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Abstract

We investigate how to exploit structural similarities of an individual’s potential
outcomes (POs) under different treatments to obtain better estimates of conditional
average treatment effects in finite samples. Especially when it is unknown whether
a treatment has an effect at all, it is natural to hypothesize that the POs are similar –
yet, some existing strategies for treatment effect estimation employ regularization
schemes that implicitly encourage heterogeneity even when it does not exist and fail
to fully make use of shared structure. In this paper, we investigate and compare three
end-to-end learning strategies to overcome this problem – based on regularization,
reparametrization and a flexible multi-task architecture – each encoding inductive
bias favoring shared behavior across POs. To build understanding of their relative
strengths, we implement all strategies using neural networks and conduct a wide
range of semi-synthetic experiments. We observe that all three approaches can
lead to substantial improvements upon numerous baselines and gain insight into
performance differences across various experimental settings.

1 Introduction

The advent of fields such as personalized medicine has led to rapid growth of the machine learning
(ML) literature on heterogeneous treatment effect estimation in recent years [1, 2, 3, 4, 5, 6, 7, 8].
To further advance the understanding of how to incorporate insights from other areas of ML into
treatment effect estimation, we revisit the well-established problem of estimating the conditional
average treatment effect (CATE) of a binary treatment within the potential outcomes (PO) framework
[9]. The PO framework allows to conceptualize the problem as estimating the expected difference
between an individual’s expected ‘potential’ outcome with and without treatment, of which only one
is observed in the factual world. This fundamental problem of causal inference [10] leads to the
consensus that CATE estimation is not ‘just another’ supervised learning problem [6].

Under the standard assumption of ignorability – which precludes hidden confounding – we consider
two statistical features central to estimating CATE: (i) the presence of confounding and (ii) CATE
being a contrast between two PO functions, possibly exhibiting simpler structure than each PO
separately. Much of the recent ML literature on CATE estimation has focused on the first feature, and
treated confounding as a covariate shift problem. At this point, a range of sophisticated solutions
exist which reduce the effect of confounding by balancing the covariate space [3, 4], importance
weighting [11, 12, 13, 14] or propensity drop-out [15]. How to exploit the second feature in an
end-to-end manner, however, has received little explicit attention so far and is what we focus on here.

We build on the intuition that the two tasks in the CATE problem – estimating the expected PO with
and without treatment – are expected to be strongly related in practical applications (regardless of the
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Figure 1: Illustrative toy example: the treat-
ment effect can be much simpler than each
PO function separately

presence of confounding). In fact, under the common
null hypothesis of no treatment effect, we expect them
to be identical. Even when there is a non-zero treat-
ment effect, we expect shared structure: In medicine,
for example, one distinguishes between biomarkers
that are prognostic of outcome regardless of treat-
ment status – hence determining what is shared be-
tween the POs – and biomarkers that are predictive of
treatment effectiveness – determining heterogeneity
[16, 17]. The induced difference between the POs is
often expected to be small relative to the complexity of the PO functions themselves [7], which, as in
Fig. 1, could manifest in terms of CATE being a much simpler function than each PO.

One possible way of exploiting this is to estimate CATE directly using recently proposed model-
agnostic multi-stage estimation strategies [7, 8, 18, 19]. However, these estimators output an estimate
of CATE only and do not include an estimate of the untreated PO, which is often of independent
interest in practical decision support problems – e.g. to trade off outcomes at baseline with the
effectiveness of high-risk treatments [20]. From this literature, we borrow the insight that explicitly
targeting learning strategies towards CATE, instead of only the POs, can lead to better estimators.
However, instead of relying on multi-stage strategies, we operate within an end-to-end learning
framework similar to [4] and recent extensions. Due to a focus on confounding, this line of work did
not explicitly investigate how to exploit the similarity of the PO functions beyond them sharing a
jointly learned feature space. Combining the two lines of work, we investigate how to use end-to-end
approaches to output better estimates of both the POs and CATE by incorporating the assumption
that the POs share much structure (which can result in a possibly simple CATE), as inductive bias.

We focus on a fundamental question that has received little explicit attention so far: How can we best
exploit the structural similarities of the POs for CATE estimation? This question is crucial even
in randomized experiments, making its solutions orthogonal to any of the sophisticated strategies
developed to handle confounding. Therefore, we investigate approaches exploiting the shared
structure of the POs which can be applied to modify existing modeling strategies, and thereby aim
to provide guidance for improving existing CATE estimators along a new dimension. As such, the
goal of this paper is not to promote the use of a specific approach, method or architecture. Rather,
we aim to build systematic understanding and greater intuition of the (dis)advantages of different
approaches. This is crucial in the context of CATE estimation, where model selection is notoriously
difficult due to the absence of ground truth treatment effects in practice. We focus on gaining insight
into the effect of different approaches relying on the same underlying ML method and use neural
networks (NNs) due to their flexibility and popularity in related work, yet (variants of) the approaches
we consider are applicable to many likelihood- or loss-based ML methods.

Contributions We investigate three approaches incorporating inductive biases for shared structure
into the estimation of the POs: (1) a soft approach, which relies on regularization to encourage the
PO functions to be similar and is hence easy to combine with existing methods, (2) a hard approach,
which hardcodes an assumption on similarity into the model specification by reparametrization of
the PO functions and (3) a flexible approach, in which we build on ideas from multi-task learning to
design a new architecture for CATE estimation (FlexTENet), which adaptively learns what to share
between the PO functions. We implement instantiations of all approaches using NNs and evaluate their
performance across a wide range of semi-synthetic experiments, varying in the structural similarity of
the PO functions. We empirically confirm that all approaches can improve upon baselines, including
both end-to-end and multi-stage approaches, and present a number of insights into the relative
strengths of each approach. We find that strategies significantly changing the model architecture –
hard and flexible approaches – usually lead to the largest improvements, with FlexTENet performing
best on average; yet even the simple soft approach often leads to notable performance increases – an
insight that can easily be incorporated into any existing method with treatment-specific parameters.

2 Problem Definition and Key Challenges

Assume we observe a sample D = f (Yi ; X i ; Wi )gn
i =1 , with (Yi ; X i ; Wi )

i:i:d:� P . Here, Yi 2 Y is
a continuous or binary outcome of interest, X i 2 X � R d a vector of possible confounders (i.e.
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pre-treatment covariates) and Wi 2 f 0; 1g is a binary treatment, assigned according to propensity
score � (x) = P (W = 1 jX = x). Using the Neyman-Rubin potential outcomes (PO) framework [9],
our main interest lies in the individualized treatment effect: the difference between the PO Yi (1) if
treatment is administered (Wi = 1 ) and Yi (0) if individual i is not treated (Wi = 0 ). However, only
one of the POs is observed as Yi = Wi Yi (1) + (1 � Wi )Yi (0). Therefore, we focus on estimating
the conditional average treatment effect (CATE)

� (x) = E [Y (1) � Y (0)jX = x] (1)

which is the expected treatment effect for an individual with covariate values X = x. We operate
under the standard identifying assumptions in the PO framework:
Assumption 1. [Consistency, unconfoundedness and overlap] Consistency: If individual i is assigned
treatment wi , we observe the associated potential outcome Yi = Yi (wi ). Unconfoundedness: there
are no unobserved confounders, so that Y (0); Y (1) ?? W jX . Overlap: treatment assignment is
non-deterministic, i.e. 0 < � (x) < 1, 8x 2 X .

2.1 The Key Challenges of CATE Estimation

As the ability to interpret a treatment effect estimate as causal ultimately relies on a set of untestable
assumptions, the unique difficulty in making causal claims lies in using domain expertise to argue
whether a treatment effect is identifiable [21]. Given identifiability, CATE estimation is a purely
statistical problem – thus, if one is willing to rely on assumption 1, CATE can be estimated using
observed data. A simple strategy for doing so (also known as the T-learner [7]) obtains regression
estimates �̂ w (x) of � w (x) = E[Y jX = x; W = w], applying standard supervised learning methods
using only observed data for which W = w, and finally sets �̂ (x) = �̂ 1(x) � �̂ 0(x). Yet, this
seemingly straightforward solution is oblivious to two statistical challenges of CATE estimation:

1. Confounding: If � (x) is not constant, then the distribution of covariates in treatment and control
groups differs. Such imbalance can be the result of confounders, which are variables that affect both
treatment selection and outcomes, and can be problematic when the PO functions are fit on the factual
data using empirical risk minimization (ERM) because each problem is solved with respect to the
wrong empirical distribution – namely X � P (�jW = w) instead of X � P (�). While this problem
is not unique to CATE estimation – it is equivalent to the covariate shift problem encountered in e.g.
domain adaptation [22] – it is usually emphasized as one of its main difficulties and motivated the
literature on balanced representation learning [3, 4].

2. CATE is the difference between two functions: While supervised learning usually targets a
single function, the goal of CATE estimation is to estimate the difference between two related functions
most accurately – which may require different considerations than estimating each function separately.
To see this, consider the MSE of estimating CATE and let � sq( f̂ (x)) = EX � P [( f̂ (X ) � f (X ))2]

denote the MSE for an estimate f̂ (x) of f (x). If we simply were to estimate �̂ (x) = �̂ 1(x) � �̂ 0(x)
as the difference between two separately learned functions, we would have that (up to constants)
� sq( �̂ (x)) . � sq( �̂ 1(x))+ � sq( �̂ 0(x)) . Rate� 1

+ Rate� 0
. The convergence rates Rate� w

depend on
the used estimator and assumptions on e.g. smoothness or sparsity of the PO functions; a well-known
example would be [23]’s nonparametric minimax rate. If we had oracle access to both POs and
could regress Y (1) � Y (0) on X directly, we would have � sq( �̂ (x)) . Rate� . The assumption that
� (x) is often much simpler than each � w (x) separately [7] translates into Rate� < maxw Rate� w ,
highlighting that targeting CATE directly could lead to faster convergence. Similarly, any shared
structure across the PO regression tasks could also be exploited to improve upon the simple additive
bound above. These observations motivated much of this paper, as they have largely been neglected
in the literature on end-to-end learning for CATE. They have, however, been the motivation for some
model-agnostic multi-stage learners which we discuss next.

3 Related Work

Direct and indirect meta-learners for CATE Recent literature has developed a number of model-
agnostic learning strategies for CATE estimation (also known as ‘meta-learners’ [7]). Within this class,
we consider an indirect estimator any strategy that uses observed data to obtain regression estimates
of the PO functions �̂ w (x) and then sets �̂ (x) = �̂ 1(x) � �̂ 0(x). This includes [7]’s model-agnostic
S- and T-learner; additionally the majority of model-specific ML-based CATE estimators also follow
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an indirect strategy (including all NN-based estimators we discuss below). Conversely, we consider
learnersdirect estimators if they target� (x) directly. As Y(1) � Y (0) is unobserved, multiple
existing strategies constructpseudo-outcomesY� for which it holds thatE[Y� jX = x] = � (x) for
some nuisance parameters� (x) which can be estimated from observational data. Different learners
require estimation of different nuisance parameters, which often include propensity score� (x) and/or
PO functions� w (x). All direct estimation strategies that we are aware of – X-learner [7], R-learner
[8], DR-learner [18], PW-learner and RA-learner [19] – proceed in a two-stage manner: they �rst
obtain plug-in nuisance parameter estimates�̂ (x), and then estimate� (x) by regressingY�̂ on X .
Under some conditions, these two-stage learners can attain the oracle rateRate� . We give a more
detailed overview of all meta-learner strategies in appendix A.

NN-based CATE estimatorsComplementing model-agnostic strategies, many adaptations of spe-
ci�c ML methods for CATE estimation have been proposed recently. We build on NN-based
estimation strategies due to their �exibility and popularity in related work1. Much work on CATE
estimation using NNs has focused on handling confounding, most prominently by learning shared
and balanced feature representations for the two PO functions [3, 4]. Formally, this strategy entails
jointly learning a shared feature map, and two PO-speci�c regression heads (�t using only the data of
the corresponding treatment group) each parametrized by a NN. The output heads are then used for
indirect estimation of CATE. Without further regularization, this leads to the TARNet speci�cation,
while CFRNet introduces a regularization term which encourages the network to learn representations
that are balanced, i.e. have indistinguishable distributions across treatment groups [4]. Recent
extensions investigated incorporating weighting strategies as an additional remedy for confounding
into this framework [11, 12, 13, 14], considered targeting towardsaveragetreatment effects [27, 28]
or allowed for both sharedandprivate feature spaces for the PO functions [19].

Relationship to multi-task learning The architectures proposed in [4] and extensions effectively
take a multi-task learning (MTL) approach to PO estimation, relying onhard parameter sharing[29]
in the �rst dr layers of the used network, and no sharing in the topdh layers. While sharing a feature
space will lead to some shared behavior between the estimated PO functions, it does not allow to fully
exploit underlying similarity – e.g. if there are purely prognostic effects it might be better to share
someinformation also between top layers. Below, we therefore investigate strategies to incorporate
(additional) inductive bias for shared behavior into PO estimation. These are inspired by work in
transfer learning [30], domain adaptation [31, 32] and, in particular, MTL [33, 34, 35], all allowing
for �exible modeling of shared and task-speci�c aspects of a problem. Note, however, that MTL
and CATE estimation have distinct statistical target parameters and goals – MTL is concerned with
achieving a goodaverage performance in prediction of outcomesacross tasks, while the main target
of CATE estimation isestimating the expected difference between outcomes– making it non-obvious
a priori whether methods successful in the former will perform well in the latter problem.

4 Inductive Biases for CATE Estimation

In this section, we consider end-to-end approaches for incorporating the prior belief that� 0(x) and
� 1(x) will share much structure (which can imply that� (x) is simpler than� w (x)) as inductive
bias. Here, we de�ne inductive bias as the mechanism by which some hypothesis functions are
preferred over others during learning [36]. Throughout and for the remainder of this paper, we
focus on exploiting the expected similarity between the PO functions, and disregard the impact of
confounding on ERM – with the understanding that existing strategies, such as balancing or weighting,
are orthogonal solutions that could readily be applied to complement any strategy we discuss.

4.1 Implicit inductive biases in indirect learners

We begin by examining the nature of the inductive biases present in popular indirect learners: a T-
learner based on vanilla NNs (TNet) and TARNet. Recall that TARNet jointly learns a representation
� : X ! S , parametrized by a dense NN withdr layers andnr hidden units, and regression heads
hw : S ! Y , each parametrized by a dense NN withdh layers andnh hidden units. A TNet can be

1As we discuss in Appendix A, other popular estimators, which we do not consider further as we are interested
in the effect of different approaches relying onthe sameunderlying ML method, are based on Generalized
Random Forests [24], Bayesian Additive Regression Trees [1, 25], Gaussian Processes [26, 6] and GANs [5].
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Figure 2: The three approaches under investigation. Dark layers indicate parameters shared between
POs, light layers indicate private parameters. Green arrows indicate regularization encouraging
parameters to be similar, red arrows indicate regularization that encourages orthogonalization.

seen as a special case of TARNet with�( x) = x, i.e. no joint learning of feature spaces2. Below, we
will refer to the weights inhw and� as� hw and� � , respectively. During training, both TARNet
and TNet use a loss function that takes the general form

L F + � 1
P

w2f 0;1g R(� hw ) (2)

whereL F =
P n

i =1 l (yi ; hw i (�( x i ))) , R is a regularizer (usually L2), which regularizes the com-
plexity of eachhw separately, and we dropped the regularization term for the shared representation –
� 1R(� � ) – from the equation as it is not of relevance for the following discussions.

While the PO functions can thus share a jointly learned feature space, they arenot encouraged to
be similar beyond this. Instead, they areseparatelyregularized to be a simple function, leading to
their difference –� (x) – being highly instable and hence to an implicit inductive bias that encourages
treatment effect heterogeneity a priori (see also the discussions of this phenomenon in [8, 25]). This
is neither in line with a scienti�c null hypothesis of no treatment effect (heterogeneity) nor the
assumption that� 1(x) and� 0(x) should be close due to the existence of prognostic effects. The
instability of �̂ (x) can also be seen as a consequence of indirect learners not being welltargeted
towards CATE. In fact, using this regularization scheme, it is not even possible to control the
complexity of CATE directly.

4.2 Explicit inductive biases for CATE estimation

We investigate three approaches modifying existing end-to-end learners to encourage shared structure
in the POs and hence incorporate an inductive bias for simpler� (x). Ordered by ease of implementa-
tion, we distinguish between (1) a soft approach relying on regularization, (2) a hard approach based
on reparametrization and (3) a �exible approach (FlexTENet) which explicitly learns what to share
between the POs. The architectures for each approach are depicted in Figure 2. Note that although all
approaches are targeted at estimating CATE, only (2) directly outputs an estimate of� (x).

Soft approach – Regularization The most straightforward strategy to �xing the regularization-
induced inductive bias towards heterogeneity discussed above would be to simply change how the PO
functions are regularized. Instead of regularizing them separately, one could regularize the difference
between the weights in the output heads – which ultimately determines� (x) –, corresponding to an
inductive bias towards small treatment effect heterogeneity3. Analogously to (2), this leads to a loss

L F + � 1R(� h0 ) + � 2R(� h1 � � h0 ) (3)

Choosing� 2 > � 1 additionally reinforces the inductive bias towards simple� (x). We further discuss
how to set hyperparameters such as� 2 (which is shared by all considered approaches) in Appendix
B.1. This regularization-based approach is attractive because it is extremely easy to implement, is
directly applicable to any loss-based method with treatment-group-speci�c parameters, has intuitive
appeal and does not heavily constrain the functions the hypotheses are able to represent. At the same
time, the latter point is a downside of this approach, since this might also result in only marginal
gains.

2In our implementations, to give similar capacity to the resulting PO estimators and in analogy with a `no
parameter sharing' strategy, we give eachhw in a TNet additional access todr layers withnr hidden units.

3Note that, by convention, we regularize only the weights of NNs, andnot biases (offsets), resulting in
penalization only of non-constant treatment effects.
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Hard approach – Reparametrization Instead of regularizing the difference between the PO
functions, we could alsoreparametrizeour estimators, a strategy that e.g. [37]'s LASSO for CATE
estimation and [25]'s Bayesian Causal Forest rely on. Instead of estimating� 0(x) and � 1(x)
separately, we can build on the identity� 1(x) = � 0(x) + � (x) and effectively estimate� (x) directly
as an offset fromh0(x), parametrized by a NNh� (x) with weights� h � . This leads to a loss

L F + � 1R(� h0 ) + � 2R(� h � ) (4)

with L F =
P n

i =1 l (yi ; h0(x i ) + wi h� (x i )) for continuousy, which seems analogous to (3) but
parametrizes� (x) explicitly – giving the investigator control over the complexity of� (x) directly–
andhard-codesthe assumption that the shared structure between the POs isadditive. This approach
may be at a disadvantage if� 1(x) is simplerthan� 0(x), since one would then be better off using the
reverse parametrization� 0(x) = � 1(x) � � (x). More generally, it is also possible that the relationship
between� 0(x) and� 1(x) is not additive, e.g. if� 1(x) is a simple transformation of� 0(x) – say a
multiplicative or logarithmic transformation (as is the case in the popular IHDP benchmark [1]) –
such that a different parametrization would lead to an easier learning problem.

Flexible approach – FlexTENet Unfortunately, the parametrization leading to the easiest learning
problem is usually not known in practice. Alternatively, one could thus rely on a strategy that can
automatically and �exiblylearnwhich information to (hard-)share between the PO functions. Inspired
by architectures in MTL and domain adaptation thatexplicitly anticipate shared and private structure
[31, 32, 35], we therefore propose a new architecture for treatment effect estimation, FlexTENet
(Flexible Treatment Effect Network), as a �nal strategy. As depicted in Fig. 2, it has private
(� w (x)-speci�c) subspaces – which ultimately determine� (x) – and a shared subspace in each layer
(including the output layer), allowing the model to automatically learn which information to shareat
each layerof the network. In principle, any MTL method could be adapted for PO estimation, yet, as
we discuss in appendix B.2, we propose the FlexTENet speci�cation because itgeneralizesmany
existing strategies. Given its �exibility, we expect that such a general architecture should perform
well on average– an appealing feature given that model-selection is nontrivial in CATE problems.

We implement FlexTENet using a speci�cation matching TARNet to allow for direct comparisons, and
considerdr + dh layers, within which each private and shared subspace hasnk;p andnk;s hidden units,
respectively, where we letnk;p = nk;s = 1

2 nk , k 2 f r; hg, for simplicity. For layerl > 1, let ml � 1
p

andml � 1
s denote the output dimensions of shared and private subspace of the previous layer, let� l

s 2
Rm l � 1

s � m l
s denote the weights in the shared subspace, while� l

pw
2 R (m l � 1

s + m l � 1
p ) � m l

p denotes the
weights in each private subspace4. To discourage redundancy and encourage identi�cation of private
structure, we apply regularizers to orthogonalize the shared and private subspaces. Like [32, 35]
we rely on [38]'s orthogonal regularizerR o(� s; � p0 ; � p1 ) =

P
w2f 0;1g

P L
l =1 k� l

s
>

� l
pw ;1:m l � 1

s
k2

F

wherek�k2
F denotes the squared Frobenius norm. This leads to the following loss function

L F + � 1R(� s)+ � 2
P

w2f 0;1g R(� pw )+ � oR o(� s; � p0 ; � p1 ) (5)

where setting� 2 > � 1 adds inductive bias encouraging the shared space to be used �rst.

4.2.1 Underlying assumptions and theory

Which assumptions do these approaches encode?Motivated by real-world applications in which
prognostic effects are often assumed stronger than predictive ones [7, 25], our central assumption is
`there is much shared structure between� 0(x) and� 1(x)' . This assumption is purposefully abstract,
allowing it to manifest as different speci�c assumptions depending on the used ML method5 and
regularizer (R); e.g. in regression with L0-penalty,� (x) would be assumed linear and sparse, while in
our case, using NNs with L2-penalty, the� w (x) are implicitly assumed to be close in some function
class, with smooth differences. We thus consider inductive biases for� (x) relativeto the inductive
bias in the original method used to estimate the� w (x); we effectively investigate how to best re-target

4The difference in input dimensions arises as we only allow communication from shared subspaces to private
subspaces and not the reverse; refer to Appendix B.3 for pseudocode of a FlexTENet forward pass.

5While both hard and soft approach are directly applicable to any loss-based method, our �exible approach
is speci�c to NNs. When using a different ML method, similar strategies could be constructed by adapting (i)
existing MTL approaches or (ii) a model-agnostic approach similar to [31], creating PO-speci�c feature spaces.
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these biases to control� (x) explicitly. Further, there is a conceptual difference between assumptions
in soft & �exible and hard approach; only the latter assumes shared structure to be additive.

Why is shared structure inductive bias reasonable in this context?Shared structure is a reason-
able assumption in many practical applications as usually one would expect at least some similarities
between treated and untreated individuals: intuitively speaking, receiving a drug will most likely
not change all biological processes related to a disease progression in a patient and attending a job
training program is unlikely to neutralize all characteristics determining an individual's salary. In
medicine, for example, this has led to the well-known distinction between prognostic and predictive
(effect-modifying) biomarkers [16, 17]; in our context, the strength of such prognostic information
would determine the degree of shared structure. Further, assuming shared structure is compatible with
explicit assumptions made in recent theoretical work on CATE meta-learners where CATE is assumed
a simpler function than each of the POs [7, 18, 19] – which implies shared structure (i.e. a shared
baseline function) between the POs. Additionally, a related (but much stronger) assumption is made
in papers considering the popular semi-parametric `partially linear regression model' analyzed in e.g.
[39, 40]; hereall nonparametric (`complex') structure is shared between POs, while the treatment
effect is assumed parametric (often constant).

Are there any theoretical expectations for CATE estimation performance?All theoretical results
focusing on estimating the difference between two functions that we are aware of originate in the
literature on (i) CATE estimation [7, 18, 19] or (ii) transfer learning via offset estimation [41, 42].
They provide risk bounds for CATE estimation of the formRate� + RateRemainder , indicating that,
if some remainder terms decay suf�ciently fast, oracle rates for estimation of CATE can be attained.
These results rely on two-stage estimation and stability conditions on the estimators, and as such
are not directly applicable to our setting. Nonetheless, we hypothesize that our end-to-end learning
strategies can match the performance of such estimators particularly in small sample regimes due
to sharing of information between tasks (estimation of POs). It would therefore be an interesting
next step to adapt theoretical results from MTL [43, 44] to analyze end-to-end strategies for CATE
estimation, yet we consider this non-trivial as (i) MTL is concerned with the average performance
over tasks, and not the performance on estimating task differences, and (ii) the number of tasks in our
context is small (T = 2 ). We therefore defer theoretical analysis of our approaches to future research
and focus on experimentally evaluating their performance below.

5 Experiments

5.1 Experimental setup

Simulation settings6 As ground truth treatment effects are unobserved in practice, we use semi-
synthetic setups based on real covariates and simulated� w (x). To systematically gain insight into
the relative strengths of different strategies, we consider a number of setups (A-D) comprising a
total of 101 simulation settings. We provide brief descriptions below; refer to Appendix C for more
detail. For setups A&B, we use the ACIC2016 covariates (n = 4802; d = 55) of [45] but design our
own response surfaces, allowing us to introduce our own `experimental knobs' to enable structured
evaluation of different approaches. We simulate response surfaces similar to [17] as

Yi = c+
P d

j =1 � j (1 � Wi ! j )X j +
P d

j =1

P d
l =1 � j;l (1 � Wi ! j;l )X j X l + Wi

P d
j =1 
 j X j + � i (6)

where� j ; 
 j ; ! j ; � j;l ; ! j;l 2 f 0; 1g are sampled as Bernoulli random variables, and the probability of
non-zero� j ; � j;l is �xed throughout. In Setup A, we set all! j = ! j;l = 0 and control the complexity
of � (x) =

P

 j X j by varying the expected proportion� of non-zero
 j ; thus� 0(x) is sparser than

� 1(x). Conversely, in setup B we set all
 j = 0 and instead induce treatment effect heterogeneity by
sampling non-zero! j ; ! j;l with probability� . These cancel some prognostic effects for the treated,
such that the complexity of� (x) increases as the complexity of� 1(x) decreases; here� 1(x) is thus
simpler than� 0(x). In both settings, knob� determines the complexity of� (x) through the number
of predictive features; as� increases,� 1(x) becomes less similar to �xed� 0(x). We randomly assign
n0 2 f 200; 500; 2000g to control andf n1 2 f 200; 500; 2000g : n1 � n0g to treatment, creating
different levels of sample imbalance (withoutconfounding), and use500units for testing.

For setups C&D, we use the IHDP benchmark (n = 747, d = 25), into which [1] introduced
confounding, imbalance (18% treated) and incomplete overlap. We use [1]'s original simulation as

6Code to replicate all experiments is available athttps://github.com/AliciaCurth/CATENets
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Figure 3: RMSE of CATE estimation by� for multiplen1 for setup A and B, using TNet (top) and
TARNet (bottom) as baseline, atn0 = 2000. In each graph, as� increases� (x) becomes more
complex because� 1(x) becomes less (more) sparse. Avg. across 10 runs, one standard error shaded.

setup C, consisting of simulated expected POs� C
0 (x) = exp(( X + 0 :5)� ) and� C

1 = c+ X� , where
� is a randomly sampled sparse vector. Both response surfaces share the dependency onX� albeit in
different functional form; here the assumptions of additive similarity and� (x) being simpler than
� w (x) donothold and there is very strong heterogeneity. We add setup D, in which these assumptions
do hold, by slightly altering the response surfaces to� D

0 (x) = � C
0 (x) and� D

1 (x) = � C
0 (x) + � D

1 (x)
(i.e. an additive treatment effect). Here, we use the 90/10 train-test splits of [4]'s IHDP-100 benchmark
to evaluate in- and out-of-sample performance. In Appendix E, we report additional results (102
additional settings) using the original ACIC2016 response surfaces and the real-world Twins dataset.

ModelsWe compare the three approaches to TNet and TARNet as baseline indirect estimators and
[18]'s DR-learner, a direct two-stage estimator, which we implement using both TNet and TARNet in
the �rst stage. We also considered RA- [19], R- [8] and X-learner [7], but found them to perform
worse than the DR-learner on average (see appendix D). We perform further baseline comparisons,
using DragonNet [27] and SNet [19] in appendix D. To ensure fair comparison across all models and
all experiments, we �x hyperparameters across all models within each experimental study and ensure
that each estimator/output function has access to the same number of hidden units across all models7

and effectively use each model “off-the-shelf”. We discuss implementation further in Appendix C.

5.2 Results and Discussion

Below, we discuss our �ndings. We begin with setups A&B and evaluate performance on CATE
estimation with imbalanced data (wheren0 = 2000 unless stated otherwise). We perform ablations
to gain insight into the relative effect of the different components of each strategy, consider the
effect of smallern0 and consider performance on PO estimation. Finally, we consider setups C&D
and ACIC2016 & Twins (Appendix E) to consolidate our �ndings on well-established benchmark
datasets. We highlight some aspects of the results here, and present additional �ndings in appendix
D (including varyingn0, further results on estimating the POs, analysing the weights of a trained
FlexTENet and additional baseline comparisons).

Comparison to indirect learners: All three approaches improve upon baseline indirect learners in
CATE estimation with largen0 (setups A&B); regularization brings smallest gains, reparametrization
works well in setup A but not B, and FlexTENet performs best on average.Considering Fig. 3, we
make a number of interesting observations. First, all three strategies consistently improve upon the
respective baseline in almost all settings and largest improvements are made relative to TNet with
n1 small. Additionally, the performance of the three approaches is closest when� is small (� (x)
is sparse). Second, gains for regularization are most apparent with TNet forn1 � 500. Adding
regularization to TARNet brings relatively smaller improvements because its baseline error is smaller.
Third, for n1 � 500, FlexTENet and reparametrization perform equivalently in setups A but not in B,
which is to be expected because the latter uses an impractical parametrization for B, while FlexTENet
can freely adapt to the underlying problem structure. Fourth, comparing FlexTENet and TARNet,
we observe that when we use only the FlexTENet architecture without additional regularisation
(� o = 0 and� 1 = � 2), their performance is similar, while incorporating additional inductive bias,
encouraging identi�cation of predictive and prognostic effects, leads to substantial improvement of
FlexTENet over TARNet across all setups. Finally, FlexTENet performs best on average and seems

7Due to different degrees of parameter sharing, a TNet has more parameters than TARNet and FlexTENet.
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to have a particular advantage for largern1 and� , where the latter indicates that FlexTENet is not
only well-equipped to handle prognostic effects, but also treatment effect heterogeneity.

Comparison to multi-stage learners: Regularization rarely outperforms the DR-learner while
FlexTENet and reparametrization generally do.Unlike the other two approaches, regularization
rarely outperforms the DR-learner, yet it often matches its performance (particularly in setup B). Both
FlexTENet and reparametrization outperform the DR-learner, yet performance of reparametrization
and DR-learner seem to converge asn1 increases, particularly in setup B. In Appendix D, we
additionally investigate using the soft- and �exible approach as the �rst stage of DR- and X-learner.

Figure 4: RMSE of CATE estimation by� for
ablations (n1 = 200, setup A). Avg. across
10 runs, one standard error shaded.

Ablation study: All components contribute to better
performance.We study ablations for setup A,n1 =
200 (Fig. 4) to gain insight into the relative effect
of different components of each approach. We �nd
that setting� 1 < � 2, i.e. regularizing CATE more
heavily than the POs, indeed led to additional (albeit
smaller) improvement. For FlexTENet, orthogonal
regularization alone adds more than setting� 1 < � 2,
yet together they lead to the greatest improvement.

Figure 5: RMSE of CATE estimation by�
for n0 = 200; 500(n1 = 200, setup A). Avg.
across 10 runs, one standard error shaded.

Effect of n0: Improvements over baseline are less
substantial for smallern0. We investigate the effect
of having a smaller set of control unitsn0 in Fig. 5.
While all strategies continue to outperform TNet, we
observe that their gains are much smaller than for
n0 = 2000 (Fig 3). Additionally, we observe that
FlexTENet appears to perform somewhat less well
for small � , indicating that it may need more training
data than other approaches due to its �exibility.

Figure 6: RMSE of� 1(x) estimation by� for
n1 = 500 for setup A and B. Averaged across
10 runs, one standard error shaded.

PO estimation: Most approaches also lead to im-
provements in PO estimation.We consider whether
the three approaches improved not only estimation
of CATE but also of the POs separately in Fig. 6.
For estimation of� 1(x) at n1 = 500, we observe
that almost all strategies improve upon TNet, but
make two interesting observations: First, the per-
formance gap between TNet and its regularized ver-
sion is qualitatively smaller than the performance
gap in estimating CATE (particularly in setup B),
indicating that regularization could have a larger impact on improving the CATE estimate than the
PO estimate. Second, the reparametrization approach is indeed unable to handle setup B where� 1(x)
becomes progressively simpler. Interestingly, even though it performsworseat estimating� 1(x) than
TNet for large� , Fig. 3 still showed better performance at estimating� (x) in this case – indicating
that the reparametrization approach is better targeted towards CATE estimation than PO estimation.

Table 1: Normalized8 in- & out-of-sample RMSE of
CATE, setup C & D. Avg. across 100 runs, standard
error in parentheses.

C, in C, out D, in D, out

TNet 0.32 (.01) 0.34 (.01) 0.29 (.01) 0.29 (.01)
TNet + reg 0.30 (.01) 0.32 (.01) 0.26 (.01) 0.26 (.01)
DR (+TNet) 0.35 (.01) 0.37 (.01) 0.22 (.01) 0.22 (.01)
TARNet 0.29 (.01) 0.31 (.01) 0.22 (.01) 0.23 (.01)
TARNet + reg 0.28 (.01) 0.31 (.01)0.20(.01) 0.20(.01)
DR (+TARNet) 0.33 (.01) 0.34 (.01)0.20(.01) 0.20(.01)
Reparam. 0.39 (.01) 0.40 (.01)0.20(.01) 0.20(.01)
FlexTENet 0.27(.01) 0.29(.01) 0.22 (.01) 0.23 (.01)

Further benchmark results: Perfor-
mance on IHDP, ACIC2016 and Twins se-
tups reinforces �ndings and con�rms ex-
pectations.Even though the IHDP dataset
is smaller, subject to confounding and has
limited overlap, performance across setups
C and D (Table 1) largely con�rms the �nd-
ings previously discussed. The only major
difference is induced by setup C in which
� (x) is not simpler than each� w (x) sepa-
rately and an additive parametrization does
not lead to the easiest learning problem; as

8Due to the exponential in� 0(x), RMSE varies by orders of magnitude across runs and seems unsuitable
to assess relative performance. We report RMSE normalized by standard deviation of observed outcomes (see
appendix for details and unnormalized results).
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