
Appendices

In the remainder of the paper, we give self-contained proofs of all results from the main text.

In Appendix A, we introduce some technical results that we will use in our analysis.

In Appendix B, we prove the main generalization bound (Theorem 1) and show its specialization to
norm balls (Corollaries 1 to 3).

In Appendix C, we prove upper bounds on the norm of the minimal-norm interpolator for a general
norm (Theorem 4), and show applications to the Euclidean case (Theorem 2).

In Appendix D, we show how to combine the previous sets of results to give risk guarantees for the
minimal norm interpolators (Theorems 3 and 5). In particular, Appendix D.2.1 shows the equivalence
of conditions for consistency in the Euclidean norm setting.

In Appendix E, we provide full theorem statements and proofs of the results on `1 interpolation (basis
pursuit) mentioned in Section 6.

A Preliminaries

We will first give some general results useful to the rest of the proofs. Most are standard, but a few
are variations on existing results.

Concentration of Lipschitz functions. Recall that a function f : Rn ! R is L-Lipschitz with
respect to the norm k·k if it holds for all x, y 2 Rn that |f(x) � f(y)|  Lkx � yk. We use the
concentration of Lipschitz functions of a Gaussian.
Theorem 6 (van Handel 2014, Theorem 3.25). If f is L-Lipschitz with respect to the Euclidean norm
and Z ⇠ N(0, In), then

Pr(|f(Z)� E f(Z)| � t)  2e�t
2
/2L2

. (23)

We also use a similar result for functions of a uniformly spherical vector (see Vershynin 2018,
Theorem 5.1.4 and Exercise 5.1.12); we cite a result with sharp constant factor from Ledoux (1992).
Theorem 7 (Spherical concentration; Ledoux 1992). If f is L-Lipschitz with respect to the Euclidean
norm and Z ⇠ Uni(Sn�1) where Sn�1 = {u 2 Rn : kuk = 1} is the unit sphere, Uni(Sn�1) is the
uniform measure on the sphere, and n � 3, then

Pr(|f(Z)� E f(Z)| � t)  2e�(n�2)t2/2L2

. (24)

The following lemma, which we will use multiple timues, says that a o(n)-dimensional subspace
cannot align with a random spherically symmetric vector.
Lemma 1. Suppose that S is a fixed subspace of dimension d in Rn with n � 4, PS is the orthogonal
projection onto S, and V is a spherically symmetric random vector (i.e. V/kV k2 is uniform on the
sphere). Then

kPSV k2
kV k2


p

d/n+ 2
p

log(2/�)/n. (25)

with probability at least 1� �. Conditional on this inequality holding, we therefore have uniformly
for all s 2 S that

|hs, V i| = |hs, PSV i|  ksk2kPSV k2  ksk2kV k2
⇣p

d/n+ 2
p
log(2/�)/n)

⌘
. (26)

Proof. This is trivial if d � n, since the left-hand side is at most 1. Thus assume without loss of
generality that d < n. By symmetry, it suffices to fix S to be the span of basis vectors e1, . . . , ed
and to bound kPSV k2 for V a uniformly random chosen vector from the unit sphere in Rn. Recall
that for any coordinate i, we have EV 2

i
= 1/n by symmetry among the coordinates and the fact

that kV k22 = 1 almost surely. The function v 7! kPSvk2 is a 1-Lipschitz function and E kPSV k2 p
E kPSV k22 =

p
d/n, so by Theorem 7 above

kPSV k2 
p
d/n+

p
2 log(2/�)/(n� 2))

with probability at least 1� �. Using n � 4 gives the result.
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The concentration of the Euclidean norm of a Gaussian vector follows from Theorem 6; we state it
explicitly below.
Lemma 2. Suppose that Z ⇠ N(0, In). Then

Pr(
��kZk2 �

p
n
�� � t)  4e�t

2
/4. (27)

Proof. First we recall the standard fact (see e.g. Chandrasekaran et al. 2012) that
p
n� 1  np

n+ 1
 E kZk2 

p
n.

Because the norm is 1-Lipschitz, it follows from Theorem 6 that

Pr(|kZk2 � E kZk2| � t)  2e�t
2
/2

so
Pr(
��kZk2 �

p
n
�� � t+ 1)  2e�t

2
/2.

Now using that (t� 1)2 � t2/2� 1 shows

Pr(
��kZk2 �

p
n
�� � t)  2e�(t2/2�1)/2  4e�t

2
/4.

Wishart concentration. We recall the notation for the Loewner order on symmetric matrices:
A � B means that B �A is positive semidefinite. Let �min(A) denote the minimum singular value
of an arbitrary matrix A, and �max the maximum singular value. Similarly, let �min(A) denote the
minimum eigenvalue. We use kAkop = �max(A) to denote the operator norm of matrix A.

Theorem 8 (Vershynin 2010, Corollary 5.35). Let n,N 2 N. Let A 2 RN⇥n be a random matrix
with entries i.i.d. N(0, 1). Then for any t > 0, it holds with probability at least 1 � 2 exp(�t2/2)
that p

N �
p
n� t  �min(A)  �max(A) 

p
N +

p
n+ t. (28)

Corollary 4. Suppose X1, . . . , Xn ⇠ N(0,⌃) are independent with ⌃ : d⇥d a positive semidefinite
matrix, t > 0 and n � 4(d+ t2). Let ⌃̂ = 1

n

P
i
XiXT

i
be the empirical covariance matrix. Then

with probability at least 1� �,
(1� ✏)⌃ � ⌃̂ � (1 + ✏)⌃ (29)

with ✏ = 3
p
d/n+ 3

p
2 log(2/�)/n.

Proof. Let X : n⇥ d be the random matrix with rows X1, . . . , Xn so that ⌃̂ = 1
n
XTX . By equality

in distribution, we can take Z : n⇥ d to have N(0, 1) independent entries and write X = Z⌃1/2 and

⌃�1/2⌃̂⌃�1/2 =
1

m
⌃�1/2XTX⌃�1/2 =

1

n
ZTZ.

By definition of singular values, from Theorem 8 the eigenvalues of ZTZ/n are bounded between
(1�

p
d/n�

p
t2/n)2 and (1 +

p
d/n+

p
t2/n)2. Since 1� (1� x)2  (1 + x)2 � 1, using the

inequality (1 + x)2  1 + 3x for x 2 [0, 1], we have shown that

kI � ⌃�1/2⌃̂⌃�1/2kop  (1 +
p

d/n+
p
t2/n)2 � 1  3

p
d/n+ 3

p
t2/n.

Rewriting and taking t2 = 2 log(2/�) gives the result.

Gaussian Minmax Theorem. The following result is Theorem 3 of Thrampoulidis et al. (2015),
known as the Convex Gaussian Minmax Theorem or CGMT (see also Theorem 1 in the same
reference). As explained there, it is a consequence of the main result of Gordon (1985), known as
Gordon’s Theorem or the Gaussian Minmax Theorem. Despite the name, convexity is only required
for one of the theorem’s conclusions.
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Theorem 9 (Convex Gaussian Minmax Theorem; Gordon 1985; Thrampoulidis et al. 2015). Let
Z : n⇥ d be a matrix with i.i.d. N(0, 1) entries and suppose G ⇠ N(0, In) and H ⇠ N(0, Id) are
independent of Z and each other. Let Sw, Su be compact sets and  : Sw ⇥ Su ! R be an arbitrary
continuous function. Define the Primary Optimization (PO) problem

�(Z) := min
w2Sw

max
u2Su

hu, Zwi+  (w, u) (30)

and the Auxiliary Optimization (AO) problem
�(G,H) := min

w2Sw

max
u2Su

kwk2hG, ui+ kuk2hH,wi+  (w, u). (31)

Under these assumptions, Pr(�(Z) < c)  2Pr(�(G,H)  c) for any c 2 R.

Furthermore, if we suppose that Sw, Su are convex sets and  (w, u) is convex in w and concave in u,
then Pr(�(Z) > c)  2Pr(�(G,H) � c).

In other words, the first conclusion says that high probability lower bounds on the auxiliary optimiza-
tion �(G,H) imply high probability lower bounds on the primary optimization �(Z). Importantly,
this direction holds without any convexity assumptions. Under the additional convexity assumptions,
the second conclusion gives a similar comparison of high probability upper bounds.

In our analysis, we need a slightly more general statement of the Gaussian Minmax Theorem than
Theorem 9: we need the minmax formulation to include additional variables which only affect the
deterministic term in the minmax problem. It’s straightforward to prove this result by repeating
the argument in Thrampoulidis et al. (2015); below we give an alternative proof which reduces to
Theorem 9, by introducing extremely small extra dimensions to contain the extra variables. Intuitively,
this works because the statement of the GMT allows for arbitrary continuous functions  , with no
dependence on their quantitative smoothness.
Theorem 10 (Variant of GMT). Let Z : n⇥ d be a matrix with i.i.d. N(0, 1) entries and suppose
G ⇠ N(0, In) and H ⇠ N(0, Id) are independent of Z and each other. Let SW , SU be compact
sets in Rd ⇥ Rd

0
and Rn ⇥ Rn

0
respectively, and let  : SW ⇥ SU ! R be an arbitrary continuous

function. Define the Primary Optimization (PO) problem
�(Z) := min

(w,w0)2SW

max
(u,u0)2SU

hu, Zwi+  ((w,w0), (u, u0)) (32)

and the Auxiliary Optimization (AO) problem
�(G,H) := min

(w,w0)2SW

max
(u,u0)2SU

kwk2hG, ui+ kuk2hH,wi+  ((w,w0), (u, u0)). (33)

Under these assumptions, Pr(�(Z) < c)  2Pr(�(G,H)  c) for any c 2 R.

Proof. Let ✏ 2 (0, 1) be arbitrary and
SW,✏ := {(w, ✏w0) : (w,w0) 2 SW }, SU,✏ := {(u, ✏u0) : (u, u0) 2 SU}.

Define  ✏((w,w0), (u, u0)) :=  ((w, 1
✏
w0), (u, 1

✏
u0)) so that if W = (w, ✏w0) and U = (u, ✏u0),

then  ✏(W,U) =  ((w,w0), (u, u0)). We also define Sw = {w 2 Rd : 9w0 s.t. (w,w0) 2 SW }.
The other sets Sw0 , Su and Su0 are defined similarly. It is clear that Sw, Sw0 , Su, Su0 , SW,✏ and SU,✏

are all still compact in their respective topology, and  ✏ is continuous for every ✏ > 0.

Let Z 0 : (n + n0) ⇥ (d + d0) be a matrix with i.i.d. N(0, 1) entries such that the top left n ⇥ d
matrix is Z. Similarly, we define G0 to be a (n+ n0)-dimensional Gaussian vector with independent
coordinates such that the first n coordinates are G, and H 0 to be a (d+ d0)-dimensional Gaussian
vector with independent coordinates such that the first d coordinates are H . Next, consider the
augmented PO and AO:

�✏(Z
0) := min

W2SW,✏

max
U2SU,✏

hU,Z 0W i+  ✏(W,U)

�✏(G
0, H 0) := min

W2SW,✏

max
U2SU,✏

kWk2hG0, Ui+ kUk2hH 0,W i+  ✏(W,U)
(34)

It is clear that for a small value of ✏, the augmented problem will be close to the original problem.
More precisely, for every (w,w0) 2 SW and (u, u0) 2 SU

|h(w, ✏w0), Z 0(u, ✏u0)i � hw,Zui|
= |✏h(0, w0), Z 0(u, 0)i+ ✏h(w, 0), Z 0(0, u0)i+ ✏2h(0, w0), Z 0(0, u0)i|
 ✏(R(Sw) +R(Sw0))(R(Su) +R(Su0))kZ 0kop = ✏AkZ 0kop

(35)
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where A := (R(Sw) + R(Sw0))(R(Su) + R(Su0)) is deterministic and does not depend on ✏.
Similarly, it is routine to check

kwk2hG, ui = kwk2(hG0, (u, ✏u0)i � ✏hG0, (0, u0)i)
kuk2hH,wi = kuk2(hH 0, (w, ✏w0)i � ✏hH 0, (0, w0)i)

so by the triangle inequality and Cauchy-Schwarz inequality, we have
��k(w, ✏w0)k2hG0, (u, ✏u0)i � kwk2hG, ui

��

 ✏R(Sw0)kG0k2(R(Su) + ✏R(Su0)) + ✏R(Sw)kG0k2R(Su0)  ✏AkG0k2
(36)

and
��k(u, ✏u0)k2hH 0, (w, ✏w0)i � kuk2hH,wi

��

 ✏R(Su0)kH 0k2(R(Sw) + ✏R(Sw0)) + ✏R(Su)kH 0k2R(Sw0)  ✏AkH 0k2
(37)

From (35), it follows that
|�✏(Z

0)� �(Z)|  ✏AkZ 0kop . (38)

Similarly, from (36) and (37), it follows that

|�✏(G0, H 0)� �(G,H)|  ✏A(kG0k2 + kH 0k2). (39)

Approximating the original PO and AO by (34) allows us to directly apply the Gaussian Minmax
Theorem. For any c 2 R, we have

Pr(�(Z) < c)  Pr(�✏(Z
0) < c+

p
✏) + Pr(✏AkZ 0kop >

p
✏)

 2Pr(�✏(G
0, H 0)  c+

p
✏) + Pr(✏AkZ 0kop >

p
✏)

 2Pr(�(G0, H 0)  c+ 2
p
✏) + 2Pr

�
✏A(kG0k2 + kH 0k2) >

p
✏
�

+ Pr(✏AkZ 0kop >
p
✏)

 2Pr(�(G0, H 0)  c+ 2
p
✏) + 2Pr

✓
kG0k2 >

1

2A
p
✏

◆

+ 2Pr

✓
kH 0k2 >

1

2A
p
✏

◆
+ Pr

✓
kZ 0kop >

1

A
p
✏

◆

where we used (38) in the first inequality, Theorem 9 in the second inequality, and (39) in the last
inequality. This holds for arbitrary ✏ > 0 and taking the limit ✏ ! 0 shows the result, because the
CDF is right continuous (Durrett 2019) and the remaining terms go to zero by standard concentration
inequalities (Lemma 2 and Theorem 8).

B Uniform Convergence Bounds

We will now prove the main generalization bound, as well as its special cases in norm balls and
specifically Euclidean norm balls.

B.1 General case: Proof of Theorem 1

For convenience, we restate the definition of covariance splitting here:
Definition 2 (Covariance splitting). Given a positive semidefinite matrix ⌃ 2 Rd⇥d, we write
⌃ = ⌃1 � ⌃2 if ⌃ = ⌃1 + ⌃2, each matrix is positive semidefinite, and their spans are orthogonal.

It follows from our definition that ⌃1⌃2 = 0. Although our results in Appendix C requires this
orthogonality condition (in particular, Lemma 8), we note that all of our results here in Appendix B
continue to hold as long as ⌃ = ⌃1 + ⌃2 and both ⌃1,⌃2 are positive semi-definite. To apply the
Gaussian Minimax Theorem, we first formulate the generalization gap as an optimization problem in
terms of a random matrix with N(0, 1) entries.
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Lemma 3. Under the model assumptions in (1), let K be an arbitrary compact set and ⌃ = ⌃1�⌃2.
Define the primary optimization problem (PO) as

� := max
(w1,w2)2S

Z1w1+Z2w2=⇠

kw1k22 + kw2k22 (40)

where
S = {(w1, w2) : 9w 2 K s.t. w1 = ⌃1/2

1 (w � w⇤) and w2 = ⌃1/2
2 (w � w⇤)} (41)

and Z1, Z2 are both n⇥ d random matrices with i.i.d. standard normal entries independent of ⇠ and
each other. Then the generalization gap of interpolators is equal in distribution to the sum of the
Bayes risk and the PO:

max
w2K,L̂(w)=0

L(w)� L̂(w)
D
= �2 + �. (42)

Proof. Recall that L(w) = �2 + kw � w⇤k2⌃ and L̂(w) = 0 is equivalent to Y = Xw. Observe that

X
D
= Z1⌃

1/2
1 + Z2⌃

1/2
2 and kwk2⌃ = kwk2⌃1

+ kwk2⌃2

so we can decompose

max
w2K,L̂(w)=0

L(w)� L̂(w) = �2 + max
w2K,Y=Xw

kw � w⇤k2⌃

= �2 + max
w2K,X(w�w⇤)=⇠

kw � w⇤k2⌃
D
= �2 + max

w2K�w
⇤

(Z1⌃
1/2
1 +Z2⌃

1/2
2 )w=⇠

kwk2⌃1
+ kwk2⌃2

= �2 + �.

Lemma 4 (Application of GMT). In the same setting as Lemma 3, let G ⇠ N(0, In), H ⇠ N(0, Id)
be Gaussian vectors independent of Z1, Z2, ⇠ and each other. With the same definition of S, define
the auxiliary optimization problem (AO) as

� := max
(w1,w2)2S

k⇠�Z1w1�Gkw2k2k2hw2,Hi

kw1k22 + kw2k22 (43)

Then it holds that
Pr(� > t |Z1, ⇠)  2Pr(� � t |Z1, ⇠), (44)

and taking expectations we have
Pr(� > t)  2Pr(� � t). (45)

Proof. By introducing Lagrange multipliers, we have

� = max
(w1,w2)2S

min
�

kw1k22 + kw2k22 + h�, Z2w2 � (⇠ � Z1w1)i

= max
(w1,w2)2S

min
�

h�, Z2w2i+ kw1k22 + kw2k22 � h�, ⇠ � Z1w1i.

By independence, the distribution of Z2 remains the same after conditioning on Z1 and ⇠ and the
randomness in � comes solely from Z2. Since the mapping from w to (w1, w2) is continuous and
K is compact, S is compact. To apply Theorem 10, we can take  (w1, w2,�) = kw1k22 + kw2k22 �
h�, ⇠�Z1w1i, which is clearly continuous. The only challenge is that the domain of � is not compact,
but we can handle it by a truncation argument. Define

�r := max
(w1,w2)2S

min
k�kr

h�, Z2w2i+ kw1k22 + kw2k22 � h�, ⇠ � Z1w1i (46)

and observe that �  �r, since the minimum in the definition of �r ranges over a smaller set. The
AO associated with �r is
�r : = max

(w1,w2)2S
min
k�kr

kw2k2hG,�i+ k�k2hH,w2i+ kw1k22 + kw2k22 � h�, ⇠ � Z1w1i

= max
(w1,w2)2S

min
k�kr

k�k2hH,w2i � h�, ⇠ � Z1w1 �Gkw2k2i+ kw1k22 + kw2k22

= max
(w1,w2)2S

min
0�r

� (hH,w2i � k⇠ � Z1w1 �Gkw2k2k2) + kw1k22 + kw2k22.

(47)
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We observe that the untruncated auxiliary problem � from (43) has a completely analogous form:

� = max
(w1,w2)2S

min
��0

� (hH,w2i � k⇠ � Z1w1 �Gkw2k2k2) + kw1k22 + kw2k22.

This is because if hH,w2i � k⇠ � Z1w1 �Gkw2k2k2 � 0 then the minimum is achieved at � = 0,
and if w1, w2 do not satisfy the constraint then taking �! 1 sends the minimum to �1. From this
formulation, we see that �  �r  �s for any r � s � 0 since the minimum is taken over a larger
set as r grows, and is unconstrained in �.

The proof that limr!1 �r = � is an exercise in real analysis, which splits into two cases:

1. The auxiliary problem � is infeasible. In this case, we know that for all (w1, w2) 2 S

hH,w2i � k⇠ � Z1w1 �Gkw2k2k2 < 0.

By compactness of S and continuity of the right hand side, there exists µ =
µ(⇠, Z1, G,H) < 0 (in particular, independent of r) such that

hH,w2i � k⇠ � Z1w1 �Gkw2k2k2  µ.

Therefore, we show

�r  max
(w1,w2)2S

min
0�r

�µ+ kw1k22 + kw2k22

= rµ+ max
(w1,w2)2S

kw1k22 + kw2k22.

Since the second term is bounded and has no dependence on r, taking r ! 1 we have
�r ! �1 as desired (since � = �1 by definition).

2. The auxiliary problem � is feasible. In this case, we can let (w1(r), w2(r)) 2 S be
an arbitrary maximizer achieving the objective �r for each r � 0 by compactness. By
compactness again, the sequence (w1(r), w2(r))1r=1 at positive integer values of r has a
subsequential limit (w1(1), w2(1)) 2 S, i.e. this point satisfies (w1(1), w2(1)) =
limn!1(w1(rn), w2(rn)) for some sequence rn satisfying rn � n.

Suppose that (w1(1), w2(1)) does not satisfy the last constraint defining �, then by
continuity, there exists µ < 0 and a sufficiently small ✏ > 0 such that for all kw1 �
w1(1)k2  ✏ and kw2 � w2(1)k2  ✏, we have

hH,w2i � k⇠ � Z1w1 �Gkw2k2k2  µ.

This implies that for sufficiently large n, we have

hH,w2(rn)i � k⇠ � Z1w1(rn)�Gkw2(rn)k2k2  µ

and

�rn  rnµ+ kw1(rn)k22 + kw2(rn)k22
 rnµ+ max

(w1,w2)2S
kw1k22 + kw2k22

so �rn ! �1 – but this is impossible, since considering any feasible element of � we can
show that �rn � 0. By contradiction, we find that (w1(1), w2(1)) is feasible for �.

By taking � = 0 in the definition of �r we have

�rn  kw1(rn)k22 + kw2(rn)k22.

By continuity, we show that

lim sup
n!1

�rn  lim
n!1

kw1(rn)k22 + kw2(rn)k22

= kw1(1)k22 + kw2(1)k22  �.

Since �rn � �, the limit of �rn exists and equals �. We can conclude that limr!1 �r = �
because �r is a monotone decreasing function of r.
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By our version of the Gaussian Minmax Theorem, Theorem 10,

Pr(�r > t|Z1, ⇠) = Pr(��r < �t|Z1, ⇠)  2Pr(��r  �t|Z1, ⇠) = 2Pr(�r � t|Z1, ⇠)

We introduce the negative signs here because we have originally a max-min problem instead of a
min-max problem. This means the comparison theorem gives an upper bound, instead of a lower
bound, on the quantity of interest.

Finally, we can conclude

Pr(� > t|Z1, ⇠)  inf
r�0

Pr(�r > t|Z1, ⇠)  2 inf
r�0

Pr(�r � t|Z1, ⇠)  2Pr(� � t|Z1, ⇠).

where the last step uses continuity (from above) of probability measure and the fact that �r monotoni-
cally decreases to � almost surely.

Recall the definition of Gaussian width and radius:
Definition 1. The Gaussian width and the radius of a set S ⇢ Rd are

W (S) := E
H⇠N(0,Id)

sup
s2S

|hs,Hi| and rad(S) := sup
s2S

ksk2.

It remains to analyze the auxiliary problem, which we do in the following lemma:

Lemma 5. Let � = 33
q

log(32/�)
n

+ 18
q

rank(⌃1)
n

. If n is sufficiently large such that �  1, then
with probability at least 1� �, it holds that

�  1 + �

n
(W (⌃1/2

2 K) + rad(⌃1/2
2 K)

p
2 log(16/�) + kw⇤k⌃2

p
2 log(16/�))2 � �2. (48)

Proof. For notational simplicity, define

↵ := 2

r
log(32/�)

n

� := 3

r
rank(⌃1)

n
+ 3

r
2 log(16/�)

n

⇢ :=

r
rank(⌃1) + 1

n
+ 2

r
log(16/�)

n
.

By a union bound, the following collection of events, which together we call E , occurs with probability
at least 1� �:

1. (Approximate orthogonality.) By Lemma 1, uniformly over all w1 2 ⌃1/2
1 (K � w⇤) and

a 2 R, it holds that

|h⇠a� Z1w1, Gi|  k⇠a� Z1w1k2kGk2⇢ (49)

and
|h⇠, Z1w1i|  k⇠k2kZ1w1k2⇢. (50)

2. (Approximate isometry.) By Corollary 4, uniformly over all w1 2 ⌃1/2
1 (K � w⇤), it holds

that

(1� �)kw1k22  kZ1w1k22
n

 (1 + �)kw1k22. (51)

3. (Typical norm of G and ⇠.) By Lemma 2, it holds that

� ↵  1p
n
kGk2 � 1  ↵ (52)

and
� ↵�  1p

n
k⇠k2 � �  ↵�. (53)
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4. (Typical size of h⌃1/2
2 w⇤, Hi.) By the standard Gaussian tail bound Pr(|Z| � t)  2e�t

2
/2,

it holds that
|h⌃1/2

2 w⇤, Hi|  kw⇤k⌃2

p
2 log(16/�) (54)

because the marginal law of h⌃1/2
2 w⇤, Hi is N(0, kw⇤k2⌃2

).

5. (Gaussian process concentration.) By Theorem 6, it holds that

max
w22⌃1/2

2 K
|hw2, Hi|  W (⌃1/2

2 K) + rad(⌃1/2
2 K)

p
2 log(16/�) (55)

because max
w22⌃1/2

2 K |hu2, Hi| is a rad(⌃1/2
2 K)-Lipschitz function of H .

From now on, the argument is conditional on the event E defined above. By squaring the last
constraint in the definition of � we see that

hw2, Hi2 � k⇠ � Z1w1 � kw2k2Gk22
= k⇠ � Z1w1k22 + kw2k22 kGk22 � 2h⇠ � Z1w1, kw2k2Gi
� (1� ⇢)[k⇠ � Z1w1k22 + kw2k22 kGk22]

where in the last line we used (49) and the AM-GM inequality (ab  a2/2 + b2/2). Rearranging
gives the inequality

kw2k22 
(1� ⇢)�1hw2, Hi2 � k⇠ � Z1w1k22

kGk22


(1� ⇢)�1hw2, Hi2 � (1� ⇢)[k⇠k22 + kZ1w1k22]

kGk22


(1� ⇢)�1hw2, Hi2 � (1� ⇢)[k⇠k22 + kZ1w1k22]

(1� ↵)2n

 � (1� �)(1� ⇢)

(1� ↵)2
kw1k22 +

(1� ⇢)�1hw2, Hi2 � (1� ⇢) k⇠k22
(1� ↵)2n

where in the second inequality we used (50) and the AM-GM inequality again, in the third inequality
we used (52) and in the last inequality we used (51). This shows

(1� �)(1� ⇢)(kw1k22 + kw2k22) 
(1� �)(1� ⇢)

(1� ↵)2
kw1k22 + kw2k22


(1� ⇢)�1hw2, Hi2 � (1� ⇢) k⇠k22

(1� ↵)2n
.

Dividing through by the first two factors on the left hand side and plugging in (53) gives

kw1k22 + kw2k22 
(1� ⇢)�2hw2, Hi2 � k⇠k22

(1� �)(1� ↵)2n

 1

(1� �)(1� ↵)2(1� ⇢)2
hw2, Hi2

n
� �2

1� �
.

We can simplify the first term by defining � = (1� �)�1(1� ↵)�2(1� ⇢)�2 � 1 and the second
term by observing � �

2

1��
 ��2. Finally, plugging into (43) gives

�  max
(w1,w2)2S

(1 + �)
hw2, Hi2

n
� �2

=
1 + �

n
max

w22⌃1/2
2 (K�w⇤)

|hw2, Hi|2 � �2

 1 + �

n

 
max

w22⌃1/2
2 K

|hw2, Hi|+ |h⌃1/2
2 w⇤, Hi|

!2

� �2
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by the triangle inequality, and (48) follows by (54) and (55). To deduce the explicit bound for �, first
use that

(1� ↵)2 = 1� 2↵+ ↵2 � 1� 2↵

and similarly (1� ⇢)2 � 1� 2⇢ to show
1

(1� �)(1� ↵)2(1� ⇢)2
 1

(1� �)(1� 2⇢)(1� 2↵)
.

If �, ⇢ < 1/2, then

(1� �)(1� 2↵)(1� 2⇢) = 1� � � 2↵� 2⇢+ 2�↵+ 2�⇢+ 4↵⇢� 4�↵⇢

� 1� � � 2↵� 2⇢� 4�↵⇢ > 1� 2� � 2↵� 2⇢.

Provided that 2� + 2↵ + 2⇢ < 1/2 (which implies that �, ⇢ < 1/2), we can use the inequality
(1� x)�1  1 + 2x for x 2 [0, 1/2] to show that

1

(1� �)(1� ↵)2(1� ⇢)2
 1

1� 2� � 2↵� 2⇢
 1 + 4� + 4↵+ 4⇢

and thus we can choose

� = 33

r
log(32/�)

n
+ 18

r
rank(⌃1)

n
� 4� + 4↵+ 4⇢

We are finally ready to prove our main generalization bound:
Theorem 1 (Main generalization bound). There exists an absolute constant C1  66 such that the
following is true. Under the model assumptions in (1), let K be an arbitrary compact set, and take

any covariance splitting ⌃ = ⌃1 � ⌃2. Fixing �  1/4, let � = C1

✓q
log(1/�)

n
+
q

rank(⌃1)
n

◆
. If

n is large enough that �  1, then the following holds with probability at least 1� �:

sup
w2K,L̂(w)=0

L(w)  1 + �

n

"
W (⌃1/2

2 K) +
⇣
rad(⌃1/2

2 K) + kw⇤k⌃2

⌘
s

2 log

✓
32

�

◆#2
.

Proof. By Lemmas 3 and 4, we show that for any t

Pr

 
max

w2K,L̂(w)=0
L(w)� L̂(w) > t

!
= Pr(� > t� �2)  2Pr(� � t� �2).

By Lemma 5, the above is upper bounded by � if we set t� �2 according to (48) with � replaced by
�/2. Observe that the �2 term cancels, and the proof is complete.

Remark 2 (Translation-invariant version). Our generalization guarantee is stated in terms of W (·)
and rad(·), which are not translation-invariant. However, the generalization guarantee of Theorem 1
can be made translation invariant, e.g. replacing W (⌃1/2

2 K) by W (⌃1/2
2 (K � a)) for an arbitrary

a 2 Rd, by recentering the problem before applying Theorem 1, i.e. by subtracting Xa from both
sides of the interpolation constraint Xw = Xw⇤ + ⇠.

We also note that in Theorem 1, there is no requirement that w⇤ 2 K, so the true function may not
necessarily lie in the class even if there is no noise (� = 0).

B.2 Specialization to General Norm Balls

For convenience, we restate the general definition of effective rank.
Definition 5. The effective k·k-ranks of a covariance matrix ⌃ are given as follows. Let H ⇠
N(0, Id), and define v⇤ = argmin

v2@k⌃1/2Hk⇤ kvk⌃. Then

rk·k(⌃) =

 
E
��⌃1/2H

��
⇤

supkwk1 kwk⌃

!2

and Rk·k(⌃) =

 
E
��⌃1/2H

��
⇤

E kv⇤k⌃

!2

.

21



Applying Theorem 1 to an arbitrary norm ball yield the following:
Corollary 3. There exists an absolute constant C1  66 such that the following is true. Under the
model assumptions in (1), take any covariance splitting ⌃ = ⌃1 � ⌃2 and let k·k be an arbitrary

norm. Fixing �  1/4, let � = C1

✓q
log(1/�)
rk·k(⌃2)

+
q

log(1/�)
n

+
q

rank(⌃1)
n

◆
. If B � kw⇤k and n is

large enough that �  1, then the following holds with probability at least 1� �:

sup
kwkB,L̂(w)=0

L(w)  (1 + �)

⇣
B · Ek⌃1/2

2 Hk⇤
⌘2

n
. (9)

Proof. Let K = {w : kwk  B} in Theorem 1. It is easy to see that

W (⌃1/2
2 K) = E sup

kwkB

|h⌃1/2
2 w,Hi| = E sup

kwkB

|hw,⌃1/2
2 Hi| = B E k⌃1/2

2 Hk⇤

and
R(⌃1/2

2 K) = sup
kwkB

k⌃1/2
2 wk2 = B sup

kwk1
kwk⌃2 .

From our definition, it is clear that

rk·k(⌃) =

✓
W (⌃1/2K)

R(⌃1/2K)

◆2

.

Observe that

kw⇤k⌃2  kw⇤k sup
kwk1

kwk⌃2  B sup
kwk1

kwk⌃2 = R(⌃1/2
2 K).

The two above equations imply

W (⌃1/2
2 K) + rad(⌃1/2

2 K)
p
2 log(32/�) + kw⇤k⌃2

p
2 log(32/�)

W (⌃1/2
2 K) + 2

p
2 log(32/�) rad(⌃1/2

2 K)

=W (⌃1/2
2 K) + 2

s
2 log(32/�)

rk·k(⌃2)
W (⌃1/2

2 K)

=

 
1 + 2

s
2 log(32/�)

rk·k(⌃2)

!⇣
B E k⌃1/2

2 Hk⇤
⌘
.

Under our assumptions that �  1 and �  1/4, using the inequality (1 + x)(1 + y)  1 + x+ 2y
for x  1, it is routine to check that

(1 + �)

 
1 + 2

s
2 log(32/�)

rk·k(⌃2)

!2

 1 + �.

Plugging into Theorem 1 concludes the proof.

B.3 Special Case: Euclidean Norm

In the Euclidean setting, the effective ranks are defined as follows:
Definition 3 (Bartlett et al. 2020). The effective ranks of a covariance matrix ⌃ are

r(⌃) =
Tr(⌃)

k⌃kop
and R(⌃) =

Tr(⌃)2

Tr(⌃2)
.

Due to the small difference between r(⌃) and rk·k2
(⌃), our generalization bound below requires a

slightly different proof (see discussion in Section 5), but the proof strategies are exactly the same.
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Corollary 2. There exists an absolute constant C1  66 such that the following is true. Under (1),

pick any split ⌃ = ⌃1 � ⌃2, fix �  1/4, and let � = C1

✓q
log(1/�)
r(⌃2)

+
q

log(1/�)
n

+
q

rank(⌃1)
n

◆
.

If B � kw⇤k2 and n is large enough that �  1, the following holds with probability at least 1� �:

sup
kwk2B,L̂(w)=0

L(w)  (1 + �)
B2 Tr(⌃2)

n
. (5)

Proof. The proof is identical to Corollary 3 except for the inconsequential difference between
E k⌃1/2

2 gk2 and Tr(⌃2)1/2. It is easy to see that

W (⌃1/2
2 K)  B Tr(⌃2)

1/2 and R(⌃1/2
2 K) = Bk⌃2k1/2op .

By the same argument, we can show that kw⇤k⌃2  R(⌃1/2
2 K) and

W (⌃1/2
2 K) + rad(⌃1/2

2 K)
p
2 log(32/�) + kw⇤k⌃2

p
2 log(32/�)

W (⌃1/2
2 K) + 2

p
2 log(32/�) rad(⌃1/2

2 K)

B Tr(⌃2)
1/2 + 2

p
2 log(32/�)Bk⌃2k1/2op

=

 
1 + 2

s
2 log(32/�)

r(⌃2)

!
B Tr(⌃2)

1/2.

Plugging into Theorem 1 concludes the proof.

Next, by choosing a particular covariance split, we prove the speculative bound from Zhou et al.
(2020) when the features are Gaussian:
Corollary 1 (Proof of the speculative bound (?) for Gaussian data). Fix any �  1/4. Under the
model assumptions in (1) with B � kw⇤k2 and n & log(1/�), for some � . 4

p
log(1/�)/n, it holds

with probability at least 1� � that

sup
kwk2B,L̂(w)=0

L(w)  (1 + �)
B2 Tr(⌃)

n
. (4)

Proof. By Theorem 1 and the same argument in proof of Corollary 2, we obtain

sup
w2K,Y=Xw

L(w)  1 + �

n

 
B Tr(⌃2)

1/2 +Bk⌃2k1/2op · 2

s

2 log

✓
32

�

◆!2

 B2

n
(1 + �)

⇣
Tr(⌃)1/2 + k⌃2k1/2op · 6

p
log(1/�)

⌘2
.

Let ⌃1 contain the largest eigenvalues, then we have
rank(⌃1)k⌃2kop  Tr(⌃).

Plugging in the inequality shows

sup
w2K,Y=Xw

L(w)  B2 Tr(⌃)

n
(1 + �)

 
1 + 6

s
log(1/�)

rank(⌃1)

!2

.

Therefore, we can pick � = (1 + �)
⇣
1 + 6

q
log(1/�)
rank(⌃1)

⌘2
� 1 and it is clear that

� .
r

log(1/�)

n
+

r
rank(⌃1)

n
+

s
log(1/�)

rank(⌃1)

for sufficiently large n and rank(⌃1). To balance the last two terms, we can pick a covariance split
such that rank(⌃1) is of order [n log(1/�)]1/2, which proves the 4

p
log(1/�)/n rate.
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C Bounds on the Norm of the Minimal-Norm Interpolator

In this section, we will give bounds – again based on the Gaussian Minimax Theorem – for the norm
of the minimal norm interpolator, first in general and then in the Euclidean case.

C.1 General Norms: Proof of Theorem 4

Similar to the analysis in the previous section, we first formulate the minimal norm as an optimization
problem in terms of a random matrix with N(0, 1) entries. Next, we apply the Convex Gaussian
Minimax Theorem.
Lemma 6. Under the model assumptions in (1), let k·k be an arbitrary norm and Z : n ⇥ d be a
matrix with i.i.d. N(0, 1) entries independent of ⇠. Define the primary optimization problem (PO) as

� := min
Zw=⇠

k⌃�1/2wk. (56)

Then for any t, it holds that

Pr
⇣

min
Xw=Y

kwk > t
⌘
 Pr ( kw⇤k+ � > t ) . (57)

Proof. By equality in distribution, we can write X = Z⌃1/2. By the triangle inequality and two
changes of variables, we have

min
Xw=Y

kwk = min
Xw=⇠

kw + w⇤k

 kw⇤k+ min
Z⌃1/2w=⇠

kwk

= kw⇤k+ min
Zw=⇠

k⌃�1/2wk.

Lemma 7 (Application of CGMT). In the same setting as Lemma 6, let G ⇠ N(0, In), H ⇠ N(0, Id)
be Gaussian vectors independent of ⇠ and each other. Define the auxiliary optimization problem (AO)
as

� := min
k⇠�kwk2Gk2hH,wi

k⌃�1/2wk. (58)

Then it holds that
Pr(� > t | ⇠)  2Pr(� � t | ⇠), (59)

and taking expectations we have

Pr(� > t)  2Pr(� � t). (60)

Proof. By introducing Lagrange multipliers, we have

� = min
w

max
�

k⌃�1/2wk+ h�, Zw � ⇠i

= min
w

max
�

h�, Zwi+ k⌃�1/2wk � h�, ⇠i.

By independence, the distribution of Z remains the same after conditioning on ⇠ and the randomness in
� comes solely from Z. Therefore, we can apply CGMT in Theorem 9 with  (w,�) = k⌃�1/2wk�
h�, ⇠i because  is convex-concave, but we again have the technical difficulty that the domains of w
and � are not compact. To overcome this, we will use a double truncation argument. For any r, t > 0,
we define

�r(t) := min
k⌃�1/2wk2t

max
k�k2r

h�, Zwi+ k⌃�1/2wk � h�, ⇠i (61)

and the corresponding AO

�r(t) : = min
k⌃�1/2wk2t

max
k�k2r

kwk2hG,�i+ k�k2hH,wi+ k⌃�1/2wk � h�, ⇠i

= min
k⌃�1/2wk2t

max
k�k2r

k�k2hH,wi � h�, ⇠ � kwk2Gi+ k⌃�1/2wk

= min
k⌃�1/2wk2t

max
0�r

� (hH,wi+ k⇠ � kwk2Gk2) + k⌃�1/2wk.

(62)
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Note that the optimization in �r(t) and �r(t) now ranges over compact sets. We will also use an
intermediate problem between � and �r(t), defined as

�(t) : = min
k⌃�1/2wk2t

max
�

h�, Zwi+ k⌃�1/2wk � h�, ⇠i

= min
Zw=⇠

k⌃�1/2
wk2t

k⌃�1/2wk. (63)

We similarly define the intermediate AO as

�(t) : = min
k⌃�1/2wk2t

max
��0

� (hH,wi+ k⇠ � kwk2Gk2) + k⌃�1/2wk

= min
k⇠�kwk2Gk2h�H,wi

k⌃�1/2
wk2t

k⌃�1/2wk. (64)

Compared to the definition of �, we have h�H,wi instead of hH,wi, but this difference is negligible
because H is Gaussian. It can be easily seen that the event � > t is the same as �(t) > t, and the
same holds for � and �(t). It is also clear that �(t) � �r(t) and we can connect �r(t) with �r(t) by
CGMT. It remains to show that �r(t) ! �(t) as r ! 1.

By definition, �r(t)  �s(t) for r  s. We consider two cases:

1. �(t) = 1, i.e. the minimization problem defining �(t) is infeasible. In this case, we know
that for all k⌃�1/2wk  2t

kZw � ⇠k2 > 0.

By compactness, there exists µ = µ(Z, ⇠) > 0 (in particular, independent of r) such that

kZw � ⇠k2 � µ.

Therefore, considering � along the direction of Zw � ⇠ shows that

�r(t) = min
k⌃�1/2wk2t

max
k�k2r

h�, Zw � ⇠i+ k⌃�1/2wk � rµ

so �r(t) ! 1 as r ! 1.

2. Otherwise �(t) < 1, i.e. the minimization problem defining �(t) is feasible. In this case,
we can let w(r) be an arbitrary minimizer achieving the objective �r(t) for each r � 0 by
compactness. By compactness again, the sequence {w(r)}1

r=1 at positive integer values of
r has a subsequential limit w(1) such that k⌃�1/2w(1)k  2t. Equivalently, there exists
an increasing sequence rn such that limn!1 w(rn) = w(1).

Suppose for the sake of contradiction that Zw(1) 6= ⇠, then by continuity, there exists
µ > 0 and a sufficiently small ✏ > 0 such that for all kw � w(1)k2  ✏

kZw � ⇠k2 � µ.

This implies that for sufficiently large n, we have

kZw(rn)� ⇠k2 � µ

and by the same argument as in the previous case

�rn(t) = max
k�k2r

h�, Zw(rn)� ⇠i+ k⌃�1/2w(rn)k � rµ

so �rn ! 1, but this is impossible since �r(t)  �(t) < 1. By contradiction, it must be
the case that Zw(1) = ⇠. By taking � = 0 in the definition of �r(t), we have

�rn(t) � k⌃�1/2w(rn)k.
By continuity, we show that

lim inf
n!1

�rn(t) � lim
n!1

k⌃�1/2w(rn)k = k⌃�1/2w(1)k � �(t).

Since �rn(t)  �(t), the limit of �rn(t) exists and equals �(t). We can conclude that
limr!1 �r(t) = �(t) because �r(t) is an increasing function of r.
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By the last part of Theorem 9 (the CGMT),

Pr(�r(t) > t | ⇠)  2Pr(�r(t) � t | ⇠).
By continuity (from below) of the probability measure, and the fact that �r(t) monotonically increases
to �(t) almost surely, we can conclude

Pr(� > t | ⇠) = Pr(�(t) > t | ⇠)  Pr ([r \r0�r �r0(t) > t | ⇠)
= lim

r!1
Pr (\r0�r�r0(t) > t | ⇠) = lim

r!1
Pr (�r(t) > t | ⇠)

 2 lim
r!1

Pr(�r(t) � t | ⇠)  2Pr(�(t) � t | ⇠)

= 2Pr(� � t | ⇠).

It remains to analyze the auxiliary problem, which we do in the following lemma:
Lemma 8. For any covariance splitting ⌃ = ⌃1 �⌃2, denote P as the orthogonal projection matrix
onto the space spanned by ⌃2, and let v⇤ = argmin

v2@k⌃1/2
2 Hk⇤

kvk⌃2
. Assume that there exists

✏1, ✏2 � 0 such that with probability at least 1� �/2,

kv⇤k⌃2
 (1 + ✏1)E kv⇤k⌃2

(65)

and
kPv⇤k2  1 + ✏2. (66)

Let

✏ = 8n�1/2 + 28

r
log(32/�)

n
+ 8

s
log(8/�)

rk·k(⌃)
+ 2(1 + ✏1)

2 n

Rk·k(⌃2)
+ 2✏2.

If n and the effective ranks are sufficiently large such that ✏  1, then with probability at least 1� �,
it holds that

�2  (1 + ✏)�2 n

(E k⌃1/2
2 Hk⇤)2

(67)

Proof. For notational simplicity, we define

↵ = 2

r
log(32/�)

n

⇢ =

r
1

n
+ 2

r
log(16/�)

n
.

By a union bound, the following collection of events occurs with probability at least 1� �/2:

1. (Approximate Orthogonality.) By Lemma 1, it holds that

|h⇠, Gi| < k⇠k2 kGk2 ⇢. (68)

2. (Typical Norm of G and ⇠.) By Lemma 2, it holds that

� ↵  1p
n
kGk2 � 1  ↵ (69)

and
� ↵�  1p

n
k⇠k2 � �  ↵�. (70)

3. (Typical Norm of ⌃1/2
2 H .) By Theorem 6, it holds that

k⌃1/2
2 Hk⇤ � E k⌃1/2

2 Hk⇤ � sup
kuk1

kuk⌃2

p
2 log(8/�)

=

 
1�

s
2 log(8/�)

rk·k(⌃)

!
E k⌃1/2

2 Hk⇤,
(71)

because k⌃1/2
2 Hk⇤ is a supkuk1 kuk⌃2 -Lipschitz function of H .
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By a change of variables, recall that

� := min
k⇠�k⌃1/2wk2Gk

2
hH,⌃1/2wi

kwk.

Equations (68) to (70) imply that
���⇠ � k⌃1/2wk2G

���
2

2
= k⇠k22 � 2h⇠, Gik⌃1/2wk2 + k⌃1/2wk22kGk22

 (1 + ⇢)
⇣
k⇠k22 + k⌃1/2wk22kGk22

⌘

 (1 + ⇢)(1 + ↵)2n(�2 + k⌃1/2wk22).

To upper bound �, it suffices to construct a w that satisfies the constraint. Consider w of the form
s(Pv⇤), then ⌃1/2w = s⌃1/2

2 v⇤. Plugging in, it suffices to choose s such that

(1 + ⇢)(1 + ↵)2n(�2 + s2k⌃1/2
2 v⇤k22)  s2hH,⌃1/2

2 v⇤i2 = s2k⌃1/2
2 Hk2⇤.

Solving for s, we can choose

s2 = �2

 
k⌃1/2

2 Hk2⇤
(1 + ⇢)(1 + ↵)2n

� kv⇤k2⌃2

!�1

given that it is positive. By (65) and (71), we have

k⌃1/2
2 Hk2⇤

(1 + ⇢)(1 + ↵)2n
� kv⇤k2⌃2

� (E k⌃1/2
2 Hk⇤)2

(1 + ⇢)(1 + ↵)2n

 
1�

s
2 log(8/�)

rk·k(⌃)

!2

� (1 + ✏1)
2(E kv⇤k⌃2

)2

=
(E k⌃1/2

2 Hk⇤)2

n

 
1

(1 + ⇢)(1 + ↵)2

 
1� 2

s
2 log(8/�)

rk·k(⌃)

!
� (1 + ✏1)

2 n

Rk·k(⌃2)

!
.

If ↵ < 1, then

(1 + ⇢)(1 + ↵)2 = (1 + ⇢)(1 + 2↵+ ↵2)

 (1 + ⇢)(1 + 3↵) = 1 + 3↵+ ⇢+ 3↵⇢

 1 + 3↵+ 4⇢

and using the inequality (1 + x)�1 � 1� x, we show

1

(1 + ⇢)(1 + ↵)2
� 1� ((1 + ⇢)(1 + ↵)2 � 1)

� 1� (3↵+ 4⇢).

Therefore, we can conclude that

1

(1 + ⇢)(1 + ↵)2

 
1� 2

s
2 log(8/�)

rk·k(⌃)

!
� (1 + ✏1)

2 n

Rk·k(⌃2)

� (1� (3↵+ 4⇢))

 
1� 2

s
2 log(8/�)

rk·k(⌃)

!
� (1 + ✏1)

2 n

Rk·k(⌃2)

� 1� (3↵+ 4⇢)� 2

s
2 log(8/�)

rk·k(⌃)
� (1 + ✏1)

2 n

Rk·k(⌃2)
� 1� ✏0

where we define

✏0 = 4n�1/2 + 14

r
log(32/�)

n
+ 4

s
log(8/�)

rk·k(⌃)
+ (1 + ✏1)

2 n

Rk·k(⌃2)
.
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Provided that ✏0  1/2 (which also guarantees that ↵ < 1 and our definition of s2 is sensible), we
can use the inequality (1� x)�1  1 + 2x for x 2 [0, 1/2] to show that

s2  �2 n

(E k⌃1/2
2 Hk⇤)2

1

1� ✏0
 (1 + 2✏0)�2 n

(E k⌃1/2
2 Hk⇤)2

and thus by (66)

�2  s2kPv⇤k2  (1 + ✏2)(1 + 2✏0)�2 n

(E k⌃1/2
2 Hk⇤)2

 (1 + ✏)�2 n

(E k⌃1/2
2 Hk⇤)2

with ✏ = 2✏0 + 2✏2.

Finally, we are ready to prove our general norm bound.
Theorem 4 (General norm bound). There exists an absolute constant C2  64 such that the following
is true. Under the model assumptions in (1) with any covariance split ⌃ = ⌃1 � ⌃2, let k·k be an
arbitrary norm, and fix �  1/4. Denote the `2 orthogonal projection matrix onto the space spanned
by ⌃2 as P . Let H ⇠ N(0, Id), and let v⇤ = argmin

v2@k⌃1/2
2 Hk⇤

kvk⌃2
. Suppose that there exist

✏1, ✏2 � 0 such that with probability at least 1� �/4

kv⇤k⌃2
 (1 + ✏1)E kv⇤k⌃2

and kPv⇤k2  1 + ✏2; (10)

let ✏ = C2

✓q
log(1/�)
rk·k(⌃2)

+
q

log(1/�)
n

+ (1 + ✏1)2
n

Rk·k(⌃2)
+ ✏2

◆
. Then if n and the effective ranks

are large enough that ✏  1, with probability at least 1� �, it holds that

kŵk  kw⇤k+ (1 + ✏)1/2 �

p
n

E k⌃1/2
2 Hk⇤

. (11)

Proof. By Lemmas 6 and 7, we show that for any t

Pr(kŵk > t)  Pr(� > t� kw⇤k)  2Pr(� � t� kw⇤k).

By Lemma 8, the above is upper bounded by � if we set t� kw⇤k according to (67) with � replaced
by �/2. Moving kw⇤k to the other side concludes the proof.

C.2 Special Case: Euclidean Norm

Lemma 9. For any covariance matrix ⌃, it holds that
⇣
E k⌃1/2Hk2

⌘2
�
✓
1� 1

r(⌃)

◆
Tr(⌃) (72)

and
1

Tr(⌃)
�
 
1�

s
8

r(⌃)

!
E


1

HT⌃H

�
. (73)

As a result, it holds that
r(⌃)� 1  rk·k2

(⌃)  r(⌃) (74)

and

1� 4p
r(⌃)


Rk·k2

(⌃)

R(⌃)

 
1�

s
8

r(⌃2)

!�1

. (75)

Proof. Observe that if f(H) = k⌃1/2Hk2, then it can easily be checked that

krfk22 =
k⌃Hk22

k⌃1/2Hk22
 k⌃kop
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and so by the Gaussian Poincaré inequality (van Handel 2014, Corollary 2.27), we have

Tr(⌃) = E k⌃1/2Hk22 = (E k⌃1/2Hk2)2 +Var k⌃1/2Hk2
 (E k⌃1/2Hk2)2 + k⌃kop

= (E k⌃1/2Hk2)2 +
Tr(⌃)

r(⌃)
.

Rearranging the terms proves (72). To prove (73), without loss of generality assume that ⌃ is diagonal,
with diagonal entries �1 � �2 � ... � �d. Observe that for any integer ⌫ > 2, we can pad ⌃ with 0’s
such that ⌫ divides d, and we have

HT⌃H =
dX

i=1

�iH
2
i
�

d/⌫X

i=1

�⌫i(H
2
⌫(i�1)+1 + ...+H2

⌫i
).

By Jensen’s inequality, 1/E[X]  E[1/X]; it follows that

E


1

HT⌃H

�
 E

2

4 1
P

d/⌫

i=1 �⌫i(H
2
⌫(i�1)+1 + ...+H2

⌫i
)

3

5

=
1

P
d/⌫

j=1 �⌫j
E

2

64
1

P
d/⌫

i=1
�⌫iPd/⌫

j=1 �⌫j
(H2

⌫(i�1)+1 + ...+H2
⌫i
)

3

75

 1
P

d/⌫

j=1 �⌫j
E

2

4
d/⌫X

i=1

�⌫i
P

d/⌫

j=1 �⌫j

1

H2
⌫(i�1)+1 + ...+H2

⌫i

3

5

=
1

P
d/⌫

j=1 �⌫j

1

⌫ � 2
.

In the last equality, we use the fact that for each i the random variable
⇣
H2

⌫(i�1)+1 + ...+H2
⌫i

⌘�1

follows an inverse Chi-square distribution with ⌫ degrees of freedom; its expectation is (⌫ � 2)�1. In
addition, notice that

⌫k⌃kop + ⌫

d/⌫X

i=1

�⌫i � (�1 + ...+ �⌫) +

d/⌫�1X

i=1

(�⌫i+1 + ...+ �⌫(i+1)) = Tr(⌃).

Plugging the above estimate into our upper bound shows for any integer ⌫ > 2, it holds that

E


1

HT⌃H

�
 1

Tr(⌃)� ⌫k⌃kop
⌫

⌫ � 2
=

1

Tr(⌃)

✓
1� ⌫

r(⌃)
� 2

⌫
+

2

r(⌃)

◆�1

.

We can show (73) by choosing ⌫ = d(2r(⌃))1/2e:

E


1

HT⌃H

�
 1

Tr(⌃)

 
1�

s
8

r(⌃)

!�1

.

It remains to verify (74) and (75). By (72), we can check

rk·k2
(⌃) =

(E k⌃1/2Hk2)2

k⌃kop
�
✓
1� 1

r(⌃)

◆
Tr(⌃)

k⌃kop
= r(⌃)� 1.

The other direction r(⌃) � rk·k2
(⌃) follows directly from an application of the Cauchy-Schwarz

inequality. By Jensen’s inequality 1/E[X]  E[1/X] and the Cauchy-Schwarz inequality, we show

1

Tr(⌃)

✓
E 1

k⌃Hk22

◆�1


✓
E k⌃1/2Hk2

k⌃Hk2

◆�2


✓
E k⌃Hk2
k⌃1/2Hk2

◆2

 Tr(⌃2)E 1

k⌃1/2Hk22
.
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Recall that Rk·k2
(⌃) = (E k⌃1/2Hk2)2

⇣
E k⌃Hk2

k⌃1/2Hk2

⌘�2
. By Cauchy-Schwarz inequality and (73),

it follows that

Rk·k2
(⌃)  Tr(⌃)2

✓
E 1

k⌃Hk22

◆

 
1�

s
8

r(⌃2)

!�1

R(⌃)

and also by (72)

Rk·k2
(⌃) �

✓
1� 1

r(⌃)

◆
Tr(⌃)

Tr(⌃2)

✓
E 1

k⌃1/2Hk22

◆�1

�
✓
1� 1

r(⌃)

◆ 
1�

s
8

r(⌃)

!
R(⌃) �

 
1� 4p

r(⌃)

!
R(⌃).

Lemma 10. For any covariance matrix ⌃, it holds that with probability at least 1� �,

1� k⌃1/2Hk22
Tr(⌃)

. log(4/�)p
R(⌃)

(76)

and
k⌃Hk22 . log(4/�) Tr(⌃2). (77)

Therefore, provided that R(⌃) & log(4/�)2, it holds that
✓

k⌃Hk2
k⌃1/2Hk2

◆2

. log(4/�)
Tr(⌃2)

Tr(⌃)
. (78)

Proof. Because we are considering `2 norm and H is standard Gaussian, without loss of generality we
can assume that ⌃ is diagonal and we denote the diagonals of ⌃ as �1, ...,�d. By the sub-exponential
Bernstein inequality (Vershynin 2018, Corollary 2.8.3), we have with probability at least 1� �/2

����
k⌃1/2Hk22
Tr(⌃)

� 1

���� =

�����

pX

i=1

�iP
j
�j

(H2
i
� 1)

����� .
s

log(4/�)

R(⌃)
_ log(4/�)

r(⌃)
 log(4/�)p

R(⌃)

where the last inequality uses that R(⌃)  r(⌃)2, shown in Lemma 5 of Bartlett et al. (2020). Using
the sub-exponential Bernstein inequality again, we show with probability at least 1� �/2

����
k⌃Hk22
Tr(⌃2)

� 1

���� .
s

log(4/�)

R(⌃2)
_ log(4/�)

r(⌃2)

From Lemma 5 of Bartlett et al. (2020), we know that the effective ranks are at least 1. This implies

k⌃Hk22 . log(4/�) Tr(⌃2).

Provided that R(⌃) & log(4/�)2, we have

k⌃1/2Hk22 � 1

2
Tr(⌃)

in which case it holds that
k⌃Hk22

k⌃1/2Hk22
. log(4/�)

Tr(⌃2)

Tr(⌃)
.

Theorem 2 (Euclidean norm bound; special case of Theorem 4). Fix any �  1/4. Under the
model assumptions in (1) with any choice of covariance splitting ⌃ = ⌃1 � ⌃2, there exists some

✏ .
q

log(1/�)
r(⌃2)

+
q

log(1/�)
n

+ n log(1/�)
R(⌃2)

such that the following is true. If n and the effective ranks
are such that ✏  1 and R(⌃2) & log(1/�)2, then with probability at least 1� �, it holds that

kŵk2  kw⇤k2 + (1 + ✏)1/2 �

r
n

Tr(⌃2)
. (6)
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Proof. To apply Theorem 4, it is clear that v⇤ = ⌃1/2
2 H

k⌃1/2
2 Hk2

and so kv⇤k⌃2 = k⌃2Hk2

k⌃1/2
2 Hk2

. By (78), it
suffices to pick ✏1 such that for some constant c > 0

(1 + ✏1)E kv⇤k⌃2
= c

s

log(16/�)
Tr(⌃2

2)

Tr(⌃2)
.

By (72) of Lemma 9, for sufficiently large effective rank, it holds that
⇣
E k⌃1/2

2 Hk2
⌘2

& Tr(⌃2)

and so

(1 + ✏1)
2 n

Rk·k2
(⌃2)

= n
(1 + ✏1)2(E kv⇤k⌃2)

2

⇣
E k⌃1/2

2 Hk2
⌘2 . n log(16/�)

Tr(⌃2
2)

Tr(⌃2)2
=

n log(16/�)

R(⌃2)
.

Furthermore, it suffices to let ✏2 = 0 because P is an `2 projection matrix. Combined with (74) of
Lemma 9, we show

✏ .
r

log(1/�)

n
+

s
log(1/�)

r(⌃2)
+

n log(1/�)

R(⌃2)
.

Finally, using the inequality (1 � x)�1  1 + 2x for x 2 [0, 1/2] and (72) of Lemma 9 again, we
can conclude

(1 + ✏)1/2 �

p
n

E k⌃1/2
2 Hk2

 (1 + ✏)1/2
✓
1� 1

r(⌃2)

◆�1/2
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r
n

Tr(⌃2)


✓
1 + 2✏+

2

r(⌃2)

◆1/2

�

r
n

Tr(⌃2)

and we can replace ✏ with

✏0 = 2✏+
2

r(⌃2)
.
r

log(1/�)

n
+

s
log(1/�)

r(⌃2)
+

n log(1/�)

R(⌃2)
.

D Benign Overfitting

In this section, we will combine results from the previous two sections to study when interpolators
are consistent.

D.1 General Norm

Theorem 5 (Benign overfitting with general norm). Fix any �  1/2. Under the model assumptions
in (1), let k·k be an arbitrary norm and pick a covariance split ⌃ = ⌃1 � ⌃2. Suppose that n and
the effective ranks are sufficiently large such that �, ✏  1 with the same choice of � and ✏ as in
Corollary 3 and Theorem 4. Then, with probability at least 1� �,

L(ŵ)  (1 + �)(1 + ✏)

 
� + kw⇤kE k⌃1/2

2 Hk⇤p
n

!2

. (12)

Proof. By Theorem 4, if we choose

B = kw⇤k+ (1 + ✏)1/2 �

p
n

E k⌃1/2
2 Hk⇤

then with large probability, {w : kwk  B} has non-empty intersection with {w : Xw = Y }, which
contains the minimal norm interpolator ŵ. Also, it is clear that B > kw⇤k and so by Corollary 3, it
holds that
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L(ŵ)  sup
kwkB,L̂(w)=0

L(w)

 (1 + �)

 
kw⇤k+ (1 + ✏)1/2 �

p
n

E k⌃1/2
2 Hk⇤

!2
⇣
Ek⌃1/2

2 Hk⇤
⌘2
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2 Hk⇤p
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!2

 (1 + �)(1 + ✏)

 
� + kw⇤kE k⌃1/2

2 Hk⇤p
n

!2

.

Theorem 11 (Sufficient conditions). Under the model assumptions in (1), let k·k be an arbitrary
norm. Suppose that as n goes to 1, there exists a sequence of covariance splits ⌃ = ⌃1 � ⌃2 such
that the following properties hold:

1. (Small large-variance dimension.)

lim
n!1

rank(⌃1)

n
= 0. (79)

2. (Large effective dimension.)

lim
n!1

1

rk·k(⌃2)
= 0 and lim

n!1

n

Rk·k(⌃2)
= 0. (80)

3. (No aliasing condition.)

lim
n!1

kw⇤kE k⌃1/2
2 Hk⇤p

n
= 0. (81)

4. (Contracting `2 projection condition.) With the same definition of P and v⇤ as in Theorem 4,
it holds that for any ⌘ > 0,

lim
n!1

Pr(kPv⇤k2 > 1 + ⌘) = 0. (82)

Then L(ŵ) converges to �2 in probability. In other words, minimum norm interpolation is consistent.

Proof. Fix any ⌘ > 0, for sufficiently small �, ✏ and kw⇤kE k⌃1/2
2 Hk⇤p
n

, it is clear that

(1 + �)(1 + ✏)
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!2

� �2  ⌘. (83)

For any � > 0, by the definition of � in Corollary 3 and our assumptions, the terms � and

kw⇤kE k⌃1/2
2 Hk⇤p
n

can be made arbitrarily small for large enough n. Also by our assumption, ✏2
in the definition of ✏ in Theorem 4 can be arbitrarily small. Note that

r
n

Rk·k(⌃2)
= E

"
kv⇤k⌃2

E k⌃1/2
2 Hk⇤/

p
n

#

converges to 0 by assumption. Then by Markov’s inequality, for any ⌘0 > 0, it holds that for all
sufficiently large n

Pr
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E k⌃1/2
2 Hk⇤/

p
n
>
p
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and we can pick

(1 + ✏1)E kv⇤k⌃2
=
p
⌘0
E k⌃1/2

2 Hk⇤p
n

.

This implies that

(1 + ✏1)
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=
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⇣
E k⌃1/2

2 Hk⇤
⌘2 ((1 + ✏1)E kv⇤k⌃2)

2 = ⌘0.

By Theorem 5, we have shown that for sufficiently large n such that �, ✏ and kw⇤kE k⌃1/2
2 Hk⇤p
n

are
small enough for (83) to hold, it holds that

Pr( |L(ŵ)� �2| > ⌘ )  �.

As a result, we show limn!1 Pr( |L(ŵ) � �2| > ⌘ )  � for any � > 0. To summarize, for any
fixed ⌘ > 0, we have

lim
n!1

Pr( |L(ŵ)� �2| > ⌘ ) = 0

and so L(ŵ) converges to �2 in probability.

D.2 Euclidean Norm

Theorem 3 (Benign overfitting). Fix any �  1/2. Under the model assumptions in (1) with any
covariance splitting ⌃ = ⌃1 � ⌃2, let � and ✏ be as defined in Corollary 2 and Theorem 2. Suppose
that n and the effective ranks are such that R(⌃2) & log(1/�)2 and �, ✏  1. Then, with probability
at least 1� �,

L(ŵ)  (1 + �)(1 + ✏)

 
� + kw⇤k2

r
Tr(⌃2)

n

!2

. (7)

Proof. The proof follows the same strategy as Theorem 5. By Theorem 2, if we choose

B = kw⇤k2 + (1 + ✏)1/2 �

r
n

Tr(⌃2)
,

then with large probability, {w : kwk2  B} has non-empty intersection with {w : Xw = Y }. This
intersection necessarily contains the minimal norm interpolator ŵ.

Also, it is clear that B > kw⇤k and so by Corollary 2, it holds that

L(ŵ)  sup
kwk2B,L̂(w)=0

L(w)

 (1 + �)

✓
kw⇤k2 + (1 + ✏)1/2 �

r
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Tr(⌃2)

◆2 Tr(⌃2)
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� + kw⇤k2

r
Tr(⌃2)

n

!2

.

Theorem 12 (Sufficient conditions). Under the model assumptions in (1), let ŵ be the minimal `2
norm interpolator. Suppose that as n goes to 1, there exists a sequence of covariance splitting
⌃ = ⌃1 � ⌃2 such that the following conditions hold:

1. (Small large-variance dimension.)

lim
n!1

rank(⌃1)

n
= 0. (84)

2. (Large effective dimension.)
lim
n!1

n

R(⌃2)
= 0. (85)
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3. (No aliasing condition.)

lim
n!1

kw⇤k2 E k⌃1/2
2 Hk2p

n
= 0. (86)

Then L(ŵ) converges to �2 in probability. In other words, minimum `2 norm interpolation is
consistent.

Proof. Fix any ⌘ > 0, for sufficiently small �, ✏ and kw⇤k2
q

Tr(⌃2)
n

, it is clear that

(1 + �)(1 + ✏)

 
� + kw⇤k2

r
Tr(⌃2)

n

!2

� �2  ⌘. (87)

From Lemma 5 of Bartlett et al. (2020), it holds that R(⌃2)  r(⌃2)2, and so the condition
R(⌃2) = !(n) implies that r(⌃2) = !(

p
n) = !(1). For any � > 0, by the definition of �, ✏ in

Corollary 2 and Theorem 2 and our assumptions, the terms �, ✏ and kw⇤k2
q

Tr(⌃2)
n

can be made
small enough for Equation (87) to hold with a sufficiently large n. By Theorem 3, we show that

lim
n!1

Pr( |L(ŵ)� �2| > ⌘ )  �

Since the choice of � > 0 is arbitrary, we have shown that L(ŵ) converges to �2 in probability.

D.2.1 Equivalence of Consistency Conditions

If we assume that kw⇤k = ⇥(1), our consistency condition (Theorem 12) for minimum `2 norm
interpolation is the existence of a covariance splitting such that

rank(⌃1) = o(n), Tr⌃2 = o(n),
(Tr⌃2)2

Tr[(⌃2)2]
= !(n). (88)

We compare the above conditions to the following conditions:

rank(⌃1) = o(n), Tr⌃2 = o(n),
Tr⌃2

k⌃2kop
= !(n),

(Tr⌃2)2

Tr[(⌃2)2]
= !(n). (89)

Obviously, the conditions in (89) imply (88), but we show in Theorem 13 that the existence of a
splitting that satisfies (88) also implies the existence of a (potentially different) splitting that satisfies
(89). This is one way to see that the particular choice of k⇤ from Bartlett et al. (2020) can be made
without loss of generality, at least if we only consider the consistency conditions.
Theorem 13. Suppose that there exists ⌃ = ⌃1 �⌃2 that satisfies the conditions in (88). Then there
exists a ⌃ = ⌃

0

1 � ⌃
0

2 that satisfies the conditions in (89).

Proof. Denote v as the vector of eigenvalues of ⌃, and vk as the vector obtained by setting the k
coordinates of v corresponding to ⌃1 to be 0. By our assumptions in (88), there exists k = o(n) such
that

kvkk1 = o(n),
kvkk21
kvkk22

= !(n).

For any ⌧ � 0, we let S⌧ = {i 2 [d] : |vk,i| � ⌧kvkk1} and define vk,⌧ by setting the coordinates
of vk in S⌧ to be 0. For simplicity of notation, define a = kvkk21/kvkk22 and b = kvkk1/kvkk1.
Observe that X

i2S⌧

|vk,i| 
1

⌧kvkk1

X

i2S⌧

v2
k,i

 kvkk22
⌧kvkk1

=
kvkk1
⌧

b

a
.

This shows that
kvk,⌧k1 �

✓
1� b

⌧a

◆
kvkk1

and
kvk,⌧k1  ⌧kvkk1 =

⌧

b
kvkk1.
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In addition, observe that

⌧kvkk1 · |S⌧ | 
X

i2S⌧

|vk,i| 
kvkk1
⌧

b

a
.

The above inequalities imply that

kvk,⌧k1
kvk,⌧k1

� b

⌧

✓
1� b

⌧a

◆

and

|S⌧ |  a ·
✓

b

⌧a

◆2

Finally, we pick ⌧ by setting b/(⌧a) = (n/a)3/4. By our assumption that a = !(n), we can check

b

⌧

✓
1� b

⌧a

◆
= n3/4a1/4(1� (n/a)3/4) = !(n)(1� o(1)) = !(n)

and

a ·
✓

b

⌧a

◆2

= a(n/a)3/2 = n(n/a)1/2 = o(n).

By Holder’s inequality, we also have

kvk,⌧k21
kvk,⌧k22

� kvk,⌧k1
kvk,⌧k1

= !(n).

It is clear that kvk,⌧k1  kvkk1 = o(n) and k+ |S⌧ | = o(n), so picking the covariance splitting that
corresponds to vk,⌧ concludes the proof.

E Basis Pursuit (Minimum `1-Norm Interpolation)

In this section, we illustrate the consequences of our general theory for basis pursuit. The following
generalization bound for basis pursuit follows immediately from Corollary 3:
Corollary 5 (Generalization bound for `1 norm balls). There exists an absolute constant C1  66
such that the following is true. Under the model assumptions in (1) with ⌃ = ⌃1 � ⌃2, fix �  1/4

and let � = C1

✓q
log(1/�)
r1(⌃2)

+
q

log(1/�)
n

+
q

rank(⌃1)
n

◆
. If B � kw⇤k1 and n is large enough that

�  1, then the following holds with probability at least 1� �:

sup
kwk1B,L̂(w)=0

L(w)  (1 + �)

⇣
B · Ek⌃1/2

2 Hk1
⌘2

n
. (90)

Proof. Recall that the dual of the `1 norm is the `1 norm. By convexity

max
kwk11

kwk⌃ =
q
max

i

hei,⌃eii =
q
max

i

⌃ii

and so we can use r1(⌃) =
(E k⌃1/2

Hk1)2

maxi(⌃)ii
= rk·k1

(⌃).

The following norm bound for basis pursuit follows from Theorem 4:
Corollary 6 (`1 norm bound). There exists an absolute constant C2  64 such that the following is
true. Under the model assumptions in (1), let ⌃ = ⌃1 � ⌃2 such that ⌃2 is diagonal. Fix �  1/4

and let ✏ = C2

✓q
log(1/�)
r1(⌃2)

+
q

log(1/�)
n

+ n

r1(⌃2)

◆
. Then if n and the effective rank r1(⌃2) are

large enough that ✏  1, with probability at least 1� �, it holds that

kŵk1  kw⇤k1 + (1 + ✏)1/2 �

p
n

E k⌃1/2
2 Hk1

. (91)
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Proof. Recall that @kuk⇤ = conv{sign(ui) ei : i 2 argmax |ui|}, where conv(S) denotes the
convex hull of S. By definition, it holds almost surely that

kv⇤k⌃2  max
i2[d]

keik⌃ =
q

max
i

⌃ii, (92)

and so we can pick ✏1 such that

(1 + ✏1)E kv⇤k⌃2
=
q
max

i

⌃ii

and

(1 + ✏1)
2 n

Rk·k1
(⌃2)

= n
(1 + ✏1)2(E kv⇤k⌃2)

2

⇣
E k⌃1/2

2 Hk1
⌘2 =

n

r1(⌃2)
.

In addition, since ⌃2 is diagonal, the coordinates of ⌃1/2
2 H that correspond to the zero diagonals of

⌃2 are 0. Therefore, v⇤ must also have zero entry in those coordinates. In other words, v⇤ lies in the
span of ⌃2. As P is the orthogonal projection onto the space spanned by ⌃2, this implies Pv⇤ = v⇤,
and so kPv⇤k1 = kv⇤k1 = 1, so that we can take ✏2 = 0. Plugging ✏1, ✏2 into Theorem 4 concludes
the proof.

Theorem 14 (Benign overfitting). Fix any �  1/2. Under the model assumptions in (1), let
⌃ = ⌃1 � ⌃2 such that ⌃2 is diagonal. Suppose that n and the effective rank r1(⌃2) are sufficiently
large such that �, ✏  1 with the same choice of � and ✏ as in Corollaries 5 and 6. Then, with
probability at least 1� �:

L(ŵ)  (1 + �)(1 + ✏)

 
� + kw⇤k1

E k⌃1/2
2 Hk1p
n

!2

. (93)

The proof of Theorem 14 uses Corollaries 5 and 6, and follows the same lines as in Theorem 5. The
details are repetitive, so we omit writing them out in full here. As before, we can use the finite sample
bound to deduce sufficient conditions for consistency.
Theorem 15 (Sufficient conditions). Under the model assumptions in (1), let ŵ be the minimal
`1 norm interpolator. Suppose that as n goes to 1, there exists a sequence of covariance splits
⌃ = ⌃1 � ⌃2 such that ⌃2 is diagonal and the following conditions hold:

1. (Small large-variance dimension.)

lim
n!1

rank(⌃1)

n
= 0. (94)

2. (Large effective dimension.)
lim
n!1

n

r1(⌃2)
= 0. (95)

3. (No aliasing condition.)

lim
n!1

kw⇤k1 E k⌃1/2
2 Hk1p

n
= 0. (96)

Then L(ŵ) converges to �2 in probability. In other words, minimum `1 norm interpolation is
consistent.

Again, the proof of Theorem 15 is exactly analogous to Theorem 12, so we omit the full proof here.

E.1 Isotropic features

Theorem 16. There exists an absolute constant C3  140 such that the following is true. Under
the model assumptions in (1) with ⌃ = Id, denote S as the support of w⇤. Fix �  1/4 and let

✏ = C3

✓q
log(1/�)

n
+
q

log(1/�)
log(d�|S|) +

n

log(d�|S|)

◆
. Then if n and d are large enough that ✏  1, the

following holds with probability 1� � where H 0 ⇠ N(0, Id�|S|):

kŵk1  (1 + ✏)1/2 (�2 + kw⇤k22)1/2
p
n

E kH 0k1
. (97)
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Proof. Write X = [XS , XSc ], where XS is formed by selecting the columns of X in S. Also let
⇠0 = XSw⇤

S
+ ⇠; then the entries of ⇠0 are i.i.d. N(0,�2 + kw⇤k22) and independent of XSc . Observe

that Y = XSc0 + ⇠0. By choosing ⌃1 = 0 in Corollary 6, we show with large probability

min
XScw=Y

kwk1  (1 + ✏)1/2 (�2 + kw⇤k22)1/2
p
n

E kH 0k1

for some ✏  64

✓q
log(1/�)

n
+
q

log(1/�)
r1(Id�|S|)

+ n

r1(Id�|S|)

◆
. By the bound of Kamath (2013), it holds

that
r1(Id�|S|) = (E kH 0k1)

2 � log(d� |S|)
⇡ log 2

and so we can choose C3  64⇡ log 2 < 140. Observe that if XScw = Y , then X(0, w)T = Y and
k(0, w)k1 = kwk1. It follows that

kŵk1 = min
Xw=Y

kwk1  min
XScw=Y

kwk1.

Theorem 17. Under the model assumptions in (1) with ⌃ = Id, fix any �  1/2 and let ⌘ =

368

✓q
log(1/�)

n
+
q

log(1/�)+log |S|
log(d�|S|) + n

log(d�|S|)

◆
. Suppose that n and d are large enough that

⌘  1. Then, with probability at least 1� �,

L(ŵ)  (1 + ⌘)(�2 + kw⇤k22). (98)

Proof. By Theorem 16, if we choose

B = (1 + ✏)1/2 (�2 + kw⇤k22)1/2
p
n

E kH 0k1
then with large probability, K = {w : kwk1  B} has non-empty intersection with {w : Xw = Y },
which contains the minimal `1 norm interpolator ŵ. It can be easily seen that

W (K) = B E kHk1 and R(K) = B

and so by Theorem 1, with large probability

L(ŵ)  sup
kwk2B,L̂(w)=0

L(w)

 1 + �

n

 
B E kHk1 +B

s

2 log

✓
64

�

◆
+ kw⇤k2

s

2 log

✓
64

�

◆!2

=
1 + �

n
B2(E kHk1)2 (1 + �)2

= (1 + �)(1 + ✏)(1 + �)2
✓
E kHk1
E kH 0k1

◆2

(�2 + kw⇤k22)

where � = 66
p
log(1/�)/n and � =

q
2 log( 64

� )
E kHk1

+
kw⇤k2

q
2 log( 64

� )
B E kHk1

. Observe that

B � kw⇤k2
p
n

E kH 0k1
and E kHk1 � E kH 0k1.

Combined with the lower bound of Kamath (2013), we show

� 

s
2⇡ log(128/�)

log d
+

r
2 log(64/�)

n
 8

 s
log(1/�)

log d
+

r
log(1/�)

n

!
.

In addition, we have

E kHk1
E kH 0k1

= 1 +
E kHk1 � E kH 0k1

E kH 0k1
 1 +

s
2⇡ log(2) log |S|
log(d� |S|) .
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Finally, it is a routine calculation to show

(1 + �)(1 + ✏)(1 + �)2
✓
E kHk1
E kH 0k1

◆2

 1 + 368

 r
log(1/�)

n
+

s
log(1/�) + log |S|

log(d� |S|) +
n

log(d� |S|)

!
= 1 + ⌘

using the inequality (1 + x)(1 + y)  1 + x+ 2y for x  1.
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