byun et. al. use the uncertainty score obtained from35

MC-Dropout for test input prioritization [2]. Multiple-boundary clustering and prioritization (MCP)36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



[20] considers both the output probabilities and the balance among each classification boundary37

when selecting test cases. All existing works try to identify instances near the decision boundary38

and prioritize them. However, we argue that near-boundary instances are not necessarily failures,39

especially for well-trained classifiers with high accuracy. Also, as failures can be far from the decision40

boundary, existing methods could fail to reveal these remote failures.41

To estimate a test instance’s capability in revealing failures, in addition to the intrinsic attributes42

mentioned above, there is another type of information that provides extra insight into the target43

model’s behavior: the known classification correctness of labeled samples (i.e., training samples44

and previously tested samples) and their relationship to the unlabeled instance. Such data is already45

known and it provides contextual information that reflects the corresponding inference behaviors of46

the target model for a set of similar instances.47

In this work, we present a novel test prioritization technique, namely TestRank, for DL classifiers.48

TestRank exploits both intrinsic and contextual attributes of test instances to evaluate their failure-49

revealing capabilities. Based on the intuition that similar inputs are usually associated with the50

same classification results, we propose to use graph neural networks (GNNs) [14] to summarize the51

neighboring classification correctness for each unlabeled instance into contextual attributes. GNNs52

have been well-studied and valued for their relational inductive bias for extracting graph information.53

Our method, TestRank, constructs a similarity graph on both unlabeled and labeled instances and54

apply the semi-supervised GNN learning to extract the contextual attributes. After that, we aggregate55

intrinsic (such attributes are extracted from the input samples without considering their neighbors)56

and contextual attributes with a neural-network-based binary classifier for test prioritization.57

The contributions of our work are as follows:58

• To the best of our knowledge, TestRank is the first work that takes the contextual information59

from the target DL model into consideration for test input prioritization.60

• We propose to construct a similarity graph on both labeled and unlabeled samples, and61

train a graph neural network to extract useful contextual attributes from the contextual62

information for these unlabeled instances. We also present approximation techniques to63

reduce its computational complexity with minor impact on the performance of TestRank.64

• We propose a simple yet effective neural network that combines the intrinsic attributes65

and contextual attributes of unlabeled test instances for their failure-revealing capability66

estimation.67

We empirically evaluate TestRank on three popular image classification benchmarks: CIFAR-10,68

SVHN, and STL10. The results show that our method outperforms the state-of-the-art methods by a69

considerable margin.70

2 Test Prioritization and Prior Works71

Let us use f : X → Y to represent the given target DL model, where X and Y are the input and72

output space, respectively. For effective testing, the debugging center must do test prioritization73

from a large unlabeled dataset, i.e., select a certain number of test instances from the unlabeled test74

instance pool that can reveal model failures as many as possible. Later, these failures can be fed back75

to the training center for repairing or failure analysis. We define the model failures as follows:76

Definition 1. DL Model Failure. A failure of the DL model can be uncovered by the test instance x77

if the predicted label f (x) is inconsistent with its ground truth label yx, namely f (x) , yx.78

Formally, the debugging center selects and labels b test cases XS (|XS | = b) from the unlabeled test79

instance pool XU . The objective of test prioritization is to maximize the detected failures:80

max |{x| f (x) , yx}|,where x ∈ XS and |XS | = b. (1)

Different solutions are proposed to quantify the failure-revealing capability of unlabeled instances.81

DeepGini [6] proposes to evaluate a single test instance via the DL model’s final statistical output:82

f (t) = 1 − ΣN
i=1 p2

t,i, (2)

where pt,i is the predicted probability that the test case t belongs to the class i. Given the sum of83

pt,i is 1, impurity function f (t) is maximal when all pt,i values are equal. This method tends to84
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select data with high impurity value. Instead of evaluating the overall likelihood of failure for all85

classes, Multiple-Boundary Clustering and Prioritization (MCP) proposes to evaluate it for each pair86

of classes individually [20]. In this way, test instances can be evenly selected for each class pair and87

the failure cases are investigated at the finer granularity. Besides these metrics, Byun et. al. also88

propose to measure the likelihood of incorrect prediction by the uncertainty of the model’s output [2],89

which reflects the degree to which a model is uncertain about its prediction. In practice, evaluating90

uncertainty requires the task DL model to be a Bayesian Neural Network [19, 16] or containing a91

dropout layer for approximation [8].92

Besides examining the DL model’s final outputs, Kim et.al. proposes two surprise adequacy (SA)93

criteria that make use of the target DL’s internal outputs (e.g., the activation traces) [12]. They94

are Likelihood-based Surprise Adequacy Coverage (LSA) and Distance-based Surprise Adequacy95

Coverage (DSA). LSA and DSA measure the likelihood or distance of an unlabeled instance to the96

training instances, respectively. Test samples with higher SA values are preferred in testing.97

To sum up, all existing methods use the target model’s outputs to one input, i.e., its intrinsic attributes,98

for its failure-revealing capability estimation. In contrast, we make use of both intrinsic and contextual99

attributes of an instance for better estimation (see later sections for details).100

3 TestRank101

3.1 Motivation102

Labeled data Unlabeled data in test set

Near-boundary failure
Remote failure

Near-boundary failure
DL model boundary

Unlabeled data which uncover model failures

Figure 1: A motivational example.

The failure-revealing capability of an unla-103

beled test input is closely related to its at-104

tributes for the DL model under test. In this105

work, we distinguish two kinds of attributes106

for an unlabeled instance: the intrinsic at-107

tributes and the contextual attributes.108

We define the intrinsic attributes of an in-109

put as the output responses assigned by the110

target DL model to this specific input. It111

could be, for example, the predictive out-112

put distribution of the input from the target113

DL model, reflecting the sentiment derived114

from the computation performed by the tar-115

get model [2]. This kind of attributes is116

adopted by existing test input prioritization117

approaches [6, 20, 2]. Note that we define118

such attributes as ‘intrinsic’ because they119

are extracted from inputs without consider-120

ing their context, i.e., the classification correctness of its similar instances.121

In contrast with the intrinsic attributes, the contextual attributes provide a deeper insight into the122

target model for the unlabeled samples: the contextual attributes for an unlabeled sample summarize123

the classification correctness of similar and labeled samples. For a particular test instance, such124

contextual attributes are useful and complementary to the intrinsic attributes.125

An illustrative example is shown in Figure 1, wherein we visualize the behavior of a two-class126

classifier on the unlabeled test data and historically labeled data distribution. The blue region includes127

the instances that are near the decision boundary. Intuitively, the classifier is uncertain about the data128

when data is near the decision boundary and is likely to misclassify it. Existing works [20, 6, 2]129

propose various indicators (e.g., confidence/uncertainty/surprise scores) to help identify the near-130

boundary instances. However, the near-boundary instances are not necessarily failures, and some of131

them can be correctly classified by a well-trained classifier. What is worse, such testing approaches132

fail to capture the failures lying far from the decision boundary (i.e., remote failures, shown in the red133

region in Figure 1), because DL models usually output high confidence (or low uncertainty) for these134

inputs. These failures may be caused by limited model capacity, insufficient training data, etc.135

Our key insight is that we can use the contextual information (e.g. the classification correctness136

of similar labeled samples) to help locate both near-boundary and remote failures. The usefulness137
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Figure 2: The overview of TestRank.

of the contextual information is due to the local continuity property [1], which means that inputs138

close in the feature space share similar prediction behavior, e.g., classification results from the target139

model. As shown in Figure 1, there are some already labeled data, whose classification correctness140

are already known, surrounding the unlabeled data. If an unlabeled instance is close to already141

falsely classified data, under the local continuity property, it is likely that this instance is also a model142

failure. This property motivates us to extract the contextual attributes for an unlabeled instance from143

its neighboring labeled data. By combining the extracted contextual attributes with the intrinsic144

attributes, we expect to achieve better failure-revealing capability estimation.145

3.2 Overview146

Figure 2 shows the overview of TestRank, which consists of two attribute extraction paths for the147

final failure-revealing capability estimation:148

1. Path A: intrinsic attributes extraction. Given a pool of unlabeled inputs XU , we use the149

target DL model f to extract the intrinsic attributes em for each input. More precisely, we150

collect the output logits (i.e., vectors before the so f tmax layer) from the DL model as em.151

2. Path B: contextual attributes extraction. First, we use a feature extractor to map the152

original data space into a more compact feature space with good local continuity property.153

Then, we create a similarity graph (i.e., k-Nearest Neighbor Graph) based on the obtained154

feature vectors and their corresponding classification correctness, if any, from both unlabeled155

data pool XU and labeled data pool XL (e.g. training set and previously labeled test samples).156

Last but not least, the graph-based representation learning technique is applied to extract the157

contextual attributes ec for each unlabeled instance. The details are elaborated in Sec. 3.3.158

After attributes em and ec are extracted, we combine them together via a Multi-Layer Perceptron159

(MLP) (see Sec. 3.4 for details). The MLP is responsible for predicting the failure-revealing ability160

for unlabeled test instances. At last, these instances are ranked according to their failure-revealing161

capability, and the top ones are selected under the given labeling budget.162

As intrinsic attributes extraction is straightforward, we discuss the path B and how to combine path A163

and B in detail in the following subsections.164

3.3 Contextual Attributes Extraction165

We represent the contextual information from the DL model as a set of labeled inputs XL and the166

corresponding classification correctness YL ∈ {0, 1}, where correctly classified inputs are labeled as167

0 and misclassified ones are labeled as 1. Given the contextual information, our goal is to extract168

the contextual attributes for each unlabeled test instance x ∈ XU . However, extracting contextual169

attributes from labeled and unlabeled data is a non-trivial task because of the following reasons.170

First, it is well-known that the real data, especially image data, usually locates in high-dimensional171

space, wherein the underlying data distribution will live on complex and non-linear manifold em-172

bedded within the high-dimensional space [1]. Therefore, constructing the relationships between173

different instances is difficult. To address the challenge, we adopt the representation learning pro-174

cess [9, 21, 3, 11], which map the raw data into a compact feature space with better local continuity175

property, such that inputs close in the feature space share similar classification results. Thus, in the176

feature space, the proximity between inputs can be measured with simple distance metrics (e.g., L2,177

cosine).178
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Algorithm 1: GNN-based Contextual Attributes Extraction
Input: Input samples XU ∪ XL, Correctness of labeled samples YL, Number of neighbors k,

Feature extractor fetr, number of GNN layers M, number of training epochs.
Output: Contextual attributes Ec for XU

1 X = fetr(XU ∪ XL) # Extract compact representation;
2 Edge = knn_graph(X, k). # KNN Graph construction;
3 Ã = Edge + IN , D̃ =

∑
j Ãi, j;

4 H0 = X;
5 for number of training epochs do
6 for l = 0, 1, . . . ,M − 1 do
7 Hl+1 = σ(D̃− 1

2 ÃD̃− 1
2 HlΘl),

8 end
9 loss = CrossEntropyLoss(HM ,YL);

10 Update Θ;
11 end
12 Ec = HM−1[index of Xu] # extract the representation from the M − 1th GNN layer;
13 return Ec;

Second, manually designing protocols to summarize the neighboring classification results is subject179

to the imperfection of local continuity. Namely, the result is easily affected by the noisy data in the180

neighboring space. To solve this challenge, we construct a similarity graph based on the labeled and181

unlabeled data, and then apply the more powerful graph learning technique – graph neural networks182

(GNN) – for contextual attribute extraction.183

The GNN empowers graph embedding learning, as it employs a learnable aggregation and transform184

procedure [14], which exploits the relational inductive-bias that exhibits in the graph structure. It185

generates a embedding/representation that summarizes the “contextual information” for each input186

sample, making it easier to separate the correct and misclassified inputs.The contextual attributes187

extracted by the graph neural network can then be combined with the intrinsic attributes to conduct188

the better failure-revealing capability estimation (See Sec. 3.4). The contextual attributes extraction189

process is formally depicted by Algorithm 1.190

Feature Vector Representation (Line 1). As the target model is to be tested, its feature extraction191

quality is not guaranteed. Out of this concern, and to make full use of the labeled and unlabeled data,192

we choose to use a out-of-shelf unsupervised model for feature space construction.193

Among the unsupervised learning techniques, the BYOL [9] explicitly introduces local continuity194

constraint into the learned feature space and shows good results on various downstream tasks.195

Therefore, we train a BYOL model fetr to extract the features from the raw input images. The data196

used to train the BYOL model includes both labeled and unlabeled data: (XU ∪XL), and the resulting197

feature matrix is denoted as X. Please note that the feature extractor can be replaced by any other198

well-trained feature extractor with the local continuity property (e.g., SimCLR [3] and MoCo [11]).199

Similarity Graph Construction and Approximation (Line 2). After the extraction of feature200

representation, we use the simple distance metric (i.e., cosine) to measure the similarity between any201

two test instance xi and x j in X: Dist(i, j) = cosine(xi, x j). Based on the distance matrix Dist, we202

construct a k-NN Graph G, wherein each sample is connected to its top-k most similar samples. The203

connection is represented by an adjacency matrix A ∈ RN×N , where N is the number of sample in X.204

The entry Ai j equals 1 if node j is within the k nearest neighbors of node i, and 0 otherwise. The205

edge weight matrix of the similarity graph is denoted as Edge, wherein each edge weight in Edge, if206

exists, is inversely proportional to the corresponding distance Dist:207

Edgei j =

{
1/Dist(i, j) Ai j = 1.
0 Ai j = 0.

i, j ∈ {0, . . . ,N − 1}. (3)

This means that the connection between two nodes, if exists, is weaker if their proximity is large.208
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Dataset # Class Size Official Train/Test/Extra Split Our Split(TC/DC/HO) Model Architecture Model Acc. On HO set(%) (A/B/C)

CIFAR-10 10 60K 50K/10K/x 20K/39K/1K ResNet-18 70.1/66.4/68.3
SVHN 10 630K 73K/26K/531K 50K/49K/531K Wide-ResNet 94.2/92.5/81.6
STL10 10 13K 5K/8K/x 5K/7.5K/0.5K ResNet-34 54.8/54.0/53.6

Table 1: The Dataset and DL Models.

Constructing such a k-NN graph is, however, computationally expensive. This is because, calculating209

the distance between each pair of test instances requires a computational complexity of O(N2), which210

is prohibitive to scale up to the current massive unlabeled test instances in real applications. Therefore,211

we propose an approximation method for k-NN graph construction. Our intuition is that, since the212

target of graph construction is to exploit the failure patterns of the nearby labeled instances for the213

unlabeled instances, the connections between unlabeled data are less meaningful. Therefore, we214

propose to only consider the connections among labeled data XL, and the connections between labeled215

XL to unlabeled data XU . This approximation reduces the cost from O(N2) to O(P2 + PQ), where P216

and Q stand for the number of data in XL and XU , respectively. Usually, in the real-world scenario,217

P is much smaller than Q, thereby we could obtain a near-linear graph construction algorithm with218

complexity O(PQ).219

GNN-based representation Learning (Line 3-12). To apply the GNN algorithm, we first initialize220

the input node representation matrix H0 in the similarity graph G as X. Recall that in each GNN221

layer, the node representations are propagated between neighbors and aggregated together. Thus, we222

can obtain the representation in the next GNN layer by:223

Hl+1 = σ(D̃−
1
2 ÃD̃−

1
2 HlΘl), (4)

where Ã = Edge + IN , IN is the identity matrix, D̃ =
∑

j Ãi, j, Θl is the trainable weight matrix for the224

lth layer, σ is an activation function and Hl+1 is the output representation matrix. The propagation225

and aggregation are repeated for M layers, with the output dimension of the Mth layer is 1 (for binary226

classification purpose).227

Then, for any labeled node xe ∈ XL, we could obtain a cross entropy loss between the GNN output228

hM and the expected label y ∈ YL (e.g. misclassified or not): Lce = −(ylog(hM) + (1− y)log(1− hM)),229

where hM denotes probability that xe is misclassified. The model is trained via minimizing the loss230

for some training epochs (we set it as 600 in our experiment). After that, we apply the trained GNN231

model (except the last layer) on XU to obtain the Ec (line 12). In this way, the correctness of the232

neighboring samples could be effectively summarized for each node.233

3.4 Failure-revealing Capability Estimation234

To properly combine both the intrinsic attributes em and contextual attributes ec for collaborative235

failure-revealing capability estimation, we formulate the combination function as a simple binary236

classifier (e.g. a MLP). Specifically, the input to the MLP is a concatenation of em and ec, and the237

output is the failure-revealing estimation for an test instance. The final failure-revealing probability238

is produced by applying a sigmoid function S (t) = 1
1+e−t on the MLP model’s output. We use the239

labeled instances (XL,YL) to train the MLP in a supervised manner, with an objective of minimizing240

the binary Cross-Entropy loss. After training, the MLP shall re-weight the importance of intrinsic241

and contextual attributes and make a final decision by assigning a high probability to a test instance if242

it is likely to reveal a failure.243

Finally, we rank the unlabeled test instances in a descending order based on their failure-revealing244

capability. Under the given budget, we select the top ones to label and test.245

4 Experiment246

4.1 Setup247

Datasets. We evaluate the performance of TestRank on three popular image classification datasets:248

CIFAR-10 [15], SVHN [17], and STL10 [4], as shown in Table 1. More elaboration is shown in the249

Appendix.250
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There are mainly two parties involved in the model construction process: the training center and the251

debugging center. Hence, we manually split the dataset into the training center dataset (see the TC252

column in Table 1) and the debugging center dataset (see the DC column in Table 1). To mimic the253

practical scenario where the unlabeled data is abundant, we move a portion of training data to the254

debugging center to create this scenario. In the debugging center, we let a set of test data as labeled255

ones to represent the historical test oracles, and they are 8K/10K/1.5K for CIFAR-10, SVHN, and256

STL10, respectively, which are used to train the GNN and MLP model. The rest of the data in the257

debugging center are left unlabeled. Also, we spare a hold-out dataset (see the HO column), which is258

used for evaluating the model accuracy.259

Target DL model (model under test). As shown in Table 1, we use the popular ResNet and260

WideResNet architectures as the backbone models [10, 22]. To simulate models of different qualities,261

for each dataset, we train three DL models with different randomly drawn sub-sets from the training262

set owned by the training center. For model B and C, the training set are drawn with in-equivalent263

class weights. After training, we report the accuracy of models on the debugging center’s hold-out264

dataset THO in Table 1.265

Evaluation metric. We propose a new evaluation metric for test prioritization techniques: Test266

Relative Coverage (TRC). TRC is defined as the number of detected failures divided by the number of267

budget or the number of total failures identified by the whole unlabeled test set, whichever is minimal:268

TRC =
#Detected Failures

min(#Budget, #Total Failures)
. (5)

When # budget ≤ # total failures, the maximum number of failures can be identified by a test269

prioritization technique equals to the budget. When # budget ≥ # total failures, the maximum number270

of failures can be detected equals to the total number of failures. Therefore, TRC measures how far a271

test prioritization technique is to the ideal case.272

In practice, under the massive unlabeled data, the performance under a small budget is considered273

more important than that under a large budget. To provide an insight on the quality of one test274

prioritization technique under a small budget, we also provide an ATRC metric: ATRC measures the275

average TRC values for budget values less than the total failures:276

ATRC =
1
N

N−1∑
i

TRCi, (6)

where TRCi stands for the TRC value under budget bi, bi , b j, and bi ≤ number of total failures.277

The proposed metrics enhance the ones used by Feng et. al. [6] and Byun et. al. [2]. They use the278

percentage of detected failures against the percentage of budget (and an APFD [5] value derived279

based on it) for evaluation. Their metric would produce a small value under a small budget, regardless280

of how good the prioritization technique is. For example, we assume that there are 10,000 unlabeled281

data, and 2,000 of them can detect model failures. If the budget is 100, the best percentage of detected282

failures is 5%, and the worst is 0%. Thus, under their metric, the gap between the best and the worst283

is only 5%. By contrast, TRC enlarges this gap to 100% to better differentiate the ability of different284

test prioritization techniques.285

4.2 Comparison of TestRank with Baselines286

We evaluate TestRank against five representative baselines: Random, DeepGini [6] (the state-of-the-287

art), MCP [20], DSA [13], and Dropout-uncertainty [2]. The details of each baseline are illustrated288

in the Appendix. For the dropout uncertainty method, we run 1000 times inferences with a default289

dropout rate of 0.5 (the dropout rate is consistent with the one used in [2]). For the DSA method,290

we collect the activation traces of the final convolution layer to calculate the surprise score. For our291

method, we set the number of neighbors for constructing the kNN graph as 100. Also, we use a292

two-layer GNN with a hidden dimension of 32. More ablation studies are in Section 4.3.293

Table 2 compares TestRank with baselines using the ATRC metric. From this table, we have several294

observations. First, compared with the baselines, TestRank can achieve the highest ATRC values295

on all evaluated datasets and models. For instance, on CIFAR-10, TestRank can achieve 9.09%,296

20.07%, 14.38% higher ATRC values than the best baseline DeepGini for model A, B, C, respectively.297
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Dataset Model ID Random MCP DSA Uncertainty DeepGini TestRank
Contextual-Only TestRank

CIFAR-10
A 30.15 58.25 60.93 58.09 67.47 51.39 76.56
B 34.18 46.46 62.34 61.85 67.80 58.85 87.87
C 34.27 65.25 64.47 63.10 71.15 75.33 85.53

SVHN
A 10.16 39.98 55.47 58.29 63.47 44.16 66.06
B 11.85 38.07 57.96 58.06 63.85 51.26 76.36
C 23.41 65.33 69.34 71.80 81.68 93.99 95.32

STL10
A 39.25 66.62 64.56 64.30 69.70 60.09 79.00
B 42.60 69.97 67.12 65.30 72.89 71.90 80.96
C 46.05 71.88 66.60 70.34 73.34 79.55 88.67

Table 2: Comparison of TextRank with baseline methods with ATRC values (%).
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Figure 3: The TRC values against all budgets. X-axis: the budget (%). Y-axis: the TRC value. Note:
this figure is generated with model B on each dataset.

Therefore, our method can distinguish the failure-revealing capability of the unlabeled test inputs298

much more accurately. Second, the TextRank-Contextual-Only column shows the result using only the299

contextual attributes. We observe that the contextual attributes alone can achieve higher effectiveness300

than random prioritization. For example, for model A on CIFAR-10, the effectiveness of random301

prioritization is 30.15% while that of the context-only method is 51.39%. We manually check the302

distribution of failures of model C and find that many failures are centralized on two classes, where the303

training data is insufficient. This kind of failure is easily detected by the contextual attributes-based304

method. Hence, the contextual information is helpful. But still, the context attributes alone are305

not sufficient. The combination of intrinsic and contextual attributes is essential in achieving high306

accuracy failure-revealing capability estimation.307

To show more detailed results, we present the TRC value against every labeling budget in Figure 3.308

We observe that the TRC values for most curves decrease in the beginning and then increase. The309

turning point is when # budget = # total failures. When # budget < # total failures, the TRC values310

decrease because we rank the test instances according to their failure-revealing probabilities. With311

the budget increases, the selected test cases have a lower average failure-revealing ability, thus the312

decreased TRC value. When # budget > # total failures, according to the definition of TRC (see313

Equation 5), the denominator is fixed. Since the increase in budget will increase the number of314

detected failures, the TRC value will increase.315

Figure 3 shows that our method consistently outperforms baselines, especially when the budget is316

small. For example, in Figure 3 (a), TestRank improves the prioritization efficiency by around 20%317

compared to the best baseline when the budget is around 1%. When the budget is rather high (e.g.318

budget ≥ 80%), the difference between different methods is less obvious because most failures can be319

selected under the large budget.320

4.3 Influence of TestRank Configurations321

Feature Extractor. TextRank uses an unsupervised BYOL model trained on both labeled and322

unlabeled data to extract their features. One may wonder if it can be replaced by a supervised model323

(e.g., the target DL model). To investigate this, we replace the feature extractor in TestRank with the324

front layers (we remove the last few linear layers) of the target DL model. The result is shown in the325

TextRank-TargetModel column in Table 3. Comparing with the original TextRank, the average ATRC326

value on the reported datasets and models reduces by 6.23%, which is significant. As the quality327
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Dataset Model TestRank
(%)

TestRank
w/o approx. (%)

TestRank
TargetModel(%)

CIFAR-10
A 76.56 77.77 (+1.21) 68.84 (-7.71)
B 87.87 87.70 (-0.17) 81.46 (-6.40)
C 85.53 88.10 (+2.57) 77.73 (-7.79)

SVHN
A 66.06 63.87 (-2.19) -
B 76.36 82.04 (+5.68) -
C 95.32 96.62 (+1.30) -

STL10
A 79.00 80.50 (+1.50) 67.59 (-11.40)
B 80.96 78.98 (-1.98) 74.43 (-6.52)
C 88.67 89.32 (+0.65) 72.43 (-16.23)

Average Influence (%) +0.95 -6.23

Table 3: The performance (ATRC values) of Tes-
tRank under different configurations.
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Figure 4: The impact of the number of neighbors
k (STL10 dataset).

of the given model is to be examined, its feature extraction performance may not be reliable. Also,328

the dimension of the hidden layer could be huge, making it computationally expensive to calculate329

similarity values between input samples (This is why we do not report results on the SVHN dataset).330

In contrast, the separate model is more controllable, enabling it to extract better features for these331

data. Hence, using a separate feature extractor is necessary.332

k-NN graph approximation. To reduce the computation complexity, TextRank uses approximation333

techniques when constructing the k-NN graph (see Section 3.3). The TextRank-w/o-approx. column in334

Table 3 shows the result when we use the original k-NN graph without approximation. It indicates that335

the average influence of the approximation is small (e.g. 0.95%). Therefore, if there is a computation336

resource limit and the unlabeled test instances are massive, we recommend using the approximation337

to save computation with negligible performance loss greatly.338

Number of nearest neighbors k. When constructing the k-NN graph, the number of neighbors k339

decides the range of the context one node can reach. In previous experiments, the k is set to 100. We340

enlarge this range to (20 - 800) to study the influence. The result is shown in Figure 4.3. One can341

observe that the prioritization effectiveness will decrease when k is too small or too large. When k342

is too small, the context information available to one instance is limited, making it difficult for the343

GNN to extract valuable contextual attributes. On the other hand, when k is too large, the GNN may344

grasp irrelevant/noisy information. Still, TextRank can achieve good performance in a wide range of345

k values. For example, for model A, TextRank is better than the best baseline 69.70% (see Table 2)346

when k is larger than 20. Hence, selecting the number of nearest neighbors k is relatively flexible.347

5 Conclusion and Future Work348

We propose TestRank, a novel test prioritization framework for DL models. To estimate a test349

instance’s failure-revealing capability, TextRank not only leverages the intrinsic attributes of an input350

instance obtained from the target DL model, but also extracts the contextual attributes from the DL351

model’s historical inputs and responses. Our empirical results show that TestRank can capture the352

failure-revealing capabilities of unlabeled test instances more accurately than existing solutions.353

This paper considers each test case equally and aims to identify as many failure-revealing test cases as354

possible. In practice, the impact of each test case could be different. We leave the study of such impact355

for future work. Besides, the current TestRank solution only supports CNN-based classification tasks,356

and we plan to extend it to other tasks with different DL models (e.g., RNN and GNN models) in the357

future.358
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A Appendix456

A.1 Experiment details457

Our code is implemented with the open-source PyTorch (under BSD license) [18] and PyG (under458

MIT license) [7] ML libraries. All of our experiments are performed on a single TITAN V GPU 1.459

A.1.1 Datasets460

CIFAR-10 is officially composed of 50,000 training images and 10,000 test images, and it has ten461

classes of natural images. The Street View House Numbers (SVHN) dataset contains house numbers462

from Google Street View images. It contains 73,257 training images and 26,032 testing images.463

Besides, the SVHN dataset also has an extra set of 531,131 images. The STL10 dataset contains ten464

classes of natural images. In each class, there are 500 training images and 800 test images.465

Please note that the datasets we used are open-sourced and available for research purposes 2 3 4.466

Also, since the data we used is about numbers and the animals, we assume there are no personally467

identifiable information or offensive content.468

A.1.2 Baselines469

Given a DL model and a certain budget, the goal of our method is to select test cases from an470

unlabeled data pool to discover the failures of the given DL model. We compare our work with the471

following representative test prioritization techniques:472

• DeepGini [6]: DeepGini is the state-of-art test case selection technique. DeepGini ranks473

unlabeled test cases by a score defined based on the output confidence (See Equation 2).474

• MCP [20]: In addition to the output confidence, MCP also considers the balance among475

different class boundaries of the selected test inputs. Specifically, MCP groups test cases476

into different clusters, where each cluster stands for a distinct classification boundary, and477

try to equally choose low confidence test cases from each cluster.478

• DSA [2]: Byun et. al. propose to use the distance-based surprise score (DSA) as a test479

prioritization metric, which is originally proposed in [12]. The surprise score measures the480

distance between the test case to the training set. Samples with higher surprise scores are481

prioritized.482

• Uncertainty [2]: By running the model multiple times (e.g. t times) with a certain dropout483

rate, the uncertainty is calculated as the entropy on the averaged output probabilities.484

• Random: Test inputs are randomly drawn from all unlabeled samples.485

A.2 Limitation486

Besides the number of detected failures, failure diversity is another important factor for model487

debugging. In this work, we have the implicit assumption that the historical labeled data can cover the488

input distribution, and under such circumstances, TestRank can prioritize unlabeled tests effectively.489

If, however, the historical test data is severely biased, before prioritizing tests with TestRank, we490

should analyze the test pool and try to fill this gap first. Otherwise, the detected failures are lack of491

diversity. We shall consider this problem in our future research.492

A.3 Broader Impacts493

This work targets on building an efficient and effective test prioritization technique for deep learning494

models, which can help ensure the security of deep learning models after deployment. A variety of495

safety-critical tasks, such as autonomous vehicles, industrial robotics, and medical diagnosis, can496

benefit from such test prioritization technique. We consider the scenario in which the unlabeled data497

1https://www.nvidia.com/en-us/titan/titan-v/
2http://ufldl.stanford.edu/housenumbers/
3https://cs.stanford.edu/ acoates/stl10/
4https://www.cs.toronto.edu/ kriz/cifar.html
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is abundant and a subset of unlabeled data is selected for labeling and testing. While building the498

unlabeled data by collecting them from the Internet or other sources, it may have a chance to include499

some unauthorized or private data. Also, the collected unlabeled data could be biased, resulting in the500

testing being incomplete. To avoid such cases, we should always guarantee that the collected data501

will not violate any kind of privacy or rights, and should also ensure that the collected data cover502

instances as many as possible.503
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