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Abstract

Many black-box optimization tasks arising in high-stakes applications require risk-
averse decisions. The standard Bayesian optimization (BO) paradigm, however,
optimizes the expected value only. We generalize BO to trade mean and input-
dependent variance of the objective, both of which we assume to be unknown
a priori. In particular, we propose a novel risk-averse heteroscedastic Bayesian
optimization algorithm (RAHBO) that aims to identify a solution with high return
and low noise variance, while learning the noise distribution on the fly. To this
end, we model both expectation and variance as (unknown) RKHS functions, and
propose a novel risk-aware acquisition function. We bound the regret for our
approach and provide a robust rule to report the final decision point for applications
where only a single solution must be identified. We demonstrate the effectiveness
of RAHBO on synthetic benchmark functions and hyperparameter tuning tasks.

1 Introduction

Black-box optimization tasks arise frequently in high-stakes applications such as drug and material
discovery [21} [16l 28]], genetics [15} 27], robotics [3} [10, 24], hyperparameter tuning of complex
learning systems [20, [11}134], to name a few. In many of these applications, there is often a trade-off
between achieving high utility and minimizing risk. Moreover, uncertain and costly evaluations are
an inherent part of black-box optimization tasks, and modern learning methods need to handle these
aspects when balancing between the previous two objectives.

Bayesian optimization (BO) is a powerful framework for optimizing such costly black-box functions
from noisy zeroth-order evaluations. Classical BO approaches are typically risk-neutral as they seek
to optimize the expected function value only. In practice, however, two different solutions might
attain similar expected function values, but one might produce significantly noisier realizations. This
is of major importance when it comes to actual deployment of the found solutions. For example,
when selecting hyperparameters of a machine learning algorithm, we might prefer configurations that
lead to slightly higher test errors but at the same time lead to smaller variance.

In this paper, we generalize BO to trade off mean and input-dependent noise variance when sequen-
tially querying points and outputting final solutions. We introduce a practical setting where both
the black-box objective and input-dependent noise variance are unknown a priori, and the learner
needs to estimate them on the fly. We propose a novel optimistic risk-averse algorithm — RAHBO —
that makes sequential decisions by simultaneously balancing between exploration (learning about
uncertain actions), exploitation (choosing actions that lead to high gains) and risk (avoiding unreliable
actions). We bound the cumulative regret of RAHBO as well as the number of samples required to
output a single near-optimal risk-averse solution. In our experiments, we demonstrate the risk-averse
performance of our algorithm and show that standard BO methods can severely fail in applications
where reliability of the reported solutions is of utmost importance.
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Figure 1: When there is a choice between identical optima with different noise level, risk-neutral BO
tends to choose noisier inputs and RAHBO fixes this issue. (a) Unknown objective with 3 global max-
ima marked as (A, B, C). (b) Heteroscedastic noise variance over the same domain: the noise level at
(A, B, C) varies according to the sigmoid function. (c) Empirical variance distribution at all points ac-
quired during BO (over 9 experiments with different seeds). The standing out bumps correspond to the
three global optima with different noise variance, i.e., smaller variance is better. RAHBO dominates
in choosing the risk-averse optimum, consequently yielding lower risk-averse regret in Fig. @

Related work. Bayesian optimization (BO) [26]] refers to approaches for optimizing a noisy black-
box objective that is often expensive to evaluate. A great number of BO methods have been developed
over the years, including a significant number of variants of popular algorithms such as GP-UCB [35]],
Expected Improvement [25]], and Thompson Sampling [[12]]. While the focus of standard Bayesian
optimization approaches is mainly on trading-off exploration vs. exploitation and optimizing for the
expected performance, in this work, we additionally focus on the risk that is involved when working
with noisy objectives, as illustrated in Figure

The vast majority of previous BO works assume (sub-) Gaussian and homoscedastic noise (i.e., input
independent and of some known fixed level). Both assumptions can be restrictive in practice. For
example, as demonstrated in [[14]], the majority of hyperparameter tuning tasks exhibit heteroscedas-
ticity. A few works relax the first assumption and consider, e.g., heavy-tailed noise models [[13]
and adversarially corrupted observations [6]. The second assumption is typically generalized via
heteroscedastic GPs, allowing an explicit dependence of the noise distribution on the evaluation point
[4,18,15,119]). Similarly, in this work, we consider heteroscedastic GP models, but unlike the previous
works, we specifically focus on the risk that is associated with querying and reporting noisy points.

Several works have recently considered robust and risk-averse aspects in Bayesian optimization. Their
central focus is on designing robust strategies and protecting against the change/shift in uncontrollable
covariates. They study various notions including worst-case robustness [7], distributional robustness
[18L29]], robust mixed strategies [33]] and other notions of risk-aversion [[17,9}|30]], and while some of
them report robust regret guarantees, their focus is primarily on the robustness in the homoscedastic
GP setting. Instead, in our setting, we account for the risk that comes from the realization of random
noise with unknown distribution. Rather than optimizing the expected performance, in our risk-averse
setting, we prefer inputs with lower variance. To this end, we incorporate the learning of the noise
distribution into the optimization procedure via a mean-variance objective. The closest to our setting
is risk-aversion with respect to noise in multi-armed bandits [32]. Their approach, however, fails to
exploit reward dependence among similar arms.

Contributions. We propose a novel Risk-averse Heteroscedastic Bayesian optimization (RAHBO)
approach based on the optimistic principle that trades off the expectation and uncertainty of the mean-
variance objective function. We model both expectation and variance as (unknown) RKHS functions,
and propose a practical risk-aware algorithm in the heteroscedastic GP setting. In our theoretical
analysis, we establish no-regret guarantees for our approach and provide a robust reporting rule for
applications where only a single solution must be provided. We demonstrate the effectiveness of
RAHBO on synthetic benchmarks, as well as on frequently considered hyperparameter tuning tasks.
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2 Problem setting

Let X be a given compact set of inputs (typicaly RY for somed 2 N). We consider a problem
of sequentially interacting with a xed and unknown objectfive X ! R. At every round of this
procedure, the learner selects an ackp2 X , and obtains a noisy observation

ye=f(x)+ (Xe); (1)
where (x;) is zero-mean noise independent across different time stépshis work, we consider
sub-Gaussian heteroscedastic noise that depends on the query location.

De nition 1. A zero-mean real-valued random variablés —sub-Gaussian, if there exists variance-
2 2
proxy 2suchtha8 2 R; E[e | e

The variancé/ar[ ] lower bounds any valid variance-proxy, i.€ar[ | 2. Incasevar[ ]= 2

holds, is said to be —strictly sub-GaussianBesides zero mean Gaussian random variables, most
standard symmetric bounded random variables (e.g., Bernoulli, beta, uniform, binomial) are strictly
sub-Gaussian (seé,[Proposition 1.1]). Throughout the paper, we consider sub-Gaussian noise,
and in Section 3.3, we specialize to the case of strictly sub-Gaussian noise.

Unlike the previous works that mostly focus on sequential optimizatidninfthe homoscedastic

noise case, in this work we consider the trade-off between risk and return in the heteroscedastic case.
While there exist a number of risk-averse objectives, we consider the simple and frequently used
mean-variance model (MVBE]. Here, the objective value at2 X is a trade-off between the mean
returnf (x) and the risk expressed by its variance-proxgx):

MV (x) = f (X) 2(x); )

where Ois a so-calleatoef cient of absolute risk tolerancén this work, we assume is xed
and known to the learner. Note that in the case ef0, the objective coincides with the standard
BO objective.

Performance metrics. We aim to construct a sequence of input evaluationthat eventually
maximizes the risk-averse objectiv®/ (x;). To assess this convergence, we consider two metrics.
The rst one corresponds to the notion of cumulative regret similar to the one used in standard
Bayesian optimization and bandits. Here, the learner's goal is to maximize its risk-averse cumulative
reward over a time horizom, or equivalently minimize itsisk-averse cumulative regret

X h i
Rr = MV(X ) MV(x) ; 3)
t=1
wherex 2 argmaxcox MV (x). A sublinear growth oRt with T implies vanishing average
regretRt=T! OasT !1 . Intuitively, this implies the existence of sorheuch thaMV (x;) is
arbitrarily close to the optimal value M¥X ).

Besides the risk-averse cumulative regret, for a given accuracg, we also seek to report a single
"good" risk-averse poimty 2 X after a total ofT rounds, that satis es:

MV(&r) MV(x) : 4
Here, the learner seeks to simultaneously minimize the number of expensive function evalliations

The latter metric Eq. (4) is especially useful, for example, in tuning machine learning hyperparameters,
where one seeks to determine high-quality inputs by the end of the optimization procedure and then
deploy them in production. Alternatively, the cumulative regret metric is important in calibration
problems taking place during the system usage. We consider both performance metrics in our
experiments (see Section 4).

Regularity assumptions.We consider standard smoothness assumpt@H S when it comes to

the unknown functiori : X I R. In particular, we assume thi{ ) belongs to a reproducing kernel
Hilbert space (RKHSH (a space of smooth and real-valued functions de ne&9ni.e.,f 2H
induced by a kernel function( ; ). Moreover, we assume that the RKHS nornf ¢f) is bounded

kf k B ; for some nite constanB; > 0. We assume that the noisgx) is (x)-sub-Gaussian
with variance proxy 2(x): Moreover, we assume that the variance-proxy is uniformly upper-bounded
by some xed constarf >0; that is, for allx 2 X , we have 2(x)  %: We also uséf to denote

the largest value of?(x) among the points in sét, i.e.,% = maxyxaa 2(X).



115

116
117
118
119

120

121
122
123
124
125
126

127
128
129

130
131

132
133
134

135
136

137
138
139
140
141
142

143

144
145
146

147
148
149

150

3 Algorithms

We rst recall the GP-based framework for sequential learning of RKHS functions from observations
with heteroscedastic noise. Then, in Section 3.2, we consider a simple risk-averse Bayesian optimiza-
tion problem withknownvariance-proxy, and later on in Section 3.3, we focus on our main problem
setting in which the variance-proxy isiknown

3.1 Bayesian optimization with heteroscedastic noise

Before addressing the risk-averse objective, we brie y recall the standard GP-UCB algorithm

[35 in the setting of heteroscedastic sub-Gaussian noise. The regularity assumptions permit
the construction of con dence bounds via Gaussian process (GP) model. Particularly, to decide
which point to query at every round, GP-UCB makes use of the posterior GP mean and variance
denoted by () and ?(), respectively. They are computed based on the previous measurements

vyt = [y(X1);:::;¥(%¢)]” and the given kernel( ; ):
()= Ke)T(Ke+ 1) Py (5)
20= 2060 007 (Ket 0 L 0o ©)
where ¢ := diag %(x1);::5; 2(xt)), (Ko)ig = (Xiixp); o) = [ (x1:x);i::; (X x)]7

and > O0is aregularization parameter. At tilheGP-UCB chooses the point maximizing the upper
con dence bound of the unknown functidr{ ), i.e.,
X 2Zargmax ¢ 1(X)+_ ¢ 1(X2 : (7)
x2x | z

{

=:uch I (x)

If the noise ((X;) is heteroscedastic (i.e., input-dependent) apq)-sub-Gaussian, the following
con dence bounds hold:

Lemmal(Lemma7in[L9]). Letf 2H ,and {()and 2() be de ned as in Eqg5) and (6) with
> 0: Assume that the proceés;;y;): 1 satis es the noise model from E.). Then the following
holds for allt 1andx 2 X with probability at leastL
s !

a0t zlog B L Phae @
| ¢ )

=t

Here, ; stands for exploration parameter that balances between exploration vs. exploitation and
ensures the validity of con dence bounds.

Failure of GP-UCB in the risk-averse setting.GP-UCB is guaranteed to achieve sublinear cumu-
lative regret with high probability in the risk-neutral (homoscedastic/heteroscedastic) Bayesian
optimization setting 35, 12]. However, in the risk-averse setting (Eq. (2)), the maximizers

X 2 argmax.,x MV(x) andx; 2 argmax.y f(x) might not coincide, and consequently,
MV (x ) can be signi cantly larger thaMV (x; ). This is illustrated in Fig. 1, where GP-UCB most
frequently chooses optimus of the highest risk.

3.2 Warm up: Known variance-proxy

To remedy the previous issue with GP-UCB, we propose a naRisitAverse Heteroscedastic BO
(RAHBO) approach in case the proxy variance is known. At every raundr algorithm chooses
the action:

xe2argmax ¢ 100+ ¢ 1) 2(x); 9)

where ; is from Lemma 1 and is from Eq. (2). Here, we assume that the learner knows the
variance-proxy 2( ). In the next section, we relax this assumption and consider a more practical
setting when 4( ) is unknown to the learner.

The performance of RAHBO is formally captured in the following proposition.
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Proposition 1. Consider any functiof() 2 H , and letA = fx,g/_; denote the set of actions
chosen byRAHBO when run on sucli () with f ;g].; as de ned in Lemma 1, and known
variance-prox;bz( ). Then, with probability at least , RAHBO attains cumulative regret
RT =0 O/A T T T -

The proof of this proposition is provided in Appendix A.1. Herg, denotes thanaximum
information gain[35] at time T, that measures the informativeness of the sampled points

= max I (yrT;foT); 10

T AD GAi=T (yr7:f2T) (10)

where | (y1.7;f1.7) is the mutual information between evaluations/;.1 and unknown
for = [f(xy);:::;f(xg)]” at pointsA D. In the case of heteroscedastic noise, we

2
havel (yp.1r;f11) = % thl In 1+ - 21((;1‘)) (see Appendix A.1 for details). We note that

analytical upper bounds o are provided in35] for most of the popularly used kernels. These
upper bounds typically scale sublinearlyTn for linear kernel + = O(dlogT), and in case of
squared exponential kernet = O(d(log T)4*1). While these bounds are derived assuming the
homoscedastic GP setting with some xed constant noise variahoge note that the same upper
bounds are still applicable in the considered heteroscedastic case (i.e., by settrtd).

3.3 RAHBO for unknown variance-proxy

In the case of unknown variance-prox¥(x), the con dence bounds for the unknovix) in
Lemma 1 can not be readily used, and we construct new ones on the combined mean-variance
objective. To learn about the unknowf(x), we make some further assumptions.

Assumption 1. The variance-proxy belongs to a reproducing kernel Hilbert space induced by some
kernel V& Ji.e., 22H v ,andk °k v  Byg . For everyx 2 X , the observational noisg(x)
from Eq.(1) is strictly (x)-sub-Gaussian, i.eVar[ (x)] = ?(x).

SinceVar[ ()] and ?() coincide, we can focus on estimating the variance. In particular, we
estimate the variancéar[ (x)] in arepeated experiment settinghere for eacltx; we collectk > 1
evaluationd y; (x;)gk., . Then the sample variance and sample mear{xy) are given as:

1 X X
M) =« vil) and €)= S5 i) M)t @)
i=1 i=1

noisyevaluations of the unknown variance-proxdy, = [ 2(x1);:::; 2(x¢)]”,i.e.,forl i t,
we have

)= 2(x)+ (xi); (12)
with noise (x;). In order to ef ciently estimate the variance, we need an additional assumption.

Assumption 2. The noise (x¢) in Eq. (12) is  (x{)-sub-Gaussian with known?(x;) and
independence between tintes

A similar assumption is made i8g] in the multi-armed bandit setting. The fact th&{ ) is known
is rather mild as Assumption 1 allows to control its value. For example, for strictly sub-Gaussian

(x) we show (in Appendix A.2) thatar( (x)) = 2(x) 2k4()1() . Then, given that?(x) 9,

we can utilize the following (rather conservative) bound as a variance-proxy,a(&), = le- As

we re ne our variance estimates, we can exploit them to learn faster about the mean.

RAHBO algorithm. We present our risk-averse heteroscedastic Bayesian Optimization approach
for unknown variance-proxy in Algorithm 1. Our method relies on building two GP models.

Firstly, we use sample variance evaluatiéfsg to construct a GP model foP( ) where the mean
7&, () and variance &, () are computed in the same way as in Egs. (5) and (6) (by usfig
2() as the variance-proxy, and treati&§, as noisy observations). Accordingly, we build the



Algorithm 1 Risk-averse Heteroscedastic Bayesian Optimization (RAHBO)
Require: Parameters f (g 1; , kernel functions; Y&
1: fort=1;2;:::do
2. Selectx, 2 argmax,,y uch! ;(x) Icby®"; (x)
. Observek sampled y; (x¢)gke; : Vi(xe) = f(x)+ i(x;) forevery i2 [K]
Usefyi(x¢)gk, to computehy (x;) andsZ(x;) as in Eq. (11)
Usef x; 82(x¢)g to update Y@ () and Y2 (') according to Eq. (5) and Eq. (6)
Constructuch;® () andicb{* (') asin Eq. (13) and Eq. (14)

3
4
5
6:
7:  Useuch!® () to compute”; as in Eq. (15)
8
9
10:

: Usefx;;m(x;)gand”; to update {(x) and ((x) according to Egs. (5) and (6)
: Construciucb{ ()asinEq. (7)
end for

192 upper and lower con dence boundsb/® (') andlcb{® (') on the variance-proxy as follows (see
193 Appendix A.4 for more details):
ueh®™ (x) = {00+ ¢ {Ex) (13)
leby™ (x) == {*1(x) LX) (14)
194 Where once again/® is set according to Lemma 1.

105 Secondly, we use sample mean evaluatibing = [ M (X1);:::; Mk (X¢)]” as our observed data
196 to construct a model for. To compute () and () (via Eqg. (6) and Eq. (24)), instead of the
107 unknown variance-proxy( ) and , we use its truncated (wit%8) upper con dence bound and set

"¢ = Ldiag minfuch/® (x1);%g;:::; minfuch® (x1);%g : (15)

18 Note that () and () are then computed by usify that is corrected bi (since every point is
199 sampledk times). Hence, the previous substitution of the unknown variance-proxy by its conservative
200 estimate in Eq. (15) guarantees (conditioning on the con dence bound$ jdnolding true) that the

200 con dence boundsncb{ X):= ¢ 1(x)+ ¢ ¢ 1(X) onf also hold (with high probability).

202 Finally, we de ne our acquisition function as maximizationmfo{v'v(x) = ucb{ (%) Ichy{®" (x),
203 I.e., seleck; 2 arg maxyox ucthV (x) at every round. The performance dRAHBO is formally
204 captured in the following theorem.

20s Theorem 2. Let the set of actiondt = fx;g/-; be chosen witfiRAHBO with unknown variance-
206 proxy (Algorithm 1) with each action takén> 1 times. LetR? = maxyxza, 2(X¢). Then, with
207 probability at leastl | the risk-averse regréR+ of RAHBO is bounded by:

< p
Pr Rt 21 KT% A +2 Yk TRZ; 8T 1 1 (16)

208 Here,”r denotes maximum information gafs = maxa, | ((My)1.7;f1.7) assumingmy),.t are
200 coming from the distribution with constant variance-préyk: Also, 1 denotes maximum infor-
210 mation gain 1 =maxa, | ((82)1.7; 3.¢) assuming thats?);.T are coming from the distribution
211 with variance-proxy 2. For the proof see Appendix A.5.

212 Furthermore, we obtain a bound on the number of iterations required for identifyingtmal
213 point de ned in Eq. (4):

214 Corollary 2.1. Let Algorithm 1 RAHBO) afterT iterations output the poimtt such that:Rt =
215 X ;Wheret :=argmax,flcb}V(x,)g: Thengr achieves-accuracy, i.e.MV(x ) MV(%7)
ne afterT ——(CT%TrKCE)R® 1) samples.

a7 4 EXperiments

218 In this section, we experimentally valideRAHBO and the baselines on two synthetic examples and
210 two real hyperparameter tuning tasks. We provide an open-source implementation of our rhethod.

https:/lanonymous.4open.science/r/Risk-averse-BO-1C3F
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(a) lllustration of the sine function (left) and noise variance (right)

(b) Cumulative regret (c) Suboptimality w.r.t. MV (d) Suboptimality w.r.tf

Figure 2: (a) Unknown true objective along with noisy evaluations with varying noise level (left) and
unknown true noise variance and its evaluations (right). (b) Cumulative regret. (c) S#kptegret

for reporting ruler = arg max, Icbr(x¢). (c) Simple regref (x ) f (&) for the unknown
function at the reported poistty from (d). RAHBO not only leads to strong results in termsh\d¥/

but also in terms of the mean objectif/éx).

Baselines.We compare against two baselines: First, we@&e UCBwith heteroscedastic noise as a
standard risk-neutral algorithm that optimizes the unknér). Second, we consider a risk-averse
baseline that uniformly learns variance-proXyx) beforethe optimization procedure. This prior
learning is in contrast to RAHBO that learns it on the y. We calRAHBO-US, standing for
RAHBO with uncertainty sampling. It consists of two stages: (i) uniformly learning? %) via
uncertainty sampling followed by (il P-UCBfor the risk-averse objective, where instead of the
unknown ?(x), we use the mean of the learned model. Note BAHBO-US s closest to the
contextual BO setting in [17], where the context distribution is assumed to be known.

Experimental setup. At each iteratiort, an algorithm queries a poirt and observes sample mean

and sample variance &f observationgy;(x;)d‘., . We use a heteroscedastic GP for modelling

f (x) and a homoscedastic GP fof(x). We set = 2, which is commonly used in practice to
improve performance over the theoretical results. Before the BO procedure, we determine the GP
hyperparameters maximizing the marginal likelihood. To this end, we use initial points that are
the same for all baselines and are chosen via Sobol sequence that generates low discrepancy quasi-
random samples. We repeat each experiment several times, generating new initial points for every
repetition. We use two metrics described in Section 2: (a) risk-averse cumulativeRegmanputed

for the acquired inputs; (b) simple regidV/(x ) MV (%1) computed for inputs as reported via
Corollary 2.1. For each metric, we report its meatwo standard errors over the repetitions.

Example function We rst illustrate the methods on a sine function depicted in Fig. 2a. It has two
global optimizers, but we control the evaluation noise such that for each input, there is a choice
between a low and a high noise version. We use a sigmoid function as noise variance, as depicted in
Fig. 2a, that induces little noise ¢@; 1] and increased noise ¢h; 2]. We initialize the algorithms by
selecting 10 inputg at random, and keep these points the same for all algorithms. We=x14€
samples at each chosgn The number of acquisition roundsTs= 60. We repeat the experiment

30 times and show the average performance in Fig. 2.

Branin benchmark Next, we evaluate the methods on the (negated) Branin benchmark function
in Fig. 1a, achieving its optimum value = 04 at ( ; 123);(; 2:3);(9:4;2:5). The
heteroscedastic variance function illustrated in Fig. 1b de nes different noise for the three optima.
We initialize all algorithms by selecting 10 inputs. We lkse 10 samples to estimate the noise
variance. The number of acquisition round3is- 150. We repeat BO 25 times and show the results

in Figs. 1c and 5a. Fig. 1c provides more intuition behind the observed regret: UCB exploits the
noisiest maxima the most, while RAHBO prefers smaller variance.
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Figure 3: GP models tted folGP-UCB (left) and RAHBO (right) for sine function. After
initialization with the same sampled poinGP-UCBconcentrates on the high-noise region whereas
RAHBO prefers small variance. Additional plots are presented in Appendix A.7.

Tuning a Free Electron Laser We tune parameters of a Free Electron Laser (FEL), an important
scienti ¢ instrument. Here, the main objective is to maximize the pulse energy measured by a gas
detector. Parameter tuning is a time-consuming and repetitive task during operation. Tuning the
FEL signal is an application where the cumulative regret is the relevant performance metric, since
(re-)calibration takes place while user experiments are running. This is in contrast to deploying
optimal hyperparameters for machine learning systems in production.

We use real FEL measurements to train a neural network surrogate model, and use it to simulate the
FEL objectivef (x) for new settings. We similarly t a model of the heteroscedastic variance by
regressing the squared residuals via a GP model. Here, we focus on the four most sensitive parameters.

We report our comparison in Fig. 4 where we also assess the effect of varying the coef cient of
absolute risk tolerance. We use 30 points to initialize the baselines and then perform 200 acquisition
rounds. We repeat each experiment 15 times. In Fig. 4a we plot the empirical frequency of the
true (unknown to the methods) valuieéx;) and 2(x;) at the inputs; acquired by the methods.

The empirical frequency for?(x) illustrates the tendency of risk-neuti@P-UCBto query points

with higher noise, while risk-averse achieves substantially reduced variance and minimal reduction
in mean performance. Sometimes, risk-neuB&-UCBalso fails to succeed in querying points
with the highest -value. That tendency results in lower cumulative regreR&HBO in Figs. 10b

and 10c. We also compare the performance of the reporting rule from Corollary 2.1 in Fig. 10a,
where we plot error bars with standard deviation bothffgr) and 2(%t) at the reported point

Rt . As before RAHBO drastically reduces the variance compare@#-UCRB while having only
slightly lower mean performance. Additional results are presented in Appendix Fig. 10.

Random Forest tuning BO is widely used by cloud services for tuning machine learning hyperpa-
rameters and the resulting models might be then used in high-stakes applications such as credit scoring
or fraud detection. In k-fold cross-validation, the average metric over the validation sets is optimized

— a canonical example of thepeated experiment settitigat we consider in the paper. High across-
folds variance is a practical problem [23] where the mean-variance approach might be bene cial.

In our experiment, we tune hyperparameters of a random forest classi er (RF) on a dataset of
fraudulent credit card transactior®Z].%It consist of 285k transactions with 29 features (processed
due to con dentiality issues) that are distributed over time, and only 0.2% are fraud examples (see
Appendix for more details). The search space for the RF hyperparameters is also provided in the
Appendix. We use the balanced accuracy score and 5 validation foldk, &, and each validation

fold is shifted in time with respect to the training data. We seek not only for high perfornaance
averagebut also for low variance across the validation folds that have different time shifts with
respect to the training data.

We initialize the algorithms by selecting 10 hyperparameter settings and keep these points the same
for all algorithms. We use Matérn 5/2 kernels with Automatic Relevance Discovery (ARD) and
normalize the input features to the unit cube. The number of acquisition rounds in one experiment is
50 and we repeat each experiment 15 times. We report results in Figs. 5b and 5¢ where we plot mean

2 standard errors. While boRAHBO andGP-UCBperform comparable in terms of the mean
error, its standard deviation for RAHBO is smaller.

2Details withheld to maintain anonymity during review.
3https://www.kaggle.com/mig-ulb/creditcardfraud
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(a) Empirical distribution of trué (x) (left) and 2(x) (right) for FEL

(b) Mean-variance tradeoff (FEL) (c) Cum. regret ( = 0:5) (d) Cum. regret ( = 1)

Figure 4:(a) Distributions off (x) and 2(x) for all pointsqueried by BO for the FEL. Clearl P-
UCB queries points with higher noise (but not necessarily high rdtyiin contrast to the risk-averse
methods. Moreover, greaterleads to lower variance. A good trade-off is achieved at0:5. (b)
Standard deviation error bars fo(k) and 2(%7) at thereported®t = arg max,  Icbr (x;) for
FEL computed over the repeated BO. Though points reportedByUCB have slightly higher
f (x) than most of the risk-averse methods, its noise variance is much higher. Agaid;5 yields
a good mean-variance trade-dff-d) Cum. regret for =0:5and =1 (see more in Appendix.)

(a) Branin benchmark (b) RF Tuning (¢) RF Tuning

Figure 5: Branin: (a) Cumulative regretRandom Forest (b-c) Simple regret fat the reprted
Rt =argmax, MV (x) for (b) =20 and(c) = 100. While both methods have comparable
mean, RAHBO has consistently lower variance.

5 Conclusion

In this work, we generalized BO to trade the mean and input-dependent variance of the objective,
both of which we assume to be unknown a priori. Our novel risk-averse upper con dence bound
(RAHBO) algorithm enjoys sublinear cumulative regret and performs well on synthetic benchmarks
and hyperparameter tuning tasks.

Limitations. In settings where the noise is homoscedastic, our approach does not bring additional
value. Moreover, our proof of Theorem 2 relies on the Assumption 2 with the bounds for noise tails.
Though this assumption is valid for important applications such as hyperparameter tuning where
the noise is bounded, it fails to apply ifx) has heavy tails. Chowdhurg]] shows how GP-UCB

can be adapted to this setting, and addressing the mean variance tradeoffs in this case is an interesting
direction for future work.
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A Appendix

A.1 Proof Proposition 1

Proposition 1. Consider any functiofi() 2 H , and letA = fx;g].; denote the set of actions
chosen byRAHBO when run on sucli () with f g/, as de ned in Lemma 1, and known
variance—prox;bz( ). Then, with probability at least , RAHBO attains cumulative regret
RT =0 (yﬁ T T T .

Proof. Main steps of our proof are as followStep 1 derive the upper and the lower con dence
bounds orMV (x;) at iterationt: Icb" (x;) anducb!" (x;). Step 2useMV con dence bounds to
upper bound the I'g1$tantaneous risk-averse regrg) := MV(x ) MV(X;). Steps 3 and dbound
sum of varialgces tT:l t 1(X¢) via mutual information (y;.1;f1.7). Step 5 bound cumulative

regretRy = tT:l r(x¢) based on the previous steps.
Step 1 On the con dence bounds for M¥)

Consider  and ; de ned in Egs. (5) and (6), then we can directly derive the con dence bounds at
iterationt on MV(x): PrflcbM(x) MV(x) ucb™(x)g 1  as follows:

leb™(x) = ¢ 1) (07 ¢ a) (17)
UCthV(X): t 1(X) (x)*+ ¢ 1(x) (18)
Here we assume; = () de ned in Eg. (8).

Step 2 Bounding the instantaneous risk-averse regr€k). Then, the instantaneous risk-averse
regretr;(x) can be bounded as follows:

r(xe) = MV(x') MV(xt)
uch™ (x ) lebM (x¢)
uch™ (x¢) Iebt™ (x)) =2 ¢ ¢ 1(X0);
where the rst inequality uses the notionslob anducb, the second is due to our strategy Eq. (9)

X 2 argmax,,y uchM¥(x); and the last one by de nitions débM¥ (x) anducbM (x): Thus, the
cumulative regret can be bounded as follows:

X X X
Ry = r(Xt) 2 ¢t 1(xt) 271 t 1(Xt); (19)
t=1 t=1 t=1

there the last inequality sincé g/_; is a non-decreasing sequence. Below, we bound
T
t=1 t 1(Xt)

P
Step 3 On bounding tT=1 t 1(Xt).

Vv
X X (%) X2
. t 1(X¢) = o (x) t 1(%¢) thl (Xt)iz(xt)
N X t X 2
t 02 M v 02 ﬂ
T gy (TR Mo gEs @

= {z
mututal information

where the rstinequality is due to the Cauchy-Schwarz inequality, the second one is @ie-to
maXy, 2 A 2(x¢); A = fxq;:::;%x70, the third one is due to the fact tha{1 + ) 5. Note that
the expression in the bound above strongly relates to the the notion wilttual information

Step 4 On mutual information (y1.7;f1.7) and maximum information gainr .

Recall that themutual informatiorbetween the known measuremews and the unknown val-

13



454
455
456
457
458

459

460

461
462

463

464

465
466
467
468
469

470
471

472
473

H(yl tif1:1); whereH () is the entropy. Since the noise vectarr = [ (x1);:::; (xX7)I7

is assumed to be sampled frdd(0; 1), the measurements are assumed to be distributed as:
vyt N (0;Kt + 7). Conditioned on the observed veciar; 1 by timet 1, observatlon

ye = f(X¢)+ (X¢) is assumed to be distributedasys.t 1 N ( ¢ 1(xt) 2(xe)+ & 1 (xp):
Hence, the entropy of each new measuremgenbnditioned on the previous histoyy.; 1 is:

}In(Ze( 2(x)+ ¢ 1(x0)
2 1(xt)

H(ytiy1t 1)

-+ 2
= 2In 2e (x)@ + 2(x0) )
_1 2 1 ¢ 1(xt)
—Eln 2e (Xt) +§In 1+W
X X X 2
H(yut) = H(yiywt 1) = % In 2e ?(x) + % In 1+ %(Xt)
t=1 t=1 t=1 (<)
. . 1 X )
H(yurifur) = H (yijft) = > In(2 e (Xt)):
t=1 t=1
Therefore, the information gain fgg.1 is:
. 1 X 2 (x
[(yet:fur)= H(ynt) Hywerifur)= 5 In 1+ g (21)
2 t=1 2(xt)
Note thatl (y1.1;f1.1) T Eqg. (10), i.e.,
X ¢ 1(xt)
= o1+ A ; 22
2 oy (22)

P:
Step 5 Bounding risk-averse cumulative regiet = 1 T(Xt)
Combining the previous three steps together: Eq. (19) Eq. (20), and Eg. (22), we nally obtain:

X X S 0
Ry 2 ¢t ax) 27 taxe) 27 AT% 1=4% 1 4T +:
t=1 t=1

A.2 Tighter bounds for the variance-proxy ?(x).

Assumption 2 states that noiséx) from Eq. (12) is ?(x)-sub-Gaussian with variance-proxy(x)
being known. In practice,?(x) might be unknown. Here, we describe a way to estimage) under
the following two assumptions: the evaluation noi¢e) is strictly sub-Gaussian (that is already
re ected in the Assumption 1) and the noisgx) of variance evaluation is also strictly sub-Gaussian,
thatis,Var[ (x)]= 2(x)andVar[ (x)]= 2(x).

(i) Reformulation of the sample variandéle rst rewrite the sample variance de ned in Eq. (11) as
an average over differences over all pdiys(x);:::;yk(X)g:

X
(i) 2% (23)

Yi(x) ¥ ()?= %k 1) i6]

1
2 —
0= x& D "

(i) Variance of the sample varianc&hen, we obtain the variance of the sample variaviae[$2 ()]
asin[2]:

14



1 X 2
Kk D, 2000 00F vaeal
1 X 3
Tk p,,, 2% )2 2(x) =

Var[&(x)]

a(x)  (k 3) “(x).
k k(k 1) °

aza where 4(x) = E (y(x) f(x))* = E[ *(x)] is the 4th central moment and the second equality
475 due to (x) being strictly sub-Gaussian.

476 (iii) Due to (x) being strictly sub-Gaussian, i.e?(x) = Var[ (x)] = Var[42(x)], the derivation
a7z above also holds for the variance-prox(x):

a9 (k3 9,

0= k(k 1)

(iv) Bound 4th moment,4(x). The 4th moment 4(x) can expressed in terms of the distribution
kurtosis that is bounded under our assumptions. Particulantpsisidenti es the tails behaviour of
the distribution of and is de ned as follows:

B[ E[D*]

Kurt[ ]:= var?( )

Thus, for Gaussian random variableKurt( ) = % = 3, for strictly sub-Gaussian random variable
s Kurt( ) 3 (see[1]). Thisimplies

a() =Kurt( - (x)) “(x) 3 *x):

478 (V) Bound variance proxyl herefore,

2p9 3D 4x) (k 3)4x)_ 3k 3 k+3 s = 2 4(x)
k(k 1) T k(kk 1) Tk 17
479 In case of the known uniform bound(x)  %; we can conclude:
29%
2 .

450 A.3 Example of bounded sample variance

481 Assumption 2 states that noiséx) from Eq. (12) is sub-Gaussian. Though it covers a rich family
452 Of cases, it is not generally the case for the common Gaussian r{@isas it leads to (x) being

453 Chi-squared distributed. That, however, does not inclyag having bounded suppor{x) B as

asa it leads to the variancéf (x) also having bounded suppd(x) B2 and the Assumption 2 holds:

X
sﬁ(x):kll i) M= (FE+ 1(x) Mi(x)?
i=1
=k—11 002+ () M) +2h i (x)F(x)  Mic(x)i
i=1
P
_o1 ()2 i,
Tk, KT e A
P P
BT C S G C) S
1 k(k 1) '
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a5 A.4 Method details: GP-estimator of variance-proxy 2

a8 According to the Assumption 2, variance-proXy2 H v is smooth, and (x) = 52 (x) 2(x)
a7 is  (x)-sub-Gaussian with known variance-proX(x). In this case, con dence bounds fof(x)
483 follow the ones derived in Lemma 1 with'® based on Y2". Particularly, we collect noise
a0 variance evaluatiorfsx;; 8 (Xt)g{-o : Then the estimates fo¥®" (x) and 2" (x) for 2 follow the
490 corresponding estimates fb(x). Particularly,

OO0 = KPEO)T(KYE + 13 Y8y (24)

P(x)? = }( EOGX) )T (KR ) E()); (25)
a1 Where Y& = diad 2(x1);:::; 2(x)], YA (x) = [ V& (xy;x);ii; V¥ (x;x)]T and
a2 (KY3)ij = Y& (xi;X;). The con dence bounds are then:

UeB™ () = Y00+ 1Y (x)
IoBY™ () = {00 Y();

23 A.5 Proof of Theorem 2

494 Theorem 2. Let the set of action8t = fx;g\.,; be chosen wittRAHBO with unknown variance-
495 proxy (Algorithm 1) with each action takén> 1times. LelR? = maxyoa, 2(X¢). Then, with
496 probability at leastl |, the risk-averse regréd®t of RAHBO is bounded by

P—F+— p
Pr Rt 271 kT®% M +2 Yk TRZ2 ;; 8T 1 1 (26)

497 Proof. Main steps of our proof are as followStep 1 derive the upper and the lower con dence

s bounds orMV (x;) at iterationt, i.e.,lcb" (x;) anducb!¥ (x;), via con dence bounds for?(x)

499 andf (x). Step 2useMV con dence bounds to upper bound the instantaneous risk-averse regret
so0 I(X¢) := MV(X ) MV(x;). Steps 3 and 4dbound sum of variancesg,o?(x) andf (x) via the

so1 corresponding information gainStep 5 bound cumulative regr&®t = tT:l r(x¢) based on the
502 previous steps.

so3  Step 1:0n con dence bounds for M¥).

so4 (i) On con dence bounds for?(x). According to Eq. (25), with probabilityt the following
sos con dence bounds hold:

uch™ (x) = ")+ ¢ %005
leb™ () = {*1(x) ¢ {*(0):

s06 (i) On con dence bounds fof (x). Here we adapt con dence bounds introduced in Eqg. (17)-(18)
507 since Eq. (5) relies on the unknown variance-proXgx) incorporated into . Let us again assume
so8 that 2(x) is uniformly upper bounded bycby®" (x) (x)2. Then, the con dence bounds fér
so9  With probability 1 are:
uchf ()= ¢+ 1(xj" )+ ¢ o 2™ @7)
leb )= ¢« 1(G™) ¢ ¢ 2" (28)

s10 (iii) On con dence bounds foMV(x). Finally, with probabilityl 2 , we havelcb{"'v(x)
su MV(x)  uchM(x) with

uch™'(x) =ucb{ (x)  lcb'® (x); (29)
lcb™(x)=1leb ! (x)  uch’® (x): (30)
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s12 Step 2:0n bounding the regret.

s13  First, we bound instantaneous regret of a single measurement akpoinit with unknown variance-
54 proxi 2(x) as follows:

re:= MV(x ) MV(x)) uch™(x) lcbM (x;)
uch™ (x¢)  lebM (x;)
=uch! (x() lebf (x;)+ (UchY® (x;) Icb!® (x,))
=2 ¢ a2 Y Y (x): (31)

s1s The last equality is due to the fact thatb{ (x) Icb! (x) =2 2 ,(x;) by de nition, as well as
s16 UCH'® (x) IV (x) =2 Yar( Yan)2(x,):

s17 - Thus, we can bound the cumulative regret by

X X A X
Rt = kr(xe) Kk 2¢¢a(xi 0+k 2 #(x)
t=1 t=1 t=1
X A X
2k T t 1(th t) +2k ¥ar Elarl(xt): (32)
t=1 t=1
P T PN P T var
si8 Step3Onbounding _; ¢ 1(X¢j ¢)and o Y(X¢)
510 We repeat the corresponding derivation for know(x), recalling that 2(x)  9;8x 2 X :
v
u
X . Xp___ _ X og 2 (xijdiag(%8=K))
((xij™) = %% ¢ 1(Xej 1) {JT R 5=
~ _ .k %?=k
t=1 t=1 t=1
! X
u %2 1 2 | (x¢jdiag(%=K))
=Uar—  Zin 1+ 1L
N h %2=k 33)

= {z }

mutual information

where the rst inequality uses the Cauchy-Schwarz inequality, and the fact tbag”;)
+(xjdiag(%8=K)): The latter holds by the de nition of ;, particularly:

2% = 200 (07 (Ke+ ") );

{(xijdiag%=K)) = 1( (x) ()7 (Ky+ diag9%=k) * «(x));

and”; = min f diagiuch}® (x)=k); diag(%=k)) g, where the minimum is taken for each value, that

AN

is, "¢ diag%=k); thus (K{+ ") 1! (K¢ + diag%=k)) *: Thatimplies
2" Axjdiag9B=k) = (x)7 (Ke+ ") P )+ (07 (Ke+ diag9%B=k)) * ((x)) O

s20  Similarly, we can bound

v
u
Xr )a— var \2 X
;/ar]_(xt) - (Xt) ;/arl Xt) %I T 2(Xt)( t ;) ( t)
t=1 t=1 (Xt) t=1 (Xt)
Vv v
u U
X var \2 u X var \2
Ur e’ LED°00 gy go” L g, (D7) (34)
t=1 2(xt) t 4 2 2(xt)
i I {z
mututal information
521 inthe above we de ndR? ;= maxyoa, 2(X);AT = fXq;::1;X70:
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535
536

537

Step 4 On bounding maximum information gain
We follow the notion of information gaih((fmy)1.1;f1.7) computed assuming théf ). are
coming from the distributionN (0;K 1 + diag(%=k)) with variance-proxy6=k :

¢ 1(xijdiag%=k))
%2=k

X
F((mi)er;far) = an 1+
t=1

We de ne the corresponding maximum information gain=maxa x jaj=71 | (Mk)1.7:f1.7)

X 1 2 (x;jdiag(%8=K))
A= S+ A2
T Axm;fji/)a(iﬂ o1 2 : %2=k

(39)

Analogously, for (x) with the posterioN ( Y2 (x); ( 3" (x))?); the information gain is de ned as:

1)@' ( Ve )Z(X)
2 .2 y.o L 1
[(811: 17) = 2 In 1+ 2(x;)

Then, the corresponding maximum information gainis as follows:

ro=, max (85 )=, max ;i In 1+ (tm,;l();(;() ; (36)
whereA is again a set of siz€ with pointsfxy;:::;xrg
Step 5 On bounding cumulative regr&® = P th1 r(xy)
Combining the above three steps together, we obtain with probabilitp
Ry Tp AT W2 N+ Y K 4TR2 1: (37)

A.6 Performance of reporting rule x(T)
Proof. Select the best solution in terms of th€x;) over the past points;.
X(ry 1= Xt ; wheret = arg maxf lcbMY (x{)g = arg minfMV (x ) lcbMY (x{)g = arg min A(x;)
Then we obtain the following bound
X

MV(X) MV(x;) MV(x) lcb™(x;)=%(x )= % KA(X; )
t=1
1 X 1 X MV
KT ki(x¢) = P k MV(x ) lcb"" (xt)
t=1 t=1
EXT uch™(x ) IecbMY (x;)
T (s t t

X
= uch™ (x;)  lebM (x¢) :
t=1

In the above the rst inequality holds with high probability by de nitideb!™ (x; ) MV (x; ),
the second inequality is due to := arg min A(x;) and thereforé(x; ) f(x¢) 8t =1;:::;T:
The third inequality holds sincmacb{\"v(x) MV (x) with high probability, and the fourth is due to
uch (x;)  ucbM(x)8x for the acquireck; .

Recall that by Eq. (31):

ucht™ (x') I (x') 2 ¢ ¢ a(x") 2 ¥ YE(x):
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Similarly to Eq. (37), we get

P AT (TN T k(@ YRZ 1) A ZB"r + K ( /)?R? 1),
- p— :

KT KT

MV(x ) MV(x;)

(4 (39" + k ()R 1))
2

Therefore, forT k samples withT k ’ we get

MV(X ) MV(x;)

A.7 Experimental settings and extended results

Implementation and resources We implemented all our experiments using Python and BoTbrch.
We ran our experiments on an Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz machine.

A.7.1 Example sine

Fig. 6 with optimization of sine functions the difference in acquired points bet\RegdBO and
GP-UCB. GP-UCB might tend to acquire points with higher variance.

@)

(b)
Figure 6

A.7.2 Branin

We provide additional visualizations, experimental details and results. Firstly, we plot the noise-
perturbed objective function in Fig. 7 in addition to the visualization in Fig. 1c. In Fig. 8, we plot
cumulative regret and simple mean-variance regrets that extends the results in Fig. BAWEO-

US. The general setting is the same as described for Fig. 5a: wHusiial samples, repeat each
evaluatiork = 10 times, andRAHBO-U S additionally use40 samples for learning the variance
function with uncertainty sampling. During the optimizatiG®®AHBO-US updates the GP model

for variance function after every acquired point.

“https://botorch.org/
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