
Appendix
The Appendix is organized as follows. In Appendix A, we provide the gradients for the spectral
entropy (5) and spectral hypentropy (4) mirror maps, and discuss the per-iteration computational cost
of the corresponding mirror descent algorithms. In Appendix B, we provide proofs for the claims
made in the main paper. In Appendix C, we present additional experiments addressing the problem
of matrix completion.

A Mirror maps and gradients

We first consider rectangular matrix sensing with the spectral hypentropy mirror map

Φβ(X) =

n∑
i=1

σi arcsinh

(
σi
β

)
−
√
σ2
i + β2,

where {σi}ni=1 denote the singular values of X. Since Φβ : Rn×n′ → R is a function operat-
ing on the singular values of a matrix, we can use Theorem 3.1 in [7] to compute its gradient.
Let X = U diag(σ1, . . . , σn)V> be the singular value decomposition of the matrix X, where
diag(σ1, . . . , σn) denotes the diagonal matrix with diagonal elements σ1, . . . , σn. Then, we have

∇Φβ(X) = U diag
(

arcsinh
(σ1

β

)
, . . . , arcsinh

(σn
β

))
V>

by Theorem 3.1 in [7], see also [4]. This means that each step of mirror descent requires a singular
value decomposition to compute

Xt+1 = ∇Φ−1
β

(
∇Φβ(Xt)− η∇f(Xt)

)
,

which takes O(n2n′) operations.

The singular value decomposition can be avoided if n = n′ and the sensing matrices Ai’s are
symmetric, which we can assume without loss of generality if X? ∈ Rn×n is symmetric, since then
yi = 〈Ai,X

?〉 = 〈 12 (Ai + A>i ),X?〉 for all i = 1, . . . ,m. In that case, the mirror descent iterates
Xt stay symmetric for all t ≥ 0, provided the initialization X0 is symmetric. Using the identity
arcsinh(x) = log(x+

√
x2 + 1), we can write

Φβ(Xt) = tr

(
Xt log

(
Xt

β
+

√
X2
t

β2
+ I

)
−
√

X2
t + β2I

)
,

since all matrices in above expression are symmetric and simultaneously diagonalizable. In this case,
the gradient of the spectral hypentropy can be written as

∇Φβ(Xt) = log

(
Xt

β
+

√
X2
t

β2
+ I

)
,

and its inverse is given by

∇Φ−1
β (Xt) = β

eXt − e−Xt

2
.

Hence, for the mirror descent algorithm (2) we need to compute two matrix exponentials in each
iteration. While computing matrix exponentials require O(n3) operations, which is of the same order
as a singular value decomposition, matrix exponentials are typically cheaper to compute in practice.

In the positive semidefinite case, the spectral entropy mirror map is given by

Φ(X) = tr(X log X−X),

which has gradient given by
∇Φ(X) = log X,

with inverse
∇Φ−1(X) = exp(X).

Hence, mirror descent equipped with the spectral entropy mirror map requires computing a matrix
exponential in each iteration, which requires O(n3) operations.
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B Proofs

In this section, we provide proofs for the claims made in the main paper.

B.1 Proof of Theorem 1

Proof. We begin by showing convergence of mirror descent to a global minimizer of the empirical
risk f . The characterization of the limiting point follows immediately from the proof of convergence.
Then, we show the bound (7) by showing that the empirical risk f(Xt) is monotonously decreasing.

Part 1: Convergence of mirror descent.
The following identity characterizes the evolution of the Bregman divergence and follows from its
definition (1) and the mirror descent update (2):

DΦβ (X′,Xt+1)−DΦβ (X′,Xt) = −η〈∇f(Xt),Xt −X′〉+DΦβ (Xt,Xt+1), (16)

where X′ is any reference point. Letting X′ be any global minimizer of f , the first term in (16) can
be written as

〈∇f(Xt),Xt −X′〉 =
1

m

m∑
i=1

(
〈Ai,Xt〉 − yi

)
〈Ai,Xt −X′〉 = 2f(Xt),

where we used the assumption that there exists a matrix achieving zero training error, i.e. 〈Ai,X
′〉 =

yi for all i = 1, . . . ,m. The spectral hypentropy mirror map is (2(τ + βn))−1-strongly convex with
respect to the nuclear norm ‖ · ‖∗ on the nuclear norm ball B(τ) = {X ∈ Rn×n′ : ‖X‖∗ ≤ τ}, see
Theorem 14 in [4]. Writing τt = max{‖Xt‖∗, ‖Xt+1‖∗}, we can bound the second term in (16) by

DΦβ (Xt,Xt+1) = Φβ(Xt)− Φβ(Xt+1)− 〈∇Φβ(Xt+1),Xt −Xt+1〉

≤ 〈∇Φβ(Xt)−∇Φβ(Xt+1),Xt −Xt+1〉 −
1

4(τt + βn)
‖Xt −Xt+1‖2∗

= 〈η∇f(Xt),Xt −Xt+1〉 −
1

4(τt + βn)
‖Xt −Xt+1‖2∗

≤ η‖∇f(Xt)‖2‖Xt −Xt+1‖∗ −
1

4(τt + βn)
‖Xt −Xt+1‖2∗

≤ η2(τt + βn)‖∇f(Xt)‖22, (17)

where we used strong convexity of Φβ in the second line, the mirror descent update (2) in the third
line, the fact that the spectral norm ‖ · ‖2 is the dual norm to the nuclear norm ‖ · ‖∗ in the fourth line,
and we optimized a quadratic function in ‖Xt −Xt+1‖∗ to obtain the last inequality.

The spectral norm of the gradient∇f can be bounded in terms of the empirical risk f : we have

‖∇f(Xt)‖22 =

∥∥∥∥ 1

m

m∑
i=1

(
〈Ai,Xt〉 − yi

)
Ai

∥∥∥∥2

2

≤

(
1

m

m∑
i=1

∣∣〈Ai,Xt〉 − yi
∣∣‖Ai‖2

)2

≤ 1

m

m∑
i=1

‖Ai‖22 · 2f(Xt),

where we used the triangle inequality in the second and the Cauchy-Schwarz inequality in the last line.
Using the non-negativity of the Bregman divergence, we can rearrange the penultimate inequality in
(17) to obtain

‖Xt −Xt+1‖∗ ≤ 4(τt + βn)η‖∇f(Xt)‖2 ≤
1

2
(τt + βn), (18)

provided the step size η satisfies

η ≤ 1

8
√

2

(
1

m

m∑
i=1

‖Ai‖22 · f(Xt)

)−1/2

. (19)
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We will show below that the upper bound in (19) is uniformly bounded from below by a constant
c > 0, i.e. we can indeed choose a constant step size ηt ≡ η ≤ c. If ‖Xt+1‖∗ > ‖Xt‖∗, then the
reverse triangle inequality yields

‖Xt+1‖∗ − ‖Xt‖∗ ≤ ‖Xt −Xt+1‖∗ ≤
1

2

(
‖Xt+1‖∗ + βn

)
,

which can be rearranged to ‖Xt+1‖∗ ≤ 2‖Xt‖∗ + βn, so that also τt ≤ 2‖Xt‖∗ + βn. Hence, the
second term in (16) can be bounded by

DΦβ (Xt,Xt+1) ≤ η2(τt + βn)‖∇f(Xt)‖22 ≤ ηf(Xt),

provided that the step size η also satisfies

η ≤ 1

4

(
1

m

m∑
i=1

‖Ai‖22 ·
(
‖Xt‖∗ + βn

))−1

. (20)

With this, the identity in (16) becomes

DΦβ (X′,Xt+1)−DΦβ (X′,Xt) = −2ηf(Xt) +DΦβ (Xt,Xt+1) ≤ −ηf(Xt) (21)

for any global minimizer X′ of f . Since the Bregman divergence DΦβ (X′,Xt) is bounded from
below by zero, this means that the empirical risk f(Xt) must converge to zero, which in turn implies
that Xt converges to a global minimizer of f .

To see which global minimizer mirror descent converges to, observe that the difference in (8) does
not depend on the reference point X′, as long as X′ is a global minimizer of f . This means that the
Bregman divergence DΦβ (X′,Xt) is decreased by the same amount for all global minimizers X′,
which then implies that Xt must converge to the global minimizer which is closest to X0 in terms of
the Bregman divergence. Hence, writing {σi}ni=1 for the singular values of X∞ = limt→∞Xt and
using the identity arcsinh(x) = log(x+

√
x2 + 1), the quantity

DΦβ (X∞,X0) =

n∑
i=1

σi arcsinh

(
σi
β

)
−
√
σ2
i + β2 − nβ

=

n∑
i=1

σi log
1

β
+ σi log

(
σi +

√
σ2
i + β2

)
−
√
σ2
i + β2 − nβ

is minimized among all global minimizers of the empirical risk f , which is the quantity in (6) modulo
the constant nβ.

Finally, since we show convergence of Xt, this means that the nuclear norm ‖Xt‖∗ and the empirical
risk f(Xt) stay bounded for all t ≥ 0. This implies that, in order to satisfy inequalities (19) and (20),
we can indeed choose a constant step size ηt ≡ η ≤ c, where the constant c > 0 depends on the
spectral norm of the sensing matrices Ai’s and the observations yi’s.

Part 2: Proving the bound (7).
In order to show the bound (7), we first show that f(Xt) decreases monotonously. To this end, we
verifiy that f is 1

m

∑m
i=1 ‖Ai‖22-smooth with respect to the nuclear norm. Indeed,∇f is Lipschitz

continuous with Lipschitz constant 1
m

∑m
i=1 ‖Ai‖22,

‖∇f(X)−∇f(Y)‖2 =

∥∥∥∥ 1

m

m∑
i=1

〈Ai,X−Y〉Ai

∥∥∥∥
2

≤
∥∥∥∥ 1

m

m∑
i=1

‖Ai‖2‖X−Y‖∗Ai

∥∥∥∥
2

≤ 1

m

m∑
i=1

‖Ai‖22 · ‖X−Y‖∗,

where we used the duality of the nuclear and spectral norms in the second line. Hence, we can bound

f(Xt+1) ≤ f(Xt) + 〈∇f(Xt),Xt+1 −Xt〉+
1

2m

m∑
i=1

‖Ai‖22 · ‖Xt+1 −Xt‖2∗.
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If we can bound

〈∇f(Xt),Xt+1 −Xt〉 ≤ −
1

2m

m∑
i=1

‖Ai‖22 · ‖Xt+1 −Xt‖2∗,

then this would show that f(Xt) is monotonously decreasing. Recall the proximal formulation of
mirror descent (see e.g. [1]),

Xt+1 = arg min
X∈Rn×n′

{
〈∇f(Xt),X−Xt〉+

1

η
DΦβ (X,Xt)

}
.

Since the quantity being minimized is zero for X = Xt, we obtain the upper bound

〈∇f(Xt),Xt+1 −Xt〉 ≤ −
1

η
DΦβ (Xt+1,Xt)

=
1

η

(
(Φβ(Xt)− Φβ(Xt+1)) + 〈∇Φβ(Xt),Xt+1 −Xt〉

)
≤ − 1

4η(τt + βn)
‖Xt+1 −Xt‖2∗

≤ − 1

2m

m∑
i=1

‖Ai‖22 · ‖Xt+1 −Xt‖2∗,

where we used strong convexity of Φβ for the second inequality, and the last inequality holds if the
step size η satisfies inequality (20). This completes the proof that f(Xt+1) ≤ f(Xt).

To show the bound (7), assume that it were violated for some t > 0. Since f(Xt) is non-increasing,
this means that

f(Xs) ≥ f(Xt) >
DΦβ (X∞,X0)

ηt

for all s ≤ t. The bound in (21) controls by how much the Bregman divergence must decrease in
each iteration. Summing over the expression in (21), we obtain

DΦβ (X∞,Xt) = DΦβ (X∞,X0) +

t−1∑
s=0

DΦβ (X∞,Xs+1)−DΦβ (X∞,Xs)

< DΦβ (X∞,X0)−
t−1∑
s=0

η
DΦβ (X∞,X0)

ηt

= 0,

which contradicts the non-negativity of the Bregman divergence and therefore shows that the bound
(7) must be satisfied for all t > 0.

B.2 Proof of Theorem 2

The proof of Theorem 2 follows the same steps as the proof of Theorem 1 and uses the fact that the
spectral entropy (5) is (2τ)−1 strongly convex with respect to the nuclear norm on the nuclear norm
ball B+(τ) = {X ∈ Sn+ : ‖X‖∗ ≤ τ}, for which we include a proof for completeness’ sake.

Lemma 7 (Strong convexity of the spectral entropy). The spectral entropy (5) is (2τ)−1-strongly
convex with respect to the nuclear norm ‖ · ‖∗ on the nuclear norm ball B+(τ).

Proof. The proof of Lemma 7 closely follows the proof of strong convexity of the spectral hypentropy
mirror map provided in [4]. We first introduce some notation. We denote by λ(X) the vector of
eigenvalues of a symmetric matrix X ∈ Sn. For a function f : R → R, we denote by f(X) the
standard lifting of scalar functions to symmetric matrices, see e.g. [4],

X = U diag[λ(X)]U> ⇒ f(X) = U diag[f(λ(X))]U>,

where f is applied to the vector λ(X) componentwise.
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In order to show that the spectral entropy Φ is (2τ)−1-strongly convex with respect to the nuclear
norm ‖ · ‖∗ on B+(τ), we use the duality of strong convexity and smoothness and show instead that
the Fenchel conjugate Φ∗ is 2τ -smooth with respect to the spectral norm ‖ · ‖2 on the set∇Φ(B+(τ)).

The following Theorem from [6] relates the conjugate of rotationally invariant matrix functions, i.e.
functions that can be written as Ψ(X) = (ψ ◦ λ)(X), where ψ : Rn → R, to the conjugate of the
vector function ψ.

Theorem 8 (Theorem 28 [6]). Let g : Rn → R be a symmetric function, i.e. invariant under
permutations of its argument. Then,

(g ◦ λ)∗ = g∗ ◦ λ.

With this, we can compute the Fenchel conjugate of Φ. We have

Φ(X) = tr(X log X−X) =

n∑
i=1

λi(X) log λi(X)− λi(X) =:

n∑
i=1

φ(λi(X)),

so that

Φ∗(X) =

n∑
i=1

φ∗(λi(X)) =

n∑
i=1

eλi(X),

since the conjugate of the scalar function φ(x) = x log x− x is given by φ∗(x) = ex.

The following Lemma from [5] allows us to reduce the smoothness of matrix functions to the
smoothness of functions taking vectors as argument.

Lemma 9 (Proposition 3.1 [5]). Let f : R+ → R be a twice continuously differentiable function and
c > 0 a constant such that, for all b > a > 0,

f ′(b)− f ′(a)

b− a
≤ cf

′′(a) + f ′′(b)

2
.

Then, the function F : Sn → R defined by F (X) = tr(f(X)) is twice continuously differentiable
and satisfies, for every H ∈ Sn,

D2F (X)[H,H] ≤ c tr(Hf ′′(X)H).

We can now analyze the smoothness of Φ∗. By the mean-value theorem, we have for some c ∈ [a, b],

(φ∗)′(b)− (φ∗)′(a)

b− a
= (φ∗)′′(c) ≤ (φ∗)′′(a) + (φ∗)′′(b).

Then, by Lemma 9, we can bound, for any X = ∇Φ(Y) with Y ∈ B+(τ),

sup
H∈Sn:‖H‖2≤1

D2Φ∗(X)[H,H] ≤ sup
H∈Sn:‖H‖2≤1

2 tr(H(φ∗)′′(X)H)

= sup
H∈Sn:‖H‖2≤1

2 tr(H2(φ∗)′′(X))

≤ sup
H∈Sn:‖H‖2≤1

2〈σ2(H), σ((φ∗)′′(X))〉,

where we write σ(X) for the vector of singular values of a matrix X. The equality follows from
commutativity of the trace, and the last inequality follows from von Neumann’s trace inequality
tr(A>B) ≤ 〈σ(A), σ(B)〉. By definition, we have σ2

i (H) ≤ 1 and σi((φ∗)′′(X)) = σi(Y) for all
i = 1, . . . , n, so that we can bound

sup
H∈Sn:‖H‖2≤1

D2Φ∗(X)[H,H] ≤ 2

n∑
i=1

1 · σi(Y) = 2‖Y‖∗ ≤ 2τ,

which completes the proof that Φ∗ is 2τ -smooth with respect to the spectral norm on∇Φ(B+(τ)).

Since the rest of the proof of Theorem 2 follows the exact same steps as the proof of Theorem 1, it is
omitted to avoid repetition.
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B.3 Proof of Theorem 3

Proof of Theorem 3. We begin by considering the rectangular case and prove the bound (11) in
Theorem 3 for the spectral hypentropy mirror map (4). The proof of Theorem 3 is an adaption of
and builds upon the proofs of Theorem 3.3 in [9] and Theorem 4 in [3]. First, we need to bound the
nuclear norm of the matrix X∞. Then, we follow [3, 9] and use the RIP-assumption to bound the
deviation ‖X∞ −X?‖F .

Step 1: Bound the nuclear norm ‖X∞‖∗.
If ‖X∞‖∗ ≤ ‖X?‖∗, then we have a suitable upper bound for the nuclear norm ‖X∞‖∗. Hence,
assume that ‖X∞‖∗ > ‖X?‖∗. By Theorem 1, X∞ minimizes the quantity in (6) among all global
minimizers of the empirical risk f which, in particular, include X?. Writing σi and µi for the singular
values of X∞ and X?, respectively, we can bound

n∑
i=1

σi log
‖X?‖∗
β

+ σi log
σi +

√
σ2
i + β2

‖X?‖∗
−
√
σ2
i + β2

≤
n∑
i=1

µi log
‖X?‖∗
β

+ µi log
µi +

√
µ2
i + β2

‖X?‖∗
−
√
µ2
i + β2.

For any x, β > 0, we have
x ≤

√
x2 + β2 ≤ x+ β.

Rearranging above inequality for the nuclear norm ‖X∞‖∗, we obtain the upper bound

‖X∞‖∗ ≤ ‖X?‖∗ +
1

log ‖X
?‖∗
β − 1

n∑
i=1

µi log
µi +

√
µ2
i + β2

‖X?‖∗
− σi log

σi +
√
σ2
i + β2

‖X?‖∗
+ β

≤ ‖X?‖∗ +
1

log ‖X
?‖∗
β − 1

(
‖X∞‖∗ log 2.1− ‖X∞‖∗ log

2‖X∞‖∗
n‖X?‖∗

+ nβ

)

≤ ‖X?‖∗ +
1

log ‖X
?‖∗
β − 1

(
‖X∞‖∗ log(1.05n) + nβ

)
,

where we used the assumptions β ≤ ‖X
?‖∗

1.05en and ‖X?‖∗ < ‖X∞‖∗, and for the second inequality we
used the fact that the constrained optimization problem

optimize

n∑
i=1

xi log

(
xi +

√
x2
i + β2

)
s.t.

n∑
i=1

xi = K, xi ≥ 0 for all i = 1, . . . , n

attains a maximum when xi = K for exactly one i ∈ {1, . . . , n}, and attains a minimum when all
xi = K/n are equal. Hence, again using the assumption β < ‖X?‖∗

1.05en , we can bound

‖X∞‖∗ ≤ (1 + ∆β)

(
‖X?‖∗ +

nβ

log ‖X
?‖∗
β − 1

)
, (22)

where ∆β = ( log(‖X?‖∗/β)−1
log(1.05n) − 1)−1 > 0, since β ≤ ‖X

?‖∗
1.05en .

Step 2: Bound the reconstruction error ‖X∞ −X?‖F .
With this, we can now proceed as in [3, 9]. Writing R = X∞ − X?, we can apply Lemma 3.4
from [9] to the matrices X? and R to decompose R = R0 + Rc, where rank(R0) ≤ 2 rank(X?),
X?R>c = 0 and (X?)>Rc = 0. We can bound

‖X? + R‖∗ ≥ ‖X? + Rc‖∗ − ‖R0‖∗ = ‖X?‖∗ + ‖Rc‖∗ − ‖R0‖∗,

where the inequality follows from the triangle inequality, and the equality holds since X?R>c = 0
and (X?)>Rc = 0 together imply that the nuclear norm decomposes, see e.g. Lemma 2.3 of [9].
Together with (22), this implies

‖Rc‖∗ ≤ ‖R0‖∗ + ∆β‖X?‖∗ + (1 + ∆β)
nβ

log ‖X
?‖∗
β − 1

.
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Next, we partition Rc into a sum of matrices R1,R2, . . . ,Rd n3r e, with each being of rank at most
3r. Letting Rc = UΣV> be the singular value decomposition of Rc, where the diagonal elements
of Σ are in non-increasing order σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, define Ri = UIiΣIiV

>
Ii

, where
Ii = {3r(i− 1) + 1, . . . , 3ri}. By construction, we have

σk ≤
1

3r

∑
j∈Ii

σj for all k ∈ Ii+1, i ∈
{

1, . . . ,
⌈ n

3r

⌉}
,

which implies ‖Ri+1‖2F ≤ 1
3r‖Ri‖2∗. With this, we can bound∑

j≥2

‖Rj‖F ≤
1√
3r

∑
j≥1

‖Rj‖∗

=
1√
3r
‖Rc‖∗

≤
√

2r√
3r
‖R0‖F +

∆β‖X?‖∗ + (1 + ∆β) nβ

log
‖X?‖∗
β −1

√
3r

, (23)

where for the last inequality we used that rank(R0) ≤ 2r. Since R0 + R1 is at most of rank 5r, we
can use the triangle inequality and the restricted isometry property to bound(

1

m

m∑
i=1

〈Ai,R〉2
)1/2

≥
(

1

m

m∑
i=1

〈Ai,R0 + R1〉2
)1/2

−
∑
j≥2

(
1

m

m∑
i=1

〈Ai,Rj〉2
)1/2

≥ (1− δ)‖R0 + R1‖F −
∑
j≥2

(1 + δ)‖Rj‖F . (24)

Since R0 is orthogonal to R1 (see Lemma 3.4 in [9]), we have ‖R0 +R1‖F ≥ ‖R0‖F . By definition,
we have f(X?) = f(X∞) = 0, which implies 〈Ai,R〉 = 0 for all i = 1, . . . ,m. Hence, we can use
(23) and rearrange (24) for ‖R0 + R1‖F to obtain

‖R0 + R1‖F ≤
(

1−
√

2

3
− δ
(

1 +

√
2

3

))−1(
1 + δ

)∆β‖X?‖∗ + (1 + ∆β) nβ

log
‖X?‖∗
β −1

√
3r

.

Finally, this yields

‖R‖F ≤ ‖R0 + R1‖F +
∑
j≥2

‖Rj‖F

≤ 2

(
1−

√
2

3
− δ
(

1 +

√
2

3

))−1 ∆β‖X?‖∗ + (1 + ∆β) nβ

log
‖X?‖∗
β −1

√
3r

,

which completes the proof of the bound (11) in Theorem 3. The bound (12) can be shown following
the same steps, and we omit the details to avoid repetition.

B.4 Proof of Theorem 4

Proof of Theorem 4. As in Theorem 3, we first consider the rectangular case and show the bound
(13) in Theorem 4. The proof of Theorem 4 combines the ideas from and closely follows the proofs
of Theorem 2 in [8] and Theorem 7 in [2]. It was shown in Proposition 3 in [8] that it suffices to
consider a setting where the entries are sampled independently and uniformly with replacement. We
first introduce some notation necessary for the proof. A more detailed background on the following
quantities can be found in [8].

We use calligraphic letters to denote linear operators on matrices, for instance, we denote the identity
operator by I. We define the spectral norm of an operator as ‖A‖ = supX:‖X‖F≤1 ‖A(X)‖F . Let
Ω = {(ai, bi)}mi=1 be a collection of indices sampled uniformly at random with replacement (possibly
containing repetitions), and define the operator

RΩ(X) =

m∑
i=1

〈eaie>bi ,X〉eaie
>
bi .
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Let X? = UΣV> be the singular value decomposition of X?, and let uk (resp. vk) be the k-th
column of U (resp. V), and define the subspaces U = span(u1, . . . ,ur) and V = span(v1, . . . ,vr).
Let T be the linear space spanned by elements of the form uky

> and xv>k , k = 1, . . . , r, where
x ∈ Rn and y ∈ Rn′ are arbitrary vectors, and let T⊥ be its orthogonal complement. The orthogonal
projection onto the subspace T is given by

PT (X) = PUX + XPV −PUXPV ,

where PU and PV are the orthogonal projections onto U and V , respectively. Then, the orthogonal
projection onto T⊥ is given by

PT⊥(X) = (I − PT )(X).

It has been shown in [8] that, with high probability,

nn′

m

∥∥∥∥PTRΩPT −
m

nn′
PT
∥∥∥∥ ≤ 1

2
, ‖RΩ‖ ≤

8

3

√
c log n′, (25)

and that there exists a matrix Y in the range ofRΩ satisfying

‖PT (Y)−UV>‖F ≤
√

r

2n′
, ‖PT⊥(Y)‖F ≤

1

2
, (26)

see Section 4 in [8] for a proof of these statements.

Let R = X∞ −X?. Since the subspaces T and T⊥ are orthogonal by construction, we have

‖R‖2F = ‖PT (R)‖2F + ‖PT⊥(R)‖2F ,

so the goal is to bound the two terms on the right hand side of above identity. Since both X? and
X∞ are global minimizers of the empirical risk f , we have

0 = ‖RΩ(R)‖F ≥ ‖RΩPT (R)‖F − ‖RΩPT⊥(R)‖F ,

where we used the reverse triangle inequality. Further, the first bound in (25) implies

‖RΩPT (R)‖2F = 〈R,PTR2
ΩPT (R)〉 ≥ 〈R,PTRΩPT (R)〉 ≥ m

2nn′
‖PT (R)‖2F ,

and, using the second bound in (25), we can bound ‖RΩPT⊥(R)‖F ≤ 8
3

√
c log(n′)‖PT⊥(R)‖F .

Together, this implies

‖PT⊥(R)‖F ≥

√
9m

128cnn′ log2 n′
‖PT (R)‖F ≥

√
4.5r

n′
‖PT (R)‖F . (27)

Recalling the variational characterization of the nuclear norm ‖A‖∗ = supB:‖B‖≤1〈A,B〉, we
can choose matrices U⊥ and V⊥ such that [U,U⊥] and [V,V⊥] are orthogonal matrices and
〈U⊥V>⊥,PT⊥(R)〉 = ‖PT⊥(R)‖∗. Let Y be as in (26). Then, we can bound

‖X? + R‖∗ ≥ 〈UV> + U⊥V>⊥,X
? + R〉

= ‖X?‖∗ + 〈UV> + U⊥V>⊥,R〉
= ‖X?‖∗ + 〈UV> + U⊥V>⊥ − (PT (Y) + PT⊥(Y)),PT (R) + PT⊥(R)〉
= ‖X?‖∗ + 〈UV> − PT (Y),PT (R)〉+ 〈U⊥V>⊥ − PT⊥(Y),PT⊥(R)〉

≥ ‖X?‖∗ −
√

r

2n′
‖PT (R)‖F +

1

2
‖PT⊥(R)‖∗

≥ ‖X?‖∗ +
1

6
‖PT⊥(R)‖∗,

where the first line follows from the varitional characterization of the nuclear norm, the third line
from the fact that Y and R are orthogonal since Y is in the range and R in the kernel of RΩ, the
fourth line from the fact that T and T⊥ are, by construction, orthogonal subspaces, the fifth line from
the bound (26) and the definition of U⊥,V⊥, and the last line follows from the bound (27) and the
fact that the Frobenius norm is bounded from above by the nuclear norm.
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As in the proof of Theorem 3, we can bound the nuclear norm

‖X∞‖∗ ≤ (1 + ∆β)

(
‖X?‖∗ +

nβ

log ‖X
?‖∗
β − 1

)
,

where ∆β = ( log(‖X?‖∗/β)−1
log(1.05n) − 1)−1. Hence, we can bound

‖PT⊥(R)‖F ≤ ‖PT⊥(R)‖∗ ≤ 6

(
∆β‖X?‖∗ + (1 + ∆β)

nβ

log ‖X
?‖∗
β − 1

)
.

Using (27), we can also bound

‖PT (R)‖F ≤

√
128cnn′ log2 n′

9m
‖PT⊥(R)‖F

≤ 6

(
∆β‖X?‖∗ + (1 + ∆β)

nβ

log ‖X
?‖∗
β − 1

)√
128cnn′ log2 n′

9m
.

Putting everything together, we have

‖R‖F ≤ 6

(
∆β‖X?‖∗ + (1 + ∆β)

nβ

log ‖X
?‖∗
β − 1

)(
1 +

(
128cnn′ log2 n′

9m

) 1
2
)
,

which completes the proof of the bound (13) in Theorem 4. The bound (14) can be shown following
the same steps, and we omit the details to avoid repetition.

B.5 Proof of Proposition 5

Proof. We begin by showing the first part of Proposition 5.

Proof of part 1.
Recalling the expressions for the gradient of the spectral entropy mirror map ∇Φ and its inverse
∇Φ−1 provided in Appendix A, the mirror descent update (2) becomes

Xt+1 = exp
(
log Xt − η∇f(Xt)

)
.

By assumption, X0 commutes with all sensing matrices Ai’s, and hence also with the gradient

∇f(X0) =
1

m

m∑
i=1

(〈Ai,X0〉 − yi)Ai,

which is a linear combination of the Ai’s. Further, note that if two matrices A and B commute, then
the matrices log A and exp(A) also commute with B. By induction, this implies that log Xt and
∇f(Xt) commute for all t ≥ 0, and we therefore have

exp
(
log Xt − η∇f(Xt)

)
= Xt exp

(
−η∇f(Xt)

)
= exp

(
−η∇f(Xt)

)
Xt,

where we used the fact that eA+B = eAeB if the matrices A and B commute. Hence, the mirror
descent update (2) is equivalent to

Xt+1 =
1

2

(
Xt exp

(
−η∇f(Xt)

)
+ exp

(
−η∇f(Xt)

)
Xt

)
,

which is exactly the exponentiated gradient algorithm defined in (15) with initialization U0 = X0

and V0 = 0.

Proof of part 2.
We begin by studying the mirror descent update (2). Recalling the expressions for the gradient of the
spectral hypentropy mirror map ∇Φβ and its inverse ∇Φ−1

β for symmetric matrices we derived in
Appendix A, the mirror descent update (2) becomes

Xt+1 = ∇Φ−1
β

(
∇Φβ(Xt)− η∇f(Xt)

)
=
β

2

[
exp

(
log

(
Xt

β
+

√
X2
t

β2
+ I

)
− η∇f(Xt)

)

− exp

(
− log

(
Xt

β
+

√
X2
t

β2
+ I

)
+ η∇f(Xt)

)]
.
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Assuming that Xt is symmetric, we can write Xt = BDB> by the spectral theorem, where B is an
orthogonal matrix and D a diagonal matrix. Then, we have

− log

(
Xt

β
+

√
X2
t

β2
+ I

)
= −B log

(
D

β
+

√
D2

β2
+ I

)
B>

= B log

(
−D

β
+

√
D2

β2
+ I

)
B>

= log

(
−Xt

β
+

√
X2
t

β2
+ I

)
,

since we have (x+
√
x2 + 1)−1 = −x+

√
x2 + 1 for all x ∈ R. Assuming that Xt (and hence also

log(Xt/β +
√

(Xt/β)2 + I)) commutes with all Ai’s, the mirror descent update can be written as

Xt+1 =
β

2

[(
X2

β
+

√
X2

β2
+ I

)
exp
(
−η∇f(Xt)

)
−

(
−X2

β
+

√
X2

β2
+ I

)
exp
(
η∇f(Xt)

)]

=
1

2

[
exp
(
−η∇f(Xt)

)Xt +
√

X2
t + β2I

2
+

Xt +
√

X2
t + β2I

2
exp
(
−η∇f(Xt)

)
+ exp

(
η∇f(Xt)

)−Xt +
√

X2
t + β2I

2
+
−Xt +

√
X2
t + β2I

2
exp
(
η∇f(Xt)

)]
.

Since X0 = 0 is symmetric and commutes with all Ai’s, this identity inductively shows that Xt is
symmetric and commutes with all Ai’s for all t ≥ 0.

Next, consider the exponentiated gradient algorithm (15) with initialization U0 = V0 = 1
2βI. Since

the initializations U0 and V0 both commute with all Ai’s, the update (15) implies that Ut and Vt

commute with all Ai’s for all t ≥ 0. Then, we have

Ut+1Vt+1 =
e−η∇f(Xt)Ut + Ute

−η∇f(Xt)

2
· e

η∇f(Xt)Vt + Vte
η∇f(Xt)

2
= UtVt,

that is the product UtVt = U0V0 = 1
4β

2I stays constant for all t ≥ 0. Since the matrix exponential
of a symmetric matrix is always positive definite, the update (15) also implies that Ut and Vt

stay positive definite for all t ≥ 0, so that Ut and Vt are invertible. Together with the definition
Xt = Ut −Vt, we can solve for

Ut =
Xt +

√
X2
t + β2I

2
, Vt =

−Xt +
√

X2
t + β2I

2
,

which completes the proof that mirror descent (2) is equivalent to the exponentiated gradient algorithm
(15) when the sensing matrices Ai’s are symmetric and commute.

B.6 Further claims

In this section, we elaborate on and justify further claims made in the main paper.

First, we demonstrate that minimizing the quantity
n∑
i=1

σi log
1

β
+ σi log

(
σi +

√
σ2
i + β2

)
−
√
σ2
i + β2 (28)

corresponds to minimizing the nuclear norm in the limit β → 0 and to minimizing the Frobenius
norm in the limit β →∞, see also [11], which showed the analogous result in the vector-case.

In the limit β → 0, the term log 1
β converges to infinity, hence minimizing the quantity in (28)

corresponds to minimizing the nuclear norm
∑n
i=1 σi.

In the limit β →∞, we can substitute zi = σi/β and write the expression in (28) as

β

n∑
i=1

zi log
(
zi +

√
z2
i + 1

)
−
√
z2
i + 1 = β

n∑
i=1

−1 +
z2
i

2
+O

(
z2
i

)
, (29)
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where we applied a Taylor expansion around zi = 0. Hence, minimizing the quantity in (28)
corresponds to minimizing the Frobenius norm (

∑n
i=1 σ

2
i )1/2 in the limit β →∞.

Next, we demonstrate that gradient descent with full-rank parametrization X = UU> − VV>,
where U,V ∈ Rn×n, is a first order approximation to the exponentiated gradient algorithm defined
in (15), with the step size rescaled by a factor 4 and the approximation being exact in the limit η → 0,
i.e. the continuous-time algorithms are equivalent.

First, using the first-order approximation eηA = I + ηA + O(η2), the exponentiated gradient
algorithm becomes

Xt = Ut −Vt

Ut+1 ≈ Ut − η
Ut∇f(Xt) +∇f(Xt)Ut

2
, Vt+1 ≈ Vt + η

Vt∇f(Xt) +∇f(Xt)Vt

2
,

where we omitted higher order O(η2) terms. On the other hand, the update for gradient descent is
given by

Xt = UtU
>
t −VtV

>
t

Ut+1 = Ut − 2η∇f(Xt), Vt+1 = Vt + 2η∇f(Xt).

With this, we can compute Ut+1U
>
t+1 = Ut + 2η(Ut∇f(Xt) +∇f(Xt)Ut) +O(η2), so gradient

descent with full-rank parametrization X = UU> −VV>, U,V ∈ Rn×n, is indeed a first-order
approximation of the exponentiated gradient algorithm defined in (15), with the step size rescaled by
a factor 4. Hence, in the limit η → 0, the differentials dXt

dt = limη→0
Xt+η−Xt

η of the exponentiated
gradient algorithm (15) and gradient descent with full-rank factorized parametrization coincide.

C Additional experiments for matrix completion

In this section, we present additional numerical simulations which consider matrix completion, i.e.
the sensing matrices Ai’s each have exactly one random entry set to one and all other entries set to
zero. The remaining exeperimental setup is as described in Section 6, with the difference that we
choose step sizes µ = 2000 and µ = 500 for mirror descent and gradient descent, respectively, due
to the lower spectral norm of the sensing matrices Ai’s in matrix completion compared to matrix
sensing with random Gaussian sensing matrices. As the experiments for Figure 1, the experiments for
Figure 2 were implemented in Python 3.9 and took around 10 minutes on a machine with 1.1-GHz
Intel Core i5 CPU and 8 GB of RAM.
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Figure 2: Nuclear norm, effective rank [10] and reconstruction error in matrix completion against
initialization size α for n = 50 and r = 5. Top row: m = 3nr. Bottom row: m = nr.

We consider the nuclear norm ‖X‖∗, the effective rank defined in [10] and the reconstruction error
‖X−X?‖F of the estimates from mirror descent, gradient descent and nuclear norm minimization,
and compare these quantities to the ground truth X?. Figure 2 shows that the results in matrix
completion qualitatively match the results in Figure 1 for matrix sensing with random Gaussian
sensing matrices. In particular, with m = 3nr observed entries (Figure 2, top row), nuclear norm

24



minimization recovers the planted matrix X? and the estimates of mirror descent and gradient descent
closely track each other in terms of the quantities considered. When onlym = nr entries are observed
(Figure 2, bottom row), nuclear norm minimization does not recover the planted matrix X?, and we
observe that gradient descent puts more emphasis on lowering the effective rank at the expense of a
(slightly) higher nuclear norm for initialization sizes smaller than 10−3.
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