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Abstract

Many black-box optimization tasks arising in high-stakes applications require risk-1

averse decisions. The standard Bayesian optimization (BO) paradigm, however,2

optimizes the expected value only. We generalize BO to trade mean and input-3

dependent variance of the objective, both of which we assume to be unknown4

a priori. In particular, we propose a novel risk-averse heteroscedastic Bayesian5

optimization algorithm (RAHBO) that aims to identify a solution with high return6

and low noise variance, while learning the noise distribution on the fly. To this7

end, we model both expectation and variance as (unknown) RKHS functions, and8

propose a novel risk-aware acquisition function. We bound the regret for our9

approach and provide a robust rule to report the final decision point for applications10

where only a single solution must be identified. We demonstrate the effectiveness11

of RAHBO on synthetic benchmark functions and hyperparameter tuning tasks.12

1 Introduction13

Black-box optimization tasks arise frequently in high-stakes applications such as drug and material14

discovery [21, 16, 28], genetics [15, 27], robotics [3, 10, 24], hyperparameter tuning of complex15

learning systems [20, 11, 34], to name a few. In many of these applications, there is often a trade-off16

between achieving high utility and minimizing risk. Moreover, uncertain and costly evaluations are17

an inherent part of black-box optimization tasks, and modern learning methods need to handle these18

aspects when balancing between the previous two objectives.19

Bayesian optimization (BO) is a powerful framework for optimizing such costly black-box functions20

from noisy zeroth-order evaluations. Classical BO approaches are typically risk-neutral as they seek21

to optimize the expected function value only. In practice, however, two different solutions might22

attain similar expected function values, but one might produce significantly noisier realizations. This23

is of major importance when it comes to actual deployment of the found solutions. For example,24

when selecting hyperparameters of a machine learning algorithm, we might prefer configurations that25

lead to slightly higher test errors but at the same time lead to smaller variance.26

In this paper, we generalize BO to trade off mean and input-dependent noise variance when sequen-27

tially querying points and outputting final solutions. We introduce a practical setting where both28

the black-box objective and input-dependent noise variance are unknown a priori, and the learner29

needs to estimate them on the fly. We propose a novel optimistic risk-averse algorithm – RAHBO –30

that makes sequential decisions by simultaneously balancing between exploration (learning about31

uncertain actions), exploitation (choosing actions that lead to high gains) and risk (avoiding unreliable32

actions). We bound the cumulative regret of RAHBO as well as the number of samples required to33

output a single near-optimal risk-averse solution. In our experiments, we demonstrate the risk-averse34

performance of our algorithm and show that standard BO methods can severely fail in applications35

where reliability of the reported solutions is of utmost importance.36
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Figure 1: When there is a choice between identical optima with different noise level, risk-neutral BO
tends to choose noisier inputs and RAHBO fixes this issue. (a) Unknown objective with 3 global max-
ima marked as (A, B, C). (b) Heteroscedastic noise variance over the same domain: the noise level at
(A, B, C) varies according to the sigmoid function. (c) Empirical variance distribution at all points ac-
quired during BO (over 9 experiments with different seeds). The standing out bumps correspond to the
three global optima with different noise variance, i.e., smaller variance is better. RAHBO dominates
in choosing the risk-averse optimum, consequently yielding lower risk-averse regret in Fig. 5a.

Related work. Bayesian optimization (BO) [26] refers to approaches for optimizing a noisy black-37

box objective that is often expensive to evaluate. A great number of BO methods have been developed38

over the years, including a significant number of variants of popular algorithms such as GP-UCB [35],39

Expected Improvement [25], and Thompson Sampling [12]. While the focus of standard Bayesian40

optimization approaches is mainly on trading-off exploration vs. exploitation and optimizing for the41

expected performance, in this work, we additionally focus on the risk that is involved when working42

with noisy objectives, as illustrated in Figure 1.43

The vast majority of previous BO works assume (sub-) Gaussian and homoscedastic noise (i.e., input44

independent and of some known fixed level). Both assumptions can be restrictive in practice. For45

example, as demonstrated in [14], the majority of hyperparameter tuning tasks exhibit heteroscedas-46

ticity. A few works relax the first assumption and consider, e.g., heavy-tailed noise models [13]47

and adversarially corrupted observations [6]. The second assumption is typically generalized via48

heteroscedastic GPs, allowing an explicit dependence of the noise distribution on the evaluation point49

[4, 8, 5, 19]. Similarly, in this work, we consider heteroscedastic GP models, but unlike the previous50

works, we specifically focus on the risk that is associated with querying and reporting noisy points.51

Several works have recently considered robust and risk-averse aspects in Bayesian optimization. Their52

central focus is on designing robust strategies and protecting against the change/shift in uncontrollable53

covariates. They study various notions including worst-case robustness [7], distributional robustness54

[18, 29], robust mixed strategies [33] and other notions of risk-aversion [17, 9, 30], and while some of55

them report robust regret guarantees, their focus is primarily on the robustness in the homoscedastic56

GP setting. Instead, in our setting, we account for the risk that comes from the realization of random57

noise with unknown distribution. Rather than optimizing the expected performance, in our risk-averse58

setting, we prefer inputs with lower variance. To this end, we incorporate the learning of the noise59

distribution into the optimization procedure via a mean-variance objective. The closest to our setting60

is risk-aversion with respect to noise in multi-armed bandits [32]. Their approach, however, fails to61

exploit reward dependence among similar arms.62

Contributions. We propose a novel Risk-averse Heteroscedastic Bayesian optimization (RAHBO)63

approach based on the optimistic principle that trades off the expectation and uncertainty of the mean-64

variance objective function. We model both expectation and variance as (unknown) RKHS functions,65

and propose a practical risk-aware algorithm in the heteroscedastic GP setting. In our theoretical66

analysis, we establish no-regret guarantees for our approach and provide a robust reporting rule for67

applications where only a single solution must be provided. We demonstrate the effectiveness of68

RAHBO on synthetic benchmarks, as well as on frequently considered hyperparameter tuning tasks.69
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2 Problem setting70

Let X be a given compact set of inputs (typicallyX � Rd for somed 2 N). We consider a problem71

of sequentially interacting with a �xed and unknown objectivef : X ! R. At every round of this72

procedure, the learner selects an actionx t 2 X , and obtains a noisy observation73

yt = f (x t ) + � (x t ); (1)

where� (x t ) is zero-mean noise independent across different time stepst. In this work, we consider74

sub-Gaussian heteroscedastic noise that depends on the query location.75

De�nition 1. A zero-mean real-valued random variable� is � –sub-Gaussian, if there exists variance-76

proxy� 2 such that8� 2 R; E[e�� ] � e
� 2 � 2

2 .77

The varianceVar [� ] lower bounds any valid variance-proxy, i.e.,Var [� ] � � 2. In caseVar [� ] = � 2
78

holds,� is said to be� –strictly sub-Gaussian. Besides zero mean Gaussian random variables, most79

standard symmetric bounded random variables (e.g., Bernoulli, beta, uniform, binomial) are strictly80

sub-Gaussian (see [1, Proposition 1.1]). Throughout the paper, we consider sub-Gaussian noise,81

and in Section 3.3, we specialize to the case of strictly sub-Gaussian noise.82

Unlike the previous works that mostly focus on sequential optimization off in the homoscedastic83

noise case, in this work we consider the trade-off between risk and return in the heteroscedastic case.84

While there exist a number of risk-averse objectives, we consider the simple and frequently used85

mean-variance model (MV) [32]. Here, the objective value atx 2 X is a trade-off between the mean86

returnf (x) and the risk expressed by its variance-proxy� 2(x):87

MV(x) = f (x) � �� 2(x); (2)

where� � 0 is a so-calledcoef�cient of absolute risk tolerance. In this work, we assume� is �xed88

and known to the learner. Note that in the case of� = 0 , the objective coincides with the standard89

BO objective.90

Performance metrics. We aim to construct a sequence of input evaluationsx t that eventually91

maximizes the risk-averse objectiveMV(x t ). To assess this convergence, we consider two metrics.92

The �rst one corresponds to the notion of cumulative regret similar to the one used in standard93

Bayesian optimization and bandits. Here, the learner's goal is to maximize its risk-averse cumulative94

reward over a time horizonT, or equivalently minimize itsrisk-averse cumulative regret:95

RT =
TX

t =1

h
MV(x � ) � MV(x t )

i
; (3)

wherex � 2 arg maxx 2X MV(x). A sublinear growth ofRT with T implies vanishing average96

regretRT =T ! 0 asT ! 1 . Intuitively, this implies the existence of somet such thatMV(x t ) is97

arbitrarily close to the optimal value MV(x � ).98

Besides the risk-averse cumulative regret, for a given accuracy� � 0, we also seek to report a single99

"good" risk-averse point̂xT 2 X after a total ofT rounds, that satis�es:100

MV(x̂T ) � MV(x � ) � �: (4)

Here, the learner seeks to simultaneously minimize the number of expensive function evaluationsT.101

The latter metric Eq. (4) is especially useful, for example, in tuning machine learning hyperparameters,102

where one seeks to determine high-quality inputs by the end of the optimization procedure and then103

deploy them in production. Alternatively, the cumulative regret metric is important in calibration104

problems taking place during the system usage. We consider both performance metrics in our105

experiments (see Section 4).106

Regularity assumptions.We consider standard smoothness assumptions [35, 7] when it comes to107

the unknown functionf : X ! R. In particular, we assume thatf (�) belongs to a reproducing kernel108

Hilbert space (RKHS)H � (a space of smooth and real-valued functions de�ned onX ), i.e.,f 2 H � ,109

induced by a kernel function� (�; �). Moreover, we assume that the RKHS norm off (�) is bounded110

kf k� � B f for some �nite constantBf > 0. We assume that the noise� (x) is � (x)-sub-Gaussian111

with variance proxy� 2(x): Moreover, we assume that the variance-proxy is uniformly upper-bounded112

by some �xed constant% >0; that is, for allx 2 X , we have� 2(x) � %2: We also use%2
A to denote113

the largest value of� 2(x) among the points in setA, i.e.,%2
A = max x 2 A � 2(x).114
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3 Algorithms115

We �rst recall the GP-based framework for sequential learning of RKHS functions from observations116

with heteroscedastic noise. Then, in Section 3.2, we consider a simple risk-averse Bayesian optimiza-117

tion problem withknownvariance-proxy, and later on in Section 3.3, we focus on our main problem118

setting in which the variance-proxy isunknown.119

3.1 Bayesian optimization with heteroscedastic noise120

Before addressing the risk-averse objective, we brie�y recall the standard GP-UCB algorithm121

[35] in the setting of heteroscedastic sub-Gaussian noise. The regularity assumptions permit122

the construction of con�dence bounds via Gaussian process (GP) model. Particularly, to decide123

which point to query at every round, GP-UCB makes use of the posterior GP mean and variance124

denoted by� t (�) and� 2
t (�), respectively. They are computed based on the previous measurements125

y1:t = [ y(x1); : : : ; y(x t )]> and the given kernel� (�; �):126

� t (x) = K t (x)T (K t + � � t ) � 1y1:t ; (5)

� 2
t (x) =

1
�

(� (x; x ) � � t (x)> (K t + � � t ) � 1� t (x)) ; (6)

where� t := diag(� 2(x1); : : : ; � 2(x t )) , (K t ) i;j = � (x i ; x j ); � t (x)T = [ � (x1; x); : : : ; � (x t ; x)]T
127

and� > 0 is a regularization parameter. At timet, GP-UCB chooses the point maximizing the upper128

con�dence bound of the unknown functionf (�), i.e.,129

x t 2 arg max
x 2X

� t � 1(x) + � t � t � 1(x)
| {z }

=:ucb f
t (x )

: (7)

If the noise� t (x t ) is heteroscedastic (i.e., input-dependent) and� (x t )-sub-Gaussian, the following130

con�dence bounds hold:131

Lemma 1(Lemma 7 in [19]). Let f 2 H � , and� t (�) and� 2
t (�) be de�ned as in Eqs.(5) and(6) with132

� > 0: Assume that the process(x t ; yt )t � 1 satis�es the noise model from Eq.(1). Then the following133

holds for allt � 1 andx 2 X with probability at least1 � � :134

j� t � 1(x) � f (x)j �

 s

2 log
�

det(� � t + K t )1=2

� det(� � t )1=2

�
+

p
� kf k�

!

| {z }
:= � t

� t � 1(x) (8)

Here,� t stands for exploration parameter that balances between exploration vs. exploitation and135

ensures the validity of con�dence bounds.136

Failure of GP-UCB in the risk-averse setting.GP-UCB is guaranteed to achieve sublinear cumu-137

lative regret with high probability in the risk-neutral (homoscedastic/heteroscedastic) Bayesian138

optimization setting [35, 12]. However, in the risk-averse setting (Eq. (2)), the maximizers139

x � 2 arg maxx 2X MV(x) and x �
f 2 arg maxx 2X f (x) might not coincide, and consequently,140

MV(x � ) can be signi�cantly larger thanMV(x �
f ). This is illustrated in Fig. 1, where GP-UCB most141

frequently chooses optimumA of the highest risk.142

3.2 Warm up: Known variance-proxy143

To remedy the previous issue with GP-UCB, we propose a naturalRisk-Averse Heteroscedastic BO144

(RAHBO) approach in case the proxy variance is known. At every roundt, our algorithm chooses145

the action:146

x t 2 arg max
x 2X

� t � 1(x) + � t � t � 1(x) � �� 2(x); (9)

where� t is from Lemma 1 and� is from Eq. (2). Here, we assume that the learner knows the147

variance-proxy� 2(�). In the next section, we relax this assumption and consider a more practical148

setting when� 2(�) is unknown to the learner.149

The performance of RAHBO is formally captured in the following proposition.150
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Proposition 1. Consider any functionf (�) 2 H � , and letA = f x t gT
t =1 denote the set of actions151

chosen byRAHBO when run on suchf (�) with f � t gT
t =1 as de�ned in Lemma 1, and known152

variance-proxy� 2(�). Then, with probability at least1 � � , RAHBO attains cumulative regret153

RT = O
�
%A � T

p
T � T

�
.154

The proof of this proposition is provided in Appendix A.1. Here, T denotes themaximum155

information gain [35] at time T, that measures the informativeness of the sampled points156

AT = f x1; : : : ; xT g � D aboutf de�ned by157

 T := max
A �D ; jA j= T

I (y1:T ; f 1:T ); (10)

where I (y1:T ; f 1:T ) is the mutual information between evaluationsy1:T and unknown158

f 1:T = [ f (x1); : : : ; f (xT )]> at points A � D . In the case of heteroscedastic noise, we159

haveI (y1:T ; f 1:T ) = 1
2

P T
t =1 ln

�
1 +

� 2
t � 1 (x t )

�� 2 (x t )

�
(see Appendix A.1 for details). We note that160

analytical upper bounds on T are provided in [35] for most of the popularly used kernels. These161

upper bounds typically scale sublinearly inT; for linear kernel T = O(d logT), and in case of162

squared exponential kernel T = O(d(log T)d+1 ). While these bounds are derived assuming the163

homoscedastic GP setting with some �xed constant noise variance� 2, we note that the same upper164

bounds are still applicable in the considered heteroscedastic case (i.e., by setting� 2 to %2).165

3.3 RAHBO for unknown variance-proxy166

In the case of unknown variance-proxy� 2(x), the con�dence bounds for the unknownf (x) in167

Lemma 1 can not be readily used, and we construct new ones on the combined mean-variance168

objective. To learn about the unknown� 2(x), we make some further assumptions.169

Assumption 1. The variance-proxy belongs to a reproducing kernel Hilbert space induced by some170

kernel� var , i.e.,� 2 2 H � var , andk� 2k� var � Bvar . For everyx 2 X , the observational noise� (x)171

from Eq.(1) is strictly � (x)-sub-Gaussian, i.e.,Var [� (x)] = � 2(x).172

SinceVar [� (�)] and � 2(�) coincide, we can focus on estimating the variance. In particular, we173

estimate the varianceVar [� (x)] in a repeated experiment setting, where for eachx t we collectk > 1174

evaluationsf yi (x t )gk
i =1 . Then the sample variance and sample mean of� (x t ) are given as:175

m̂k (x t ) =
1
k

kX

i =1

yi (x t ) and ŝ2
k (x t ) =

1
k � 1

kX

i =1

(yi (x t ) � m̂k (x t ))2: (11)

The key idea is that for strictly sub-Gaussian noise,ŝ2
1:t = [ ŝ2

k (x1); : : : ; ŝ2
k (x t )]> yieldsunbiased, but176

noisyevaluations of the unknown variance-proxy� 2
1:t = [ � 2(x1); : : : ; � 2(x t )]> , i.e., for1 � i � t,177

we have178

ŝ2
k (x i ) = � 2(x i ) + � (x i ); (12)

with noise� (x i ). In order to ef�ciently estimate the variance, we need an additional assumption.179

Assumption 2. The noise� (x t ) in Eq. (12) is � � (x t )-sub-Gaussian with known� 2
� (x t ) and180

independence between timest.181

A similar assumption is made in [32] in the multi-armed bandit setting. The fact that� 2
� (�) is known182

is rather mild as Assumption 1 allows to control its value. For example, for strictly sub-Gaussian183

� (x) we show (in Appendix A.2) thatVar (� (x)) = � 2
� (x) � 2� 4 (x )

k � 1 . Then, given that� 2(x) � %2,184

we can utilize the following (rather conservative) bound as a variance-proxy, i.e.,� 2
� (x) = 2%4

k � 1 . As185

we re�ne our variance estimates, we can exploit them to learn faster about the mean.186

RAHBO algorithm. We present our risk-averse heteroscedastic Bayesian Optimization approach187

for unknown variance-proxy in Algorithm 1. Our method relies on building two GP models.188

Firstly, we use sample variance evaluationsŝ2
1:t to construct a GP model for� 2(�) where the mean189

� var
t � 1(�) and variance� var

t � 1(�) are computed in the same way as in Eqs. (5) and (6) (by using� var ,190

� 2
� (�) as the variance-proxy, and treatingŝ2

1:t as noisy observations). Accordingly, we build the191
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Algorithm 1 Risk-averse Heteroscedastic Bayesian Optimization (RAHBO)
Require: Parameters�; f � t gt � 1; � , kernel functions�; � var

1: for t = 1 ; 2; : : : do
2: Selectx t 2 arg maxx 2X ucbf

t � 1(x) � � lcbvar
t � 1(x)

3: Observek samplesf yi (x t )gk
i =1 : yi (x t ) = f (x t ) + � i (x t ) for every i 2 [k]

4: Usef yi (x t )gk
i =1 to computem̂k (x t ) andŝ2

k (x t ) as in Eq. (11)
5: Usef x t ; ŝ2

k (x t )g to update� var
t (�) and� var

t (�) according to Eq. (5) and Eq. (6)
6: Constructucbvar

t (�) andlcbvar
t (�) as in Eq. (13) and Eq. (14)

7: Useucbvar
t (�) to computê� t as in Eq. (15)

8: Usef x t ; m̂k (x t )g and�̂ t to update� t (x) and� t (x) according to Eqs. (5) and (6)
9: Constructucbf

t (�) as in Eq. (7)
10: end for

upper and lower con�dence boundsucbvar
t (�) andlcbvar

t (�) on the variance-proxy as follows (see192

Appendix A.4 for more details):193

ucbvar
t (x) := � var

t � 1(x) + � var
t � var

t � 1(x) (13)

lcbvar
t (x) := � var

t � 1(x) � � var
t � var

t � 1(x); (14)

where once again� var
t is set according to Lemma 1.194

Secondly, we use sample mean evaluationsm̂1:t = [ m̂k (x1); : : : ; m̂k (x t )]> as our observed data195

to construct a model forf . To compute� t (�) and� t (�) (via Eq. (6) and Eq. (24)), instead of the196

unknown variance-proxy� (�) and� t , we use its truncated (with%2) upper con�dence bound and set197

�̂ t := 1
k diag

�
minf ucbvar

t (x1); %2g; : : : ; minf ucbvar
t (x1); %2g

�
: (15)

Note that� t (�) and� t (�) are then computed by usinĝ� t that is corrected byk (since every point is198

sampledk times). Hence, the previous substitution of the unknown variance-proxy by its conservative199

estimate in Eq. (15) guarantees (conditioning on the con�dence bounds for� (�) holding true) that the200

con�dence boundsucbf
t (x) := � t � 1(x) + � t � t � 1(x) on f also hold (with high probability).201

Finally, we de�ne our acquisition function as maximization ofucbMV
t (x) := ucb f

t (x) � � lcbvar
t (x),202

i.e., selectx t 2 arg maxx 2X ucbMV
t (x) at every roundt. The performance ofRAHBO is formally203

captured in the following theorem.204

Theorem 2. Let the set of actionsAT = f x t gT
t =1 be chosen withRAHBO with unknown variance-205

proxy (Algorithm 1) with each action takenk > 1 times. LetR 2 = max x 2 A T � 2
� (x t ). Then, with206

probability at least1 � � , the risk-averse regretRT of RAHBO is bounded by:207

Pr
�

RT � 2� T

p
kT �%2 ̂ T + 2 �� var

T k
p

TR 2� T ; 8T � 1
�

� 1 � �: (16)

Here,̂ T denotes maximum information gain̂ T = max A T I (( m̂k )1:T ; f 1:T ) assuming(m̂k )1:T are208

coming from the distribution with constant variance-proxy%2=k: Also, � T denotes maximum infor-209

mation gain� T = max A T I (( ŝ2
k )1:T ; � 2

1:T ) assuming that(ŝ2
k )1:T are coming from the distribution210

with variance-proxy� 2
� . For the proof see Appendix A.5.211

Furthermore, we obtain a bound on the number of iterations required for identifying an� -optimal212

point de�ned in Eq. (4):213

Corollary 2.1. Let Algorithm 1 (RAHBO) afterT iterations output the point̂xT such that:x̂T :=214

x t � ; wheret � := arg max t f lcbMV
t (x t )g: Thenx̂T achieves� -accuracy, i.e.,MV(x � ) � MV(x̂T ) � � ,215

afterT � � ( � 2
T %2 ̂ T + k ( � var

T )2 R 2 � T )
� 2 samples.216

4 Experiments217

In this section, we experimentally validateRAHBO and the baselines on two synthetic examples and218

two real hyperparameter tuning tasks. We provide an open-source implementation of our method.1
219

1https://anonymous.4open.science/r/Risk-averse-BO-1C3F
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(a) Illustration of the sine function (left) and noise variance (right)

(b) Cumulative regret (c) Suboptimality w.r.t. MV (d) Suboptimality w.r.t.f

Figure 2: (a) Unknown true objective along with noisy evaluations with varying noise level (left) and
unknown true noise variance and its evaluations (right). (b) Cumulative regret. (c) SimpleMV regret
for reporting rulex̂T = arg max x t

lcbT (x t ). (c) Simple regretf (x � ) � f (x̂T ) for the unknown
function at the reported point̂xT from (d). RAHBO not only leads to strong results in terms ofMV
but also in terms of the mean objectivef (x).

Baselines.We compare against two baselines: First, we useGP-UCBwith heteroscedastic noise as a220

standard risk-neutral algorithm that optimizes the unknownf (x). Second, we consider a risk-averse221

baseline that uniformly learns variance-proxy� 2(x) beforethe optimization procedure. This prior222

learning is in contrast to RAHBO that learns it on the �y. We call itRAHBO-US, standing for223

RAHBO with uncertainty sampling. It consists of two stages: (i) uniformly learning of� 2(x) via224

uncertainty sampling followed by (ii)GP-UCBfor the risk-averse objective, where instead of the225

unknown� 2(x), we use the mean of the learned model. Note thatRAHBO-US is closest to the226

contextual BO setting in [17], where the context distribution is assumed to be known.227

Experimental setup.At each iterationt, an algorithm queries a pointx t and observes sample mean228

and sample variance ofk observationsf yi (x t )gk
i =1 . We use a heteroscedastic GP for modelling229

f (x) and a homoscedastic GP for� 2(x). We set� t = 2 , which is commonly used in practice to230

improve performance over the theoretical results. Before the BO procedure, we determine the GP231

hyperparameters maximizing the marginal likelihood. To this end, we use initial points that are232

the same for all baselines and are chosen via Sobol sequence that generates low discrepancy quasi-233

random samples. We repeat each experiment several times, generating new initial points for every234

repetition. We use two metrics described in Section 2: (a) risk-averse cumulative regretRt computed235

for the acquired inputs; (b) simple regretMV(x � ) � MV(x̂T ) computed for inputs as reported via236

Corollary 2.1. For each metric, we report its mean� two standard errors over the repetitions.237

Example function We �rst illustrate the methods on a sine function depicted in Fig. 2a. It has two238

global optimizers, but we control the evaluation noise such that for each input, there is a choice239

between a low and a high noise version. We use a sigmoid function as noise variance, as depicted in240

Fig. 2a, that induces little noise on[0; 1] and increased noise on(1; 2]. We initialize the algorithms by241

selecting 10 inputsx at random, and keep these points the same for all algorithms. We usek = 10242

samples at each chosenx t . The number of acquisition rounds isT = 60. We repeat the experiment243

30 times and show the average performance in Fig. 2.244

Branin benchmark Next, we evaluate the methods on the (negated) Branin benchmark function245

in Fig. 1a, achieving its optimum valuef � = � 0:4 at (� �; 12:3); (�; 2:3); (9:4; 2:5). The246

heteroscedastic variance function illustrated in Fig. 1b de�nes different noise for the three optima.247

We initialize all algorithms by selecting 10 inputs. We usek = 10 samples to estimate the noise248

variance. The number of acquisition rounds isT = 150. We repeat BO 25 times and show the results249

in Figs. 1c and 5a. Fig. 1c provides more intuition behind the observed regret: UCB exploits the250

noisiest maxima the most, while RAHBO prefers smaller variance.251
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Figure 3: GP models �tted forGP-UCB (left) and RAHBO (right) for sine function. After
initialization with the same sampled points,GP-UCBconcentrates on the high-noise region whereas
RAHBO prefers small variance. Additional plots are presented in Appendix A.7.

Tuning a Free Electron Laser We tune parameters of a Free Electron Laser (FEL), an important252

scienti�c instrument2. Here, the main objective is to maximize the pulse energy measured by a gas253

detector. Parameter tuning is a time-consuming and repetitive task during operation. Tuning the254

FEL signal is an application where the cumulative regret is the relevant performance metric, since255

(re-)calibration takes place while user experiments are running. This is in contrast to deploying256

optimal hyperparameters for machine learning systems in production.257

We use real FEL measurements to train a neural network surrogate model, and use it to simulate the258

FEL objectivef (x) for new settingsx. We similarly �t a model of the heteroscedastic variance by259

regressing the squared residuals via a GP model. Here, we focus on the four most sensitive parameters.260

We report our comparison in Fig. 4 where we also assess the effect of varying the coef�cient of261

absolute risk tolerance� . We use 30 points to initialize the baselines and then perform 200 acquisition262

rounds. We repeat each experiment 15 times. In Fig. 4a we plot the empirical frequency of the263

true (unknown to the methods) valuesf (x t ) and� 2(x t ) at the inputsx t acquired by the methods.264

The empirical frequency for� 2(x) illustrates the tendency of risk-neutralGP-UCBto query points265

with higher noise, while risk-averse achieves substantially reduced variance and minimal reduction266

in mean performance. Sometimes, risk-neutralGP-UCBalso fails to succeed in querying points267

with the highestf -value. That tendency results in lower cumulative regret forRAHBO in Figs. 10b268

and 10c. We also compare the performance of the reporting rule from Corollary 2.1 in Fig. 10a,269

where we plot error bars with standard deviation both forf (x̂T ) and� 2(x̂T ) at the reported point270

x̂T . As before,RAHBO drastically reduces the variance compared toGP-UCB, while having only271

slightly lower mean performance. Additional results are presented in Appendix Fig. 10.272

Random Forest tuning BO is widely used by cloud services for tuning machine learning hyperpa-273

rameters and the resulting models might be then used in high-stakes applications such as credit scoring274

or fraud detection. In k-fold cross-validation, the average metric over the validation sets is optimized275

– a canonical example of therepeated experiment settingthat we consider in the paper. High across-276

folds variance is a practical problem [23] where the mean-variance approach might be bene�cial.277

In our experiment, we tune hyperparameters of a random forest classi�er (RF) on a dataset of278

fraudulent credit card transactions [22].3It consist of 285k transactions with 29 features (processed279

due to con�dentiality issues) that are distributed over time, and only 0.2% are fraud examples (see280

Appendix for more details). The search space for the RF hyperparameters is also provided in the281

Appendix. We use the balanced accuracy score and 5 validation folds, i.e.,k = 5 , and each validation282

fold is shifted in time with respect to the training data. We seek not only for high performanceon283

averagebut also for low variance across the validation folds that have different time shifts with284

respect to the training data.285

We initialize the algorithms by selecting 10 hyperparameter settings and keep these points the same286

for all algorithms. We use Matérn 5/2 kernels with Automatic Relevance Discovery (ARD) and287

normalize the input features to the unit cube. The number of acquisition rounds in one experiment is288

50 and we repeat each experiment 15 times. We report results in Figs. 5b and 5c where we plot mean289

� 2 standard errors. While bothRAHBO andGP-UCBperform comparable in terms of the mean290

error, its standard deviation for RAHBO is smaller.291

2Details withheld to maintain anonymity during review.
3https://www.kaggle.com/mlg-ulb/creditcardfraud
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(a) Empirical distribution of truef (x) (left) and� 2(x) (right) for FEL

(b) Mean-variance tradeoff (FEL) (c) Cum. regret (� = 0 :5) (d) Cum. regret (� = 1 )

Figure 4:(a) Distributions off (x) and� 2(x) for all pointsqueried by BO for the FEL. Clearly,GP-
UCB queries points with higher noise (but not necessarily high returnf ) in contrast to the risk-averse
methods. Moreover, greater� leads to lower variance. A good trade-off is achieved at� = 0 :5. (b)
Standard deviation error bars forf (x̂T ) and� 2(x̂T ) at thereportedx̂T = arg max x t

lcbT (x t ) for
FEL computed over the repeated BO. Though points reported byGP-UCBhave slightly higher
f (x) than most of the risk-averse methods, its noise variance is much higher. Again,� = 0 :5 yields
a good mean-variance trade-off.(c-d) Cum. regret for� = 0 :5 and� = 1 (see more in Appendix.)

(a) Branin benchmark (b) RF Tuning (c) RF Tuning

Figure 5: Branin: (a) Cumulative regret.Random Forest: (b-c) Simple regret fat the reprted
x̂T = arg max x t

MV (x t ) for (b) � = 20 and (c)� = 100. While both methods have comparable
mean, RAHBO has consistently lower variance.

5 Conclusion292

In this work, we generalized BO to trade the mean and input-dependent variance of the objective,293

both of which we assume to be unknown a priori. Our novel risk-averse upper con�dence bound294

(RAHBO) algorithm enjoys sublinear cumulative regret and performs well on synthetic benchmarks295

and hyperparameter tuning tasks.296

Limitations. In settings where the noise is homoscedastic, our approach does not bring additional297

value. Moreover, our proof of Theorem 2 relies on the Assumption 2 with the bounds for noise tails.298

Though this assumption is valid for important applications such as hyperparameter tuning where299

the noise is bounded, it fails to apply if� (x) has heavy tails. Chowdhury [31] shows how GP-UCB300

can be adapted to this setting, and addressing the mean variance tradeoffs in this case is an interesting301

direction for future work.302
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A Appendix423

A.1 Proof Proposition 1424

Proposition 1. Consider any functionf (�) 2 H � , and letA = f x t gT
t =1 denote the set of actions425

chosen byRAHBO when run on suchf (�) with f � t gT
t =1 as de�ned in Lemma 1, and known426

variance-proxy� 2(�). Then, with probability at least1 � � , RAHBO attains cumulative regret427

RT = O
�
%A � T

p
T � T

�
.428

Proof. Main steps of our proof are as follows:Step 1, derive the upper and the lower con�dence429

bounds onMV(x t ) at iterationt: lcbMV
t (x t ) anducbMV

t (x t ). Step 2, useMV con�dence bounds to430

upper bound the instantaneous risk-averse regretr (x t ) := MV(x � ) � MV(x t ). Steps 3 and 4, bound431

sum of variances
P T

t =1 � t � 1(x t ) via mutual informationI (y1:T ; f 1:T ). Step 5, bound cumulative432

regretRT =
P T

t =1 r (x t ) based on the previous steps.433

Step 1: On the con�dence bounds for MV(x)434

Consider� t and� t de�ned in Eqs. (5) and (6), then we can directly derive the con�dence bounds at435

iterationt on MV(x): Prf lcbMV
t (x) � MV(x) � ucbMV

t (x)g � 1 � � as follows:436

lcbMV
t (x) := � t � 1(x) � �� (x)2 � � t � t � 1(x) (17)

ucbMV
t (x) = � t � 1(x) � �� (x)2 + � t � t � 1(x) (18)

Here we assume� t = � t (� ) de�ned in Eq. (8).437

Step 2: Bounding the instantaneous risk-averse regretr t (x). Then, the instantaneous risk-averse438

regretr t (x) can be bounded as follows:439

r (x t ) = MV(x � ) � MV(x t )

� ucbMV
t (x � ) � lcbMV

t (x t )

� ucbMV
t (x t ) � lcbMV

t (x t ) = 2 � t � t � 1(x t );

where the �rst inequality uses the notions oflcb anducb, the second is due to our strategy Eq. (9)440

x t 2 arg maxx 2X ucbMV
t (x); and the last one by de�nitions oflcbMV

t (x) anducbMV
t (x): Thus, the441

cumulative regret can be bounded as follows:442

RT =
TX

t =1

r (x t ) �
TX

t =1

2� t � t � 1(x t ) � 2� T

TX

t =1

� t � 1(x t ); (19)

where the last inequality sincef � t gT
t =1 is a non-decreasing sequence. Below, we bound443

P T
t =1 � t � 1(x t ):444

Step 3: On bounding
P T

t =1 � t � 1(x t ).445

446

TX

t =1

� t � 1(x t ) =
TX

t =1

� (x t )
� (x t )

� t � 1(x t ) �

vu
u
t T

TX

t =1

�� 2(x t )
� 2

t � 1(x t )
�� 2(x t )

�

vu
u
t T �%2

A

TX

t =1

� 2
t � 1(x t )

�� 2(x t )
�

vu
u
u
u
t

2T �%2
A

TX

t =1

ln
�

1 +
� 2

t � 1(x t )
�� 2(x t )

�

| {z }
mututal information

; (20)

where the �rst inequality is due to the Cauchy-Schwarz inequality, the second one is due to%2
A :=447

maxx t 2 A � 2(x t ); A = f x1; : : : ; xT g , the third one is due to the fact thatln(1 + � ) � �
2 . Note that448

the expression in the bound above strongly relates to the the notion of themutual information.449

Step 4: On mutual informationI (y1:T ; f 1:T ) and maximum information gain T .450

451

Recall that themutual informationbetween the known measurementsy1:T and the unknown val-452

uesf 1:T = [ f (x1); : : : ; f (xT )]> is de�ned by the information gainI (y1:T ; f 1:T ) := H (y1:T ) �453
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H (y1:T jf 1:T ); whereH (�) is the entropy. Since the noise vector� 1:T = [ � (x1); : : : ; � (xT )]>
454

is assumed to be sampled fromN (0; � � T ), the measurements are assumed to be distributed as:455

y1:T � N (0; K T + � � T ). Conditioned on the observed vectory1:t � 1 by timet � 1, observation456

yt = f (x t ) + � (x t ) is assumed to be distributed asyt jy1:t � 1 � N (� t � 1(x t ); �� 2(x t ) + � 2
t � 1(x t )) :457

Hence, the entropy of each new measurementyt conditioned on the previous historyy1:t � 1 is:458

H (yt jy1:t � 1) =
1
2

ln(2�e (�� 2(x t ) + � 2
t � 1(x t ))

=
1
2

ln
�

2�e�� 2(x t )(1 +
� 2

t � 1(x t )
�� 2(x t )

)
�

=
1
2

ln
�

2�e�� 2(x t )
�

+
1
2

ln
�

1 +
� 2

t � 1(x t )
�� 2(x t )

�
;

H (y1:T ) =
TX

t =1

H (yt jy1:t � 1) =
1
2

TX

t =1

ln
�

2�e�� 2(x t )
�

+
1
2

TX

t =1

ln
�

1 +
� 2

t � 1(x t )
�� 2(x t )

�

H (y1:T jf 1:T ) =
TX

t =1

H (yt jf t ) =
1
2

TX

t =1

ln(2�e�� 2(x t )) :

Therefore, the information gain fory1:T is:459

I (y1:T ; f 1:T ) = H (y1:T ) � H (y1:T jf 1:T ) =
1
2

TX

t =1

ln
�

1 +
� 2

t � 1(x t )
�� 2(x t )

�
: (21)

Note thatI (y1:T ; f 1:T ) �  T Eq. (10), i.e.,460

1
2

TX

t =1

ln
�

1 +
� 2

t � 1(x t )
�� 2(x t )

�
�  T : (22)

Step 5: Bounding risk-averse cumulative regretRT =
P T

t =1 r (x t )461

Combining the previous three steps together: Eq. (19), Eq. (20), and Eq. (22), we �nally obtain:462

RT �
TX

t =1

2� t � t � 1(x t ) � 2� T

TX

t =1

� t � 1(x t ) � 2� T

q
4T �%2

A  T = 4%A � T

p
4T � T :

463

A.2 Tighter bounds for the variance-proxy � 2
� (x).464

Assumption 2 states that noise� (x) from Eq. (12) is� 2
� (x)-sub-Gaussian with variance-proxy� 2

� (x)465

being known. In practice,� 2
� (x) might be unknown. Here, we describe a way to estimate� 2

� (x) under466

the following two assumptions: the evaluation noise� (x) is strictly sub-Gaussian (that is already467

re�ected in the Assumption 1) and the noise� (x) of variance evaluation is also strictly sub-Gaussian,468

that is,Var [� (x)] = � 2
� (x) andVar [� (x)] = � 2(x).469

(i) Reformulation of the sample variance.We �rst rewrite the sample variance de�ned in Eq. (11) as470

an average over differences over all pairsf y1(x); : : : ; yk (x)g:471

ŝ2
k (x) =

1
2k(k � 1)

kX

i 6= j

(yi (x) � yj (x))2 =
1

2k(k � 1)

kX

i 6= j

(� i (x) � � j (x))2: (23)

(ii) Variance of the sample variance.Then, we obtain the variance of the sample varianceVar [ŝ2
k (x)]472

as in [2]:473
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Var [ŝ2
k (x)] =

� 1
k(k � 1)

kX

i 6= j

�
1
2

(� i (x) � � j (x))2 � Var [� (x)]
� � 2

=

=
� 1

k(k � 1)

kX

i 6= j

�
1
2

(� i (x) � � j (x))2 � � 2(x)
� � 2

=

=
� 4(x)

k
�

(k � 3)� 4(x)
k(k � 1)

;

where� 4(x) = E
�
(y(x) � f (x))4

�
= E[� 4(x)] is the 4th central moment and the second equality474

due to� (x) being strictly sub-Gaussian.475

(iii) Due to� (x) being strictly sub-Gaussian, i.e.,� 2
� (x) = Var [� (x)] = Var [ŝ2

k (x)], the derivation476

above also holds for the variance-proxy� 2
� (x):477

� 2
� (x) =

� 4(x)
k

�
(k � 3)� 4(x)

k(k � 1)
:

(iv) Bound 4th moment� 4(x). The 4th moment� 4(x) can expressed in terms of the distribution
kurtosis that is bounded under our assumptions. Particularly,kurtosisidenti�es the tails behaviour of
the distribution of� and is de�ned as follows:

Kurt[� ] :=
E[(� � E[� ])4]

Var 2(� )

Thus, for Gaussian random variable� , Kurt( � ) = 3� 4

� 4 = 3 , for strictly sub-Gaussian random variable
� : Kurt( � ) � 3 (see [1]). This implies

� 4(x) = Kurt( � (x)) � 4(x) � 3� 4(x):

(v) Bound variance proxy.Therefore,478

� 2
� (x) �

3(k � 1)� 4(x) � (k � 3)� 4(x)
k(k � 1)

=
3k � 3 � k + 3

k(k � 1)
� 4(x) =

2� 4(x)
k � 1

:

In case of the known uniform bound� 2(x) � %2; we can conclude:479

� 2
� (x) �

2%4

k � 1
:

A.3 Example of bounded sample variance480

Assumption 2 states that noise� (x) from Eq. (12) is sub-Gaussian. Though it covers a rich family481

of cases, it is not generally the case for the common Gaussian noise� (x) as it leads to� (x) being482

Chi-squared distributed. That, however, does not include� (x) having bounded support� (x) � B as483

it leads to the variancês2
k (x) also having bounded supportŝ2

k (x) � B 2 and the Assumption 2 holds:484

ŝ2
k (x) =

1
k � 1

kX

i =1

(yi (x) � m̂k (x))2 = ( f (x) + � i (x) � m̂k (x))2

=
1

k � 1

kX

i =1

�
� i (x)2 + ( f (x) � m̂k (x))2 + 2h� i (x); f (x) � m̂k (x)i

�

=
1

k � 1

kX

i =1

�
� i (x)2 +

(
P

� i (x))2

k2 � 2h� i (x);
P

� i (x)
k

i
�

=
P k

i =1 � i (x)2

k � 1
�

(
P k

i =1 � i (x))2

k(k � 1)
� B 2:
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A.4 Method details: GP-estimator of variance-proxy� 2
485

According to the Assumption 2, variance-proxy� 2 2 H � var is smooth, and� (x) = ŝ2
k (x) � � 2(x)486

is � � (x)-sub-Gaussian with known variance-proxy� 2
� (x). In this case, con�dence bounds for� 2(x)487

follow the ones derived in Lemma 1 with� var
t based on� var

t . Particularly, we collect noise488

variance evaluationsf x t ; ŝk (x t )gT
t =0 : Then the estimates for� var

T (x) and� var
T (x) for � 2 follow the489

corresponding estimates forf (x). Particularly,490

� var
t (x) = K var

t (x)T (K var
t + � � var

t ) � 1ŝ1:t ; (24)

� var
t (x)2 =

1
�

(� var (x; x ) � � var
t (x)> (K var

t + � � var
t ) � 1� var

t (x)) ; (25)

where � var
t = diag[� 2

� (x1); : : : ; � 2
� (x t )], � var

t (x) = [ � var (x1; x); : : : ; � var (x t ; x)]T and491

(K var
t ) i;j = � var (x i ; x j ). The con�dence bounds are then:492

ucbvar
t (x) = � var

t � 1(x) + � var
t � var

t � 1(x)

lcbvar
t (x) = � var

t � 1(x) � � var
t � var

t � 1(x):

A.5 Proof of Theorem 2493

Theorem 2. Let the set of actionsAT = f x t gT
t =1 be chosen withRAHBO with unknown variance-494

proxy (Algorithm 1) with each action takenk > 1 times. LetR 2 = max x 2 A T � 2
� (x t ). Then, with495

probability at least1 � � , the risk-averse regretRT of RAHBO is bounded by:496

Pr
�

RT � 2� T

p
kT �%2 ̂ T + 2 �� var

T k
p

TR 2� T ; 8T � 1
�

� 1 � �: (26)

Proof. Main steps of our proof are as follows:Step 1, derive the upper and the lower con�dence497

bounds onMV(x t ) at iterationt, i.e., lcbMV
t (x t ) anducbMV

t (x t ), via con�dence bounds for� 2(x)498

andf (x). Step 2, useMV con�dence bounds to upper bound the instantaneous risk-averse regret499

r (x t ) := MV(x � ) � MV(x t ). Steps 3 and 4, bound sum of variances for� 2(x) andf (x) via the500

corresponding information gains.Step 5, bound cumulative regretRT =
P T

t =1 r (x t ) based on the501

previous steps.502

Step 1:On con�dence bounds for MV(x).503

(i) On con�dence bounds for� 2(x). According to Eq. (25), with probability1 � � the following504

con�dence bounds hold:505

ucbvar
t (x) = � var

t � 1(x) + � var
t � var

t � 1(x);

lcbvar
t (x) = � var

t � 1(x) � � var
t � var

t � 1(x):

(ii) On con�dence bounds forf (x). Here we adapt con�dence bounds introduced in Eq. (17)-(18)506

since Eq. (5) relies on the unknown variance-proxy� 2(x) incorporated into� T . Let us again assume507

that� 2(x) is uniformly upper bounded byucbvar
t (x) � � (x)2. Then, the con�dence bounds forf508

with probability1 � � are:509

ucbf
t (x) = � t � 1(xj�̂ t ) + � t � t � 1(xj�̂ t ); (27)

lcbf
t (x) = � t � 1(xj�̂ t ) � � t � t � 1(xj�̂ t ): (28)

(iii) On con�dence bounds forMV(x). Finally, with probability1 � 2� , we havelcbMV
t (x) �510

MV(x) � ucbMV
t (x) with511

ucbMV
t (x) = ucb f

t (x) � � lcbvar
t (x); (29)

lcbMV
t (x) = lcb f

t (x) � � ucbvar
t (x): (30)
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Step 2:On bounding the regret.512

First, we bound instantaneous regret of a single measurement at pointx t , but with unknown variance-513

proxi � 2(x) as follows:514

r t := MV(x � ) � MV(x t ) � ucbMV
t (x � ) � lcbMV

t (x t )

� ucbMV
t (x t ) � lcbMV

t (x t )

= ucb f
t (x t ) � lcbf

t (x t ) + � (ucbvar
t (x t ) � lcbvar

t (x t ))

= 2 � t � t � 1(x t j �̂ t ) + 2 �� var
t � var

t � 1(x t ): (31)

The last equality is due to the fact thatucbf
t (x) � lcbf

t (x) = 2 � t � 2
t � 1(x t ) by de�nition, as well as515

ucbvar
t (x) � lcbvar

t (x) = 2 � var
t (� var

t � 1)2(x t ):516

Thus, we can bound the cumulative regret by517

RT =
TX

t =1

kr (x t ) � k
TX

t =1

2� t � t � 1(x t j �̂ t ) + k
TX

t =1

2�� var
t � var

t � 1(x t )

� 2k� T

TX

t =1

� t � 1(x t j �̂ t ) + 2 k�� var
T

TX

t =1

� var
t � 1(x t ): (32)

Step 3: On bounding
P T

t =1 � t � 1(x t j �̂ t ) and
P T

t =1 � var
t � 1(x t )518

We repeat the corresponding derivation for known� 2(x), recalling that� 2(x) � %2; 8x 2 X :519

TX

t =1

� t (x t j �̂ t ) =
TX

t =1

p
%%� 1� t � 1(x t j �̂ t ) �

vu
u
t T �

TX

t =1

%2

k
� 2

t � 1(x t jdiag(%2=k))
�%2=k

=

vu
u
u
u
t

4T
�%2

k

TX

t =1

1
2

ln
�

1 +
� 2

t � 1(x t jdiag(%2=k))
�%2=k

�

| {z }
mutual information

; (33)

where the �rst inequality uses the Cauchy-Schwarz inequality, and the fact that� t (x t j �̂ t ) �
� t (xjdiag(%2=k)) : The latter holds by the de�nition of̂� t , particularly:

� 2
t (x t j �̂ t ) =

1
�

(� (x; x ) � � t (x)> (K t + � �̂ t ) � 1� t (x)) ;

� 2
t (x t jdiag(%2=k)) =

1
�

(� (x; x ) � � t (x)> (K t + � diag(%2=k)) � 1� t (x)) ;

and�̂ t = min f diag(ucbvar
t (x)=k); diag(%2=k))g, where the minimum is taken for each value, that

is, �̂ t � diag(%2=k); thus� (K t + � �̂ t ) � 1 � � (K t + � diag(%2=k)) � 1: That implies

� 2
t (x t j �̂ t )� � 2

t (x t jdiag(%2=k)) = � � t (x)> (K t + � �̂ t ) � 1� t (x))+ � t (x)> (K t + � diag(%2=k)) � 1� t (x)) � 0:

Similarly, we can bound520

TX

t =1

� var
t � 1(x t ) =

TX

t =1

� � (x t )
� � (x t )

� var
t � 1(x t ) �

vu
u
t T

TX

t =1

�� 2
� (x t )

(� var
t � 1)2(x t )
�� 2

� (x t )

�

vu
u
t T � R 2

TX

t =1

(� var
t � 1)2(x t )
�� 2

� (x t )
�

vu
u
u
u
t

4T � R 2
TX

t =1

1
2

ln
�

1 +
(� var

t � 1)2(x t )
�� 2

� (x t )

�

| {z }
mututal information

; (34)

in the above we de�neR 2 := max x 2 A T � 2
� (x); AT = f x1; : : : ; xT g:521
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Step 4: On bounding maximum information gain522

We follow the notion of information gainI ((m̂k )1:T ; f 1:T ) computed assuming that(m̂k )1:T are523

coming from the distribution� N (0; K T + � diag(%2=k)) with variance-proxy%2=k :524

I (( m̂k )1:T ; f 1:T ) :=
TX

t =1

1
2

ln
�

1 +
� 2

t � 1(x t jdiag(%2=k))
�%2=k

�
:

We de�ne the corresponding maximum information gain̂ T = max A �X ;jA j= T I (( m̂k )1:T ; f 1:T )525

̂ T := max
A �X ;jA j= T

TX

t =1

1
2

ln
�

1 +
� 2

t � 1(x t jdiag(%2=k))
�%2=k

�
: (35)

Analogously, for� (x) with the posteriorN (� var
t (x); (� var

t (x))2); the information gain is de�ned as:526

I (ŝ2
1:T ; � 2

1:T ) :=
1
2

TX

t =1

ln
�

1 +
(� var

t � 1)2(x)
�� 2

� (x t )

�
:

Then, the corresponding maximum information gain� T is as follows:527

� T := max
A �X ;jA j= T

I (ŝ2
1:T ; � 2

1:T ) = max
A �X ;jA j= T

1
2

TX

t =1

ln
�

1 +
(� var

t � 1)2(x)
�� 2

� (x t )

�
; (36)

whereA is again a set of sizeT with pointsf x1; : : : ; xT g .528

Step 5: On bounding cumulative regretRT =
P T

t =1 r (x t )529

Combining the above three steps together, we obtain with probability1 � 2�530

RT � � T

p
4kT �%2 ̂ T + �� var

T k
p

4TR 2� T : (37)

A.6 Performance of reporting rule x (T )
531

Proof. Select the best solution in terms of ther t (x t ) over the past pointsx t .

x (T ) := x t � ; wheret � := arg max
t

f lcbMV
t (x t )g = arg min

t
f MV(x � )� lcbMV

t (x t )g = arg min
t

r̂ (x t )

Then we obtain the following bound532

MV(x � ) � MV(x t � ) � MV(x � ) � lcbMV
t � (x t � ) = r̂ (x t � ) =

1
kT

tX

t =1

kr̂ (x t � )

�
1

kT

tX

t =1

kr̂ (x t ) =
1

kT

TX

t =1

k
�
MV(x � ) � lcbMV

t (x t )
�

�
1
T

TX

t =1

�
ucbMV

t (x � ) � lcbMV
t (x t )

�

�
1
T

TX

t =1

�
ucbMV

t (x t ) � lcbMV
t (x t )

�
:

In the above the �rst inequality holds with high probability by de�nitionlcbMV
t � (x t � ) � MV(x t � ),533

the second inequality is due tot � := arg min t r̂ (x t ) and thereforêr (x t � ) � r̂ (x t ) 8t = 1 ; : : : ; T:534

The third inequality holds sinceucbMV
t (x) � MV(x) with high probability, and the fourth is due to535

ucbMV
t (x t ) � ucbMV

t (x)8x for the acquiredx t .536

Recall that by Eq. (31):537

ucbMV
t (x t ) � lcbMV

t (x t ) � 2� t � t � 1(x t j �̂ t ) + 2 �� var
t � var

t � 1(x t ):
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Similarly to Eq. (37), we get538

MV(x � ) � MV(x t � ) �

p
4kT � (� 2

T %2 ̂ T + �k (� var
t )2R 2� T )

kT
=

p
4� (� 2

T %2 ̂ T + �k (� var
t )2R 2� T )

p
kT

:

Therefore, forTk samples withTk � (4 � ( � 2
T %2 ̂ T + �k ( � var

t )2 R 2 � T )) 2

� 2 we get

MV(x � ) � MV(x t � ) � �:

539

A.7 Experimental settings and extended results540

Implementation and resources We implemented all our experiments using Python and BoTorch.4
541

We ran our experiments on an Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz machine.542

A.7.1 Example sine543

Fig. 6 with optimization of sine functions the difference in acquired points betweenRAHBO and544

GP-UCB. GP-UCB might tend to acquire points with higher variance.545

(a)

(b)

Figure 6

A.7.2 Branin546

We provide additional visualizations, experimental details and results. Firstly, we plot the noise-547

perturbed objective function in Fig. 7 in addition to the visualization in Fig. 1c. In Fig. 8, we plot548

cumulative regret and simple mean-variance regrets that extends the results in Fig. 5a withRAHBO-549

US. The general setting is the same as described for Fig. 5a: we use10 initial samples, repeat each550

evaluationk = 10 times, andRAHBO-USadditionally uses10samples for learning the variance551

function with uncertainty sampling. During the optimization,RAHBO-USupdates the GP model552

for variance function after every acquired point.553

4https://botorch.org/
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