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Abstract

Vision transformer networks have shown superiority in many computer vision
tasks. In this paper, we take a step further by proposing a novel generative vision
transformer with latent variables following an informative energy-based prior for
salient object detection. Both the vision transformer network and the energy-based
prior model are jointly trained via Markov chain Monte Carlo-based maximum
likelihood estimation, in which the sampling from the intractable posterior and prior
distributions of the latent variables are performed by Langevin dynamics. Further,
with the generative vision transformer, we can easily obtain a pixel-wise uncertainty
map from an image, which indicates the model confidence in predicting saliency
from the image. Different from the existing generative models which define the
prior distribution of the latent variables as a simple isotropic Gaussian distribution,
our model uses an energy-based informative prior which can be more expressive
to capture the latent space of the data. We apply the proposed framework to both
RGB and RGB-D salient object detection tasks. Extensive experimental results
show that our framework can achieve not only accurate saliency predictions but
also meaningful uncertainty maps that are consistent with the human perception.

1 Introduction

In the field of computer vision, salient object detection [64, 65, 16, 17, 5, 89] (SOD) or visual saliency
prediction, which aims at highlighting objects more attentive than the surrounding areas in images, has
achieved significant performance improvement with the deep convolutional neural network revolution.
Given a set of training images along with their saliency annotations, the conventional SOD models
seek to learn a deterministic one-to-one mapping from image domain to saliency domain.

Two main issues exist in the above conventional deep saliency prediction framework: (i) the convolu-
tion operation based on sliding window makes the deep saliency prediction model less effective in
modeling the global contrast of the image, which is essential for salient object detection [7]; (ii) the
one-to-one deterministic mapping mechanism makes the current framework not only impossible to
represent the pixel-wise uncertainty in predicting salient objects, but also hard to handle incomplete
data in a weakly supervised scenario [89]. Besides, given an image, the saliency output of a human
is subjective, therefore, a stochastic generative model is more natural than a deterministic model
for representing saliency prediction. Although [85] introduces a conditional variational autoencoder
(CVAE) [56] for RGB-D salient object detection, the potential posterior collapse problem [23] makes
the stochastic predictions less effective in generating meaningful uncertainty estimation.

Motivated by the above two issues, we propose a novel framework, the generative vision transformer,
for salient object detection, where a vision transformer structure [40] is used as a backbone and latent
variables are introduced in designing our generative framework. On the one hand, transformers [60]
have proven to be very effective in long-range dependency modeling, and are capable of modeling
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various scopes of object context information with the multi-head self-attention module. With such an
architecture, we can achieve global context modeling for effective salient object detection. On the
other hand, the latent variables account for randomness and uncertainty in modeling the mapping
from image domain to saliency domain, and also enable the model to produce stochastic saliency
predictions for uncertainty estimation. Therefore, the proposed model is a latent variable transformer.

Nowadays, there are two types of generative models that have been widely used, namely the varia-
tional autoencoder (VAE) [31] and the generative adversarial network (GAN) [20], which correspond
to two different generative learning strategies to train latent variable models. To train a top-down
latent variable generator, the VAE introduces an extra encoder to approximate the intractable pos-
terior distribution of the latent variables, and trains the generator via a perturbation of maximum
likelihood; while the GAN introduces a discriminator to distinguish between generated samples and
real data, and trains the generator to fool the discriminator. [22, 69] present the third learning strategy,
namely alternating back-propagation (ABP), to train the generator with latent variables being directly
sampled from the true posterior distribution by using a gradient-based Markov chain Monte Carlo
(MCMC) [38], e.g., Langevin dynamics [43, 66, 12]. All the three generative models define the prior
distribution of the latent variables as a simple non-informative isotropic Gaussian distribution, which
is less expressive in capturing meaningful latent representation of the data.

In this paper, we investigate generative modeling and learning of the vision transformer. We construct
a generative model for salient object detection in the form of a top-down conditional latent variable
model. Specifically, we propose a generative vision transformer by adding latent variables into the
traditional deterministic vision transformer, and assume the latent variables follow an informative
trainable energy-based prior distribution [47, 48]. Following [72], we parameterize the energy
function of the energy-based model (EBM) by a deep net. Instead of using variational learning or
adversarial learning, we jointly train the parameters of the EBM prior and the transformer network by
maximum likelihood estimation (MLE). The MLE algorithm relies on MCMC sampling to evaluate
the intractable prior and posterior distributions of the latent variables.

Experimental results on RGB and RGB-D salient object detections [64, 68, 85, 16] show that the
generative framework equipped with the EBM prior and the transformer-based non-linear mapping is
powerful in representing the conditional distribution of object saliency given an image, leading to
more reasonable uncertainty estimation as shown in Figure 1, where stochastic saliency prediction is
provided by a learned model and the visualization of the pixel-wise uncertainty is presented.

Figure 1: An illustration of the stochastic saliency prediction obtained by the proposed generative
vision transformer with an EBM prior, as well as the corresponding pixel-wise uncertainty map.

We summarize our main contributions and novelties as follows: (i) we propose a novel top-down
generative vision transformer network with an energy-based prior distribution defined on latent space
for salient object detection; (ii) we jointly train the vision transformer network and the energy-based
prior model by an MCMC-based maximum likelihood estimation, without relying on any extra
assisting network for adversarial learning or variational learning; (iii) we achieve new benchmark
results for both RGB and RGB-D salient object detections, and obtain meaningful uncertainty maps
that are highly consistent with human perception for saliency prediction.

2 Related Work

Salient object detection: The main goal of the existing deep fully-supervised RGB image-based
salient object detection models [67, 41, 68, 64, 61, 87, 65] is to achieve structure preserving saliency
prediction, by either sophisticated feature aggregation [67, 61], auxiliary edge detection [68, 52, 65],
or resorting to structure-aware loss functions [41, 64]. With extra depth information, RGB-D salient
object detection models [53, 85, 5, 27, 93, 90, 16, 28, 51, 92, 59, 86] mainly focus on effective
multi-modal modeling. Our paper solves the same problems, i.e., RGB and RGB-D salient object
detection, by developing a new generative transformer-based framework.
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Vision transformers: The breakthroughs of the Transformer networks [60] in natural language
processing (NLP) domain have sparked the interest of the computer vision community in develop-
ing vision transformers for different computer vision tasks, such as image classi�cation [10, 40],
object detection [4, 63, 6, 40], image segmentation [96, 54, 63, 40], object tracking [80, 81], pose
estimation [42, 58], etc. Among them, DPT [54] adopts a U-shape structure and uses ViT [10] as an
encoder to perform semantic segmentation and monocular depth estimation. Swin [40] presents a
hierarchical transformer with a shifted windowing scheme to achieve an ef�cient transformer network
with high resolution images as input. Different from the above vision transformers that mainly focus
on discriminative modeling and learning, our paper emphasizes generative modeling and learning of
the vision transformer by involving latent variables and MCMC inference.

Dense prediction with generative models:VAEs have been successfully applied to image segmenta-
tion [3, 32]. For saliency prediction, [34] adopts a VAE to model the image background, and separates
salient objects from the background through reconstruction residuals. [85, 84] design CVAEs to
model the subjective nature of saliency. GAN-based methods can be divided into two categories,
namely fully-supervised and semi-supervised settings. The former [21, 33] uses the discriminator to
distinguish model predictions from ground truths, while the latter [57, 26] uses the GAN to explore
the contribution of unlabeled data. [88] uses a cooperative learning framework [71, 74] for generative
saliency prediction. [84] trains a single top-down generator in the ABP framework for RGB-D
saliency prediction. Our model generalizes [84] by replacing the simple Gaussian prior by a learnable
EBM prior and adopting a vision transformer-based generator for salient object prediction.

Energy-based models:Recent works have shown strong performance of data space EBMs [72, 44]
in modeling high-dimensional complex dependencies, such as images [97, 95, 18, 11, 19], videos
[78, 79], 3D shapes [75, 76], and point clouds [73], and also demonstrated the effectiveness of latent
space EBMs [47] in improving the model expressivity for text [48], image [47], and trajectory [49]
generation. Our paper also learns a latent space EBM as the prior model but builds the EBM on top
of a vision transformer generator for image-conditioned saliency map prediction.

3 Generative Vision Transformer with Energy-Based Latent Space

3.1 Model

We formulate the supervised saliency prediction problem as a conditional generative learning problem.
Let I 2 Rh� w � 3 be an observed RGB image,s 2 Rh� w � 1 be the saliency map, andz 2 R1� 1� d be
thed-dimensional vector of latent variables, whereh � w � d. Consider the following generative
model to predict a saliency maps from an imageI ,

s = T� (I ; z) + �; z � p� (z); � � N (0; � 2
� I ); (1)

whereT� is the non-linear mapping process from[z; I ] to s with parameters� , p� (z) is the prior
distribution with parameters� , and� � N (0; � 2

� I ) is the observation residual of saliency with� �
being given. Due to the stochasticity of the latent variablesz, given an imageI , its saliency map is
also stochastic. Such a probabilistic model is in accord with the uncertainty of the image saliency.

Following [47], the priorp� (z) is not assumed to be a simple isotropic Gaussian distribution as
GAN [20], VAE [31, 56] or ABP [22]. Speci�cally, it is in the form of the energy-based correction or
exponential tilting [72] of an isotropic Gaussian reference distributionp0(z) = N (0; � 2

z I ), i.e.,

p� (z) =
1

Z (� )
exp [� U� (z)] p0(z) / exp

�
� U� (z) �

1
2� 2

z
jj zjj2

�
; (2)

whereE� (z) = U� (z) + 1
2� 2

z
jj zjj2 is the energy function that maps the latent variablesz to a

scalar, andU� (z) is parameterized by a multi-layer perceptron (MLP) with trainable parameters� .
The standard deviation� z is a hyperparameter.Z (� ) =

R
exp[� U� (z)]p0(z)dz is the intractable

normalizing constant that resolves the requirement for a probability distribution to have a total
probability equal to one.p� (z) is an informative prior distribution in our model and its parameters�
need to be estimated along with the non-linear mapping functionT� from the training data.

The mapping functionT� is parameterized by a vision transformer [40] with self-attention mechanism,
which encodes the input imageI and then decodes it along with the vector of latent variablesz to the
saliency maps, thus,p� (sjI ; z) = N (T� (I ; z); � 2

� I ). The resulting generative model is a conditional
directed graphical model that combines the EBM prior [47] and the vision transformer [40].
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3.2 Learning

The generative transformer with an energy-based prior, which is presented in Eq. (1), can be trained
via maximum likelihood estimation. For notation simplicity, let� = ( �; � ). For the training examples
f (I i ; si ); i = 1 ; :::; ng, the observed-data log-likelihood function is de�ned as

L(� ) =
nX

i =1

logp� (si jI i ) =
nX

i =1

log
� Z

p� (si ; zi jI i )dzi

�
=

nX

i =1

log
� Z

p� (zi )p� (si jI i ; zi )dzi

�
:

Maximizing L(� ) is equivalent to minimizing the Kullback-Leibler (KL) divergence between the
modelp� (sjI ) and the data distributionpdata(sjI ). The gradient ofL (� ) can be computed based on

r � logp� (sjI ) = Ep� (zjs; I ) [r � logp� (s; zjI )] = Ep� (zjs; I ) [r � (log p� (z) + log p� (sjI ; z))] ; (3)
where the posterior distributionp� (zjs; I ) = p� (s; zjI )=p� (sjI ) = p� (z)p� (sjI ; z)=p� (sjI ).

The learning gradient in Eq. (3) can be decomposed into two parts, i.e., the gradient for the energy-
based model�

Ep� (zjs; I ) [r � logp� (z)] = Ep� (z) [r � U� (z)] � Ep� (zjs; I ) [r � U� (z)]; (4)
and the gradient for the transformer�

Ep� (zjs; I ) [r � logp� (sjI ; z)] = Ep� (zjs; I )

�
1

� 2
�

(s � T� (I ; z)) r � T� (I ; z)
�

: (5)

r � U� (z) in Eq. (4) andr � T� (I ; z) in Eq. (5) can be ef�ciently computed via back-propagation.
Both Eq. (4) and Eq. (5) include intractable expectation termsEp(�), which can be approximated
by MCMC samples. To be speci�c, we can use a gradient-based MCMC, e.g., Langevin dynamics,
which is initialized with a Gaussian noise distributionp0, to draw samples from the energy-based
prior modelp� (z) / exp [�E � (z)] by iterating

zt +1 = zt � � r zE� (zt ) +
p

2�e t ; z0 � p0(z); et � N (0; I ); (6)
and draw samples from the posterior distributionp� (zjs; I ) by iterating

zt +1 = zt � �
�
r zE� (zt ) �

1
� 2

�
(s � T� (I ; zt )) r zT� (I ; zt )

�
+

p
2�e t ; z0 � p0(z); et � N (0; I ):

(7)
� is the Langevin step size and can be speci�ed independently in Eq. (6) and Eq. (7). We usef z+

i g
andf z�

i g to denote, respectively, the samples from the posterior distributionp� (zjs; I ) and the prior
distributionp� (z). The gradients of� and� can be computed withf (I i ; si )g, f z+

i g andf z�
i g by

r � =
1
n

nX

i =1

[r � U� (z�
i )] �

1
n

nX

i =1

�
r � U� (z+

i )
�

; (8)

r � =
1
n

nX

i =1

�
1
� 2

�
(si � T� (I i ; z+

i )) r � T� (I i ; z+
i )

�
; (9)

We can update the parameters withr � andr � via the Adam optimizer [30]. We present the full
learning and sampling algorithm of our model in Algorithm 1.

Algorithm 1 Maximum likelihood learning algorithm for generative vision transformer with energy-
based latent space for saliency prediction
Input : (1) Training imagesf I i gn

i with associated saliency mapsf si gn
i ; (2) Number of learning iterationsM ; (3)

Numbers of Langevin steps for prior and posteriorf K � ; K + g; (4) Langevin step sizes for prior and posterior
f � � ; � + g; (5) Learning rates for energy-based prior and transformerf � � ; � � g; (6) batch sizen0.
Output : Parameters� for the transformer and� for the energy-based prior model
1: Initialize � and�
2: for m  1 to M do
3: Sample observed image-saliency pairsf (I i ; si )gn 0

i

4: For each(I i ; si ), sample the priorz�
i � p� m (z) usingK � Langevin steps in Eq. (6) with a step size

� � .
5: For each(I i ; si ), sample the posteriorz+

i � p� m (zjsi ; I i ) usingK + Langevin steps in Eq. (7) with a
step size� + .

6: Update energy-based prior by Adam with the gradientr � computed in Eq. (8) and a learning rate� � .
7: Update transformer by Adam with the gradientr � computed in Eq. (9) and a learning rate� � .
8: end for
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3.3 Network

Generative vision transformer: We design the generative vision transformer using the Swin
transformer [40] backbone as shown in Figure 2, which takes a three-channel imageI and the
latent variablesz as input and outputs a one-channel saliency mapT� (I ; z). Two main modules
are included in our generative vision transformer, including a “Transformer Encoder” module
and a “Feature Aggregation” module. The former takesI as input and produces a set of fea-
ture mapsf f l g5

l =1 of channel sizes 128, 256, 512, 1024 and 1024, respectively, while the latter
takesf f l g5

l =1 and the vector of latent variablesz as input to generate the saliency predictions.

Figure 2: Generative latent variable vision transformer

Speci�cally, we �rst feed eachf l to
a 3 � 3 convolutional layer to reduce
the channel dimension to32, and ob-
tain a new set of feature mapsf f 0

l g
5
l =1

after channel reduction. Then, we repli-
cate the vectorz spatially and perform
a channel-wise concatenation withf 0

5,
followed by a3� 3 convolutional layer
that seeks to produce a feature map
F5 with same number of channels as that off 0

5. Finally, we sequentially concatenate feature
maps from high level to low level via feature aggregation, i.e., froml = 4 to 1, we compute
Fl = Conv3� 3(M(Concat(f 0

l ; Fl +1 ; :::; F5))) , whereConv3� 3(�) is a3 � 3 convolutional layer that
reduces the channel dimension to32, M(�) is the channel attention module [91], andConcat(�) is the
channel-wise concatenation operation. Note that, we upsample the higher level feature map to the
same spatial size as that of the lower level feature map before the concatenation operation. We feed
F1 to a3 � 3 convolutional layer to obtain the one-channel saliency mapT� (I ; z).

Energy-based prior model:We design an energy-based model for the latent variablesz by param-
eterizing the functionU� (z) via a multilayer perceptron (MLP), which uses three fully connected
layers to map the latent variablesz to a scalar. The sizes of the feature maps of different layers of the
MLP areCe; Ce and1, respectively. We will simply useCe to represent the size of the EBM prior
and setCe = 60 in our experiment. GELU [25] activation is used after each layer except the last one.

3.4 Analysis

Convergence:Theoretically, when the Adam optimizer of� = ( �; � ) in the learning algorithm
converges to a local minimum, it solves the following estimating equations

r � = 0 )
1
n

nX

i =1

Ep� (zi j si ;I i ) [r � U� (zi )] � Ep� (z) [r � U� (z)] = 0 ; (10)

r � = 0 )
1
n

nX

i =1

Ep� (zi j si ;I i )

�
1
� 2

�
(si � T� (I i ; zi )) r � T� (I i ; zi )

�
= 0 ; (11)

which are the maximum likelihood estimating equations. However, in practise, the Langevin dynamics
in Eq. (8) and Eq. (9) might not converge to the target distributions due to the use of a small number
of Langevin steps (i.e., short-run MCMC), the estimating equations in Eq. (10) and Eq. (11) will
correspond to a perturbation of the MLE estimating equation according to [44, 45, 47]. The learning
algorithm can be justi�ed as a Robbins-Monro [55] algorithm, whose convergence is theoretically
sound. Our model can also be trained with an extra encoder as an amortized inference network [31]
for p� (zjs; I ) and an extra generator as an amortized sampling network [70, 71, 77] for p� (z) . In
this work, we prefer to keep our training algorithm simple in order to avoid extra efforts for the design
of the auxiliary network architectures. We will study the joint training strategy in our future work.

Accuracy: Compared with the GAN-based generative framework, our model is a likelihood-based
generative framework that will not suffer from mode collapse [2]. In comparison with VAE-based gen-
erative framework, whose training is also based on likelihood, our MCMC-based maximum likelihood
learning algorithm will not encounter the posterior collapse issue that is caused by amortized inference.
On the other hand, the variational inference typically relies on an extra inference network for ef�cient
inference of the latent variables given an image and saliency pair, however, the approximate inference
might not be able to take the full place of the posterior distribution in practise. To be speci�c, we use
q� (zjs; I ) to denote the tractable approximate inference network with parameters� . The variational
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