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Abstract

As large-scale language model pretraining pushes the state-of-the-art in text gen-
eration, recent work has turned to controlling attributes of the text such models
generate. While modifying the pretrained models via fine-tuning remains the popu-
lar approach, it incurs a significant computational cost and can be infeasible due to
lack of appropriate data. As an alternative, we propose MUCOCO—a flexible and
modular algorithm for controllable inference from pretrained models. We formu-
late the decoding process as an optimization problem which allows for multiple
attributes we aim to control to be easily incorporated as differentiable constraints
to the optimization. By relaxing this discrete optimization to a continuous one,
we make use of Lagrangian multipliers and gradient-descent based techniques
to generate the desired text. We evaluate our approach on controllable machine
translation and style transfer with multiple sentence-level attributes and observe
significant improvements over baselines.1

1 Introduction

Recent advances in language models [11, 51, 52] trained on large-scale web text corpora have led to
great improvements in state-of-the-art on many natural language processing (NLP) tasks including
the ability to generate increasingly coherent text [3]. However, once such models are trained, they
are prone to degeneration [66] and biased, non-factual outputs [16, 45] as it is difficult to control the
characteristics or attributes of the generated text without architectural modifications [26, 28, 35] and
fine-tuning the models on attribute-specific corpora [29, 7]. This can be even more challenging if
multiple attributes are involved as labeled data for each combination of attributes can be difficult to
obtain.

We focus on controlled text generation where the goal is to decode from a text generation model
such that the outputs satisfy certain constraints, which the model was not necessarily trained on. For
example, given a dialogue generation model, additionally constraining the generated responses to be
polite, although the model was not optimized for politeness during training. Recent works address this
problem with left-to-right autoregressive decoding, and modify the vocabulary distribution at every
step directly using classifiers or language models trained on attribute specific corpora [72, 40, 39], or
indirectly via backpropagating gradients through model activations [8]. While exhibiting high level
of attribute control, by design these methods can only work with categorical attributes (typically only
one attribute) and condition only on the left context while decoding. Additionally, they often require
several heuristics to work and are prone to adversarial outputs [64].

1The code is available at https://github.com/Sachin19/mucoco
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To address these concerns, we propose the following decoding algorithm. Given a pretrained language
model, we posit decoding from it as an optimization problem. First, we relax this discrete optimization
problem to a continuous one by representing each token as a simplex on the target vocabulary [19].
This allows us to use continuous optimization techniques like gradient-descent considering each
token distribution as parameters; while keeping the language model’s parameters fixed (§2). Second,
we represent each target attribute to control as a differentiable function. We formulate controllable
decoding as a multi-objective optimization problem, with maximizing the log-probability of the
language model as well as target attributes as objectives. To make this optimization feasible via
gradient-descent, we repurpose it to a constraint optimization problem and solve the dual using the
modified differential method of multipliers [48]. We call the algorithm MUCOCO, for incorporating
multiple constraints through continuous optimization.

We validate MUCOCO on three conditional text generation tasks with different types of sentence
level constraints: (1) Adding formality and cross-lingual similarity in a machine translation model;
(2) Ensuring transfer and content-preservation in a style-transfer model, and finally (3) Incorporating
multiple styles and attributes (e.g., formality, sentiment magnitude, writer’s age group) in a para-
phrasing model. With automatic as well as human evaluations we find that our proposed method
outperforms strong baselines.

2 MUCOCO: Constrained Decoding as Multi-Objective Optimization

For a given language generation task, let G model the conditional probability p(y|x) of the output
sequence y = y1, . . . , yn, given the input sequence x = x1, . . . , xn. This model can be parameterized
using any differentiable architecture like Transformers [62] or LSTMs [20] and trained with any loss
function [12, 30], either autoregressively or non-autoregressively [17]. Traditionally, given an input
x, decoding from such a model requires finding the output sequence with the highest probability or
the lowest negative log-probability, y∗ = arg miny∈Y − logP (y|x). Here Y is the set of all possible
output sequences. In practice, searching Y to find the highest probability generation is intractable as
the space of possible sequences grows exponentially with sequence length and has also been shown
to produce undesirable solutions [60]. In most prior work, simple heuristics like beam search, or
sampling have been adopted to find approximate solutions, where the text is generated one token at a
time (usually left to right) with the output of step t being fed to the input at step t+ 1.

In this work, however, given G and an input sequence x, we are interested in finding an output
sequence y that not only maximizes the output probability but also optimizes multiple objectives
defined over x and y. More formally, we seek to find a y that minimizes all of the following objectives

y∗ = arg min
y∈Y

(− log p(y|x), f1(y), . . . , fu(y), g1(x,y), . . . , gv(x,y)) (1)

Here each fi is a function defined over the output sequence y, for example, the negative log-probability
of an attribute (e.g., formality) classifier we want the output sequence to satisfy. And each gj is a
function defined over both the input and output sequence, for example, semantic similarity between x
and y [55]. We assume all fi and gj are differentiable. This is a multi-objective optimization with
several possible solutions.

Since there are many objectives to minimize, a left-to-right decoding strategy like beam search or
sampling will simply not work due to several reasons. First, the objectives fi and gj are sentence-level
and hard to define accurately only on generated left-context [72, 40]. Even if we are able to define
them, as we add more objectives this process becomes very computationally expensive. Following
prior work [19, 50], we formulate this as a continuous optimization process instead of a standard
discrete one, and then use standard algorithms for continuous optimization (like gradient descent)
for decoding. We maintain a soft-representation of the sequence y, ỹ = (ỹ1, . . . , ỹn), where each
ỹk ∈ ∆V is a simplex over the target vocabulary of size V , representing the probability of the k-th
token. To decode a sentence, we initialize each ỹi uniformly over V , and treat the entire output
sentence as the parameters for gradient descent keeping the parameters of G, fi, gj fixed. After
gradient descent has converged, we generate discrete text by selecting the token with the highest
probability in ỹk. We provide more details on the optimization procedure in §2.2.
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To make optimization feasible, a multi-objective problem generally yields itself to the following
formulation:

arg min
y
−α log p(y|x) +

u∑
i=1

λifi(y) +

v∑
j=1

µjgj(x,y), (2)

for some statically or dynamically computed weights λi and µj for each i and j, where α+
∑
i λi +∑

j µj = 1. Although this weighted summation formulation is intuitively appealing, it typically
requires an expensive grid-search over the various scalings or use of a heuristic [25, 6, 18]. Fur-
thermore, this formulation by definition assumes a trade-off between the different objectives by
essentially assigning an importance weight to each of them. This problem is further exacerbated when
different objectives have widely varying scales2 with smaller scale objectives just getting ignored.
More concretely, a multi-objective formulation as we define in (1) admits several possible “optimal”
solutions also known as the Pareto set [9]. The image of the Pareto set is called the Pareto front. Since
we define all objectives using neural networks, the Pareto front in our case is non-convex, where
linear combinations of objectives are shown to be unsuccessful in finding good solutions [36, 37, 10]
(see figure 1 for an example).

(a) Linear combinations. (b) MUCOCO without damp. (c) MUCOCO

Figure 1: Loss curves for gradient descent for different configurations for an example of machine translation
with a cross-lingual semantic similarity constraint (XSIM < 0.15). For each experiment, we do 100 steps of
gradient descent (for clarity, we plot the loss values for every 10 steps). See §3.2 for detailed results. Left: In all
cases one of the objectives is favored while the other fails to decrease. Middle: We observe fluctuations in the
two losses. Right: The losses decrease much more smoothly leading to a better minimum.

Ideally, our goal is a tunable optimization algorithm that finds solutions on the Pareto front, i.e., every
solution on the Pareto front should have a hyperparameter value for which the optimization algorithm
finds that solution. In order to achieve this, we reframe our optimization problem as a Lagrangian
optimization problem instead. We choose one of the losses as the primary objective and consider
other losses as constraints. The goal is to minimize the primary loss subject to the secondary losses,
each below a threshold value. More formally,

arg min
y
− logP (y|x) subject to

fi(y) ≤ εi, i ∈ {1, · · · , u}
gj(x,y) ≤ ξj , j ∈ {1, · · · , v}.

Here εi and ξj are tunable hyperparameters whose values’ change can result in different solutions on
the Pareto front. This formulation leads to an intuitive interpretation of the decoding process that the
generated text from the model G should satisfy the constraints while being as faithful to the primary
objective as much as possible.3 Consequently, the Lagrangian we end up with looks similar to our
original total loss linearly combined as in (2) given by

L(y, λ1, . . . , λu, µ1, ...µv) = − log p(y|x)−
u∑
i=1

λi(εi − fi(y))−
v∑
j=1

µj(ξj − gj(x, y)) (3)

2For example, classifier log-probabilities are in (0, inf) while sentence similarities usually lie in [0,1].
3For example, defining fi(y) = p(a|y) as the probability of a desired attribute a in y leads to a natural

threshold of fi(y) > 0.5. For a well-calibrated fi, an even higher threshold could be used for inducing highly
indicative features of a in y.
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where λi, µj are Lagrange multipliers, and an optimal output y∗ can be obtained as y∗ =
arg miny maxλi≥0,µi≥0 L(y, λi, µi). However, the traditional method of solving the dual func-
tion to find λi, µj that matches εi, ξj , respectively, again leads to a linear trade-off between the
various objectives. When the Pareto front is non-convex as in our case, with gradient-descent, the
constraints can be ignored and we still cannot always find optimal solutions by tuning εi, ξj [48].

2.1 Modified Differential Method of Multipliers

The fundamental issue in both linear combination of objectives and solving the dual is that fixed
scalings λi and µi (manually pre-determined or obtained by solving the dual) do not work well with
gradient descent to minimize for y. Following prior work on differential method of multipliers [48],
we propose to use a single gradient descent to optimize for both Lagrangian multipliers and y
simultaneously as follows:

y(t) = y(t−1) − η1∇yL, λti = λt−1i + η2∇λi
L, µti = µt−1i + η2∇µi

L. (4)

We follow the gradient of L downwards for the y (descent) and upwards for the multipliers (ascent)
while making sure that the multipliers remain positive (by setting the multipliers to 0 whenever they
become negative). Intuitively, this algorithm works by increasing the value of the multiplier with
each gradient step as long as the constraint is violated. But when the constraint is suddenly satisfied
and the multiplier is still large, it might take a number of gradient steps before the gradient descent
pushes it to 0, thus causing the solution to be pushed further away from the constraint. As soon as
the multipliers become 0 (or negative), the constraint is ignored and the process continues. However
when the optimization hits the constraint again, this whole cycle repeats, resulting in “oscillations”.
We introduce a dampening parameter to each of the multipliers to reduce these oscillations (again
following Platt and Barr [48]) and update the Lagrangian as follows:

L(y, λi, µj) = − log p(y|x)−
u∑
i=1

(λi − ζi)(εi − fi(y))−
v∑
j=1

(µj − νj)(ξj − gj(x,y)), (5)

where ζi = d ∗ stop-gradient(εi − fi(y)), νj = d ∗ stop-gradient(ξj − gj(x, y)) and d is a
hyperparameter. d does not affect the final y, just how quickly the algorithm converges to it (We
use d = 1 in all experiments). stop-gradient(·) indicates that the argument is detached from the
computational graph and does not contribute to the gradient computation. When a constraint is not
satisfied (εi − fi(y) < 0, hence ζi < 0), the dampening parameter ζi being negative incurs higher
penalty on the violation than when not using any dampening, without actually increasing the value of
λi too much. But when the constraint is satisfied, it helps quickly reduce the value of penalty being
incurred on the constraint while the multiplier converges to 0.

2.2 Optimization: Exponentiated Gradient Descent

Our goal is to generate a sequence of discrete symbols y = y1, . . . , yT , where yk is from the
target vocabulary. To make continuous optimization like gradient descent feasible, we adopt a
soft-relaxation [19] to represent each yk as a probability simplex, ỹk ∈ ∆V (i.e. 0 ≤ ỹkl ≤ 1 and∑|V |
l=1 ỹkl = 1). Intuitively, it gives the probability of each token in the vocabulary. To compute

the loss L during forward pass, we first convert ỹk to a one-hot vector ŷk via a straight through
estimator [2]. This allows gradients to be applied to ỹk during the backward pass. More formally,
ŷk = one-hot(arg max ỹk) − stop-gradient(ỹk) + ỹk. During the forward pass, the input
embedding tables corresponding to G and each of the constraints’ models receive a one-hot vector ŷk
at each step k, and the input embedding is computed as a weighted-sum of the embedding weights.
But in the backward pass, the gradients are applied to ỹk.4

This relaxation, however, adds another constraint to the objective L that each parameter ỹk should
be a simplex. We use exponentiated gradient descent [27, 19] to solve this problem which modifies
the gradient-descent update shown in (4) as: ỹ(t)k ∝ ỹ

(t−1)
k exp(−η1∇ỹkL). After every descent step,

ỹ
(t)
k is normalized to make it a simplex.

4Unlike prior work [19, 50, 59], we do not feed ỹi directly to the model as in our early experiments we found
that it leads to slow convergence.
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2.3 Preventing adversarial solutions: Annealing the thresholds

Finally, it is well known that most neural network based models are not robust to noise and in fact
gradient-based methods have been used to generate adversarial examples for text classifiers [59].
We find in our early experiments that using these models to define constraints can also lead to such
cases where the constraints are rapidly satisfied but the generated sentences are disfluent. To prevent
this issue, we introduce an annealing schedule [47] during the gradient descent where we start with
relaxed thresholds εi, ξj such that they are all satisfied and only the primary loss − log p(y|x) is
active. As the optimization progresses, we gradually decrease the value of the thresholds causing the
constraints to get violated resulting in the optimization gradually shifting to updating y to satisfy
them. The exact schedule we use is described in the next section.

The final decoding algorithm we use in all our experiments is described in the Appendix algorithm 1.

3 Experimental Setup

We evaluate MUCOCO on the following controlled generation tasks: reinforcing target style in text
generated by a style transfer model §3.1 and adding formality to a machine translation model (§3.2).
Additionally, we conduct a qualitative analysis of rewriting a product review to adhere to multiple
expected attributes like formality, sentiment magnitude, and age group of the author (§4). These tasks
include constraints corresponding to both expected attributes in the target sentence (like formality) as
well as both source and target sentences (like semantic similarity) with up to 6 constraints per task.

Implementation Details For a given sentence length T , we initialize each simplex ỹ1, . . . , ỹT
uniformly over the vocabulary. We use exponentiated descent learning rate of η1 = 50 for y and
ascent learning rate of η2 = 2.0 for the multipliers, and run the optimization for 100 steps. Given all
intermediate solutions y(t), we choose the one which satisfies the constraints and has the minimum
value of the primary objective. For each constraint, we use the following annealing schedule: we start
with an initial value and linearly decrease it at step 40 until it reaches the desired value at step 80,
after which we keep it constant. Additionally, since the length of the target sequence is not known in
advance, we first greedily decode from G till the end-of-sentence token is generated resulting in a
sequence of length L. We then use our approach for each T ∈ {L− 5, . . . , L+ 5} and choose the
one which (a) satisfies all the constraints and (b) has the minimum value of the primary objective.
However, this optimization objective is highly non-convex and may get stuck in a local minimum
where constraints are not satisfied. If none or partial constraints are satisfied, we choose the output
based on (b).

3.1 Style Transfer

We begin with a style-transfer task, a task aiming to faithfully and fluently rewrite a given sentence
such that a desired writing style is reflected in the generation. This task has been widely studied [22,
58, 29, among others] and differs from related tasks like sentiment transfer [61, 33, 34] where flipping
the sentiment usually comes at the cost of changing meaning.

Style transfer is usually evaluated across three dimensions: (1) does the output sentence conform to
the expected style; (2) does the output sentence preserve the input’s meaning; and (3) is the generated
sentence fluent. Most prior work in style transfer focused on devising training objectives serving as
proxy for the desired outcomes, for example, back-translation [49, 33] or paraphrasing [29] for content
preservation and language modeling for style and fluency. But depending on training algorithm and
available data, there is often an observed trade-off between transfer and content-preservation [49, 33].
To that end, we add the desired attributes via explicit constraints when decoding from an existing
style transfer model.

More specifically, we consider the task of informal to formal transfer [53] with the state-of-the-art
unsupervised model STRAP from Krishna et al. [29]. This model is trained in an unsupervised fashion
by (1) generating a pseudo-parallel corpus by paraphrasing each formal sentence in the training set
(which results in a demotion of stylistic attributes), and (2) training an inverse-paraphrase model
to translate paraphrases back to the original formal style. At test time, given an informal input
sentence x, the model first generates its paraphrase z, then using an inverse-paraphrase model to
generate the output ŷ. We train this model by fine-tuning GPT2 (345M) [51] with the GYAFC Corpus
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(Entertainment/Music domain; around 50K formal sentences) [53] and evaluate it on the provided test
set containing 1312 informal sentences. Krishna et al. [29] report best results with greedy decoding.
In MUCOCO we modify the decoding algorithm by considering the negative log-probability of y
given z according to the model as the primary objective, and incorporate the following constraints:

Formality: We train a binary classifier pFORMAL(y) by fine-tuning GPT2 on the same GYAFC training
corpus, following default hyperparameter choices provided in HuggingFace [70]. This classifier
outputs the formality probability of a sentence y. We add this output as a constraint to the decoder as
− log(pFORMAL(y)) < − log(0.5). In other words, the constraint is satisfied if the classifier assigns at
least 0.5 probability of the output y being formal. We initialize the threshold to 10.0 which is later
annealed to − log(0.5).

Semantic Similarity: Since the baseline style-transfer model takes as input the paraphrase z and
not the original text x, it is susceptible to losing some of the original content in x while generating
y. To ensure content preservation we incorporate two kinds of objectives: (1) USIM(x,y) =
cosine(M(x),M(y)) [55] where M outputs a continuous vector representation of a given sentence.
Similarity between x and y is measured by cosine similarity of their respective representations.
(2) WMD(x,y) takes as input bags of word embeddings of the two sentences and computes the
Word Mover’s Distance between them [32]. This distance is computed by solving a linear program.
We adapt the alternating optimization procedure described in [31] to make this loss differentiable
through the program. Intuitively, while USIM computes similarity between sentences taking context
into account, it can be less robust to certain missing or repeating tokens, whereas WMD measures
lexical overlap between input sentences acting as a proxy for coverage. We discuss the two losses in
more detail in Appendix D. To compute the thresholds for constrained optimization, we compute the
average value of the two functions on the development set in the same corpus. We use USIM ≤ 0.15
and WMD ≤ 0.4 as the final constraints (with initial threshold values of 2.0 for each).

Baselines and Evaluation Metrics We compare MUCOCO with the following baselines:

NO-CONSTRAINTS: We decode directly from the model greedily without any constraints. This
replicates the best result reported by Krishna et al. [29]. We do not use continuous optimization to do
unconstrained decoding as it has been shown to perform similarly to left-to-right decoding in prior
work [19].

FUDGE: Introduced by Yang and Klein [72], this method decodes in an autoregressive manner.
It modifies the output vocabulary distribution at every step by interpolating the language model
probability with that of a formality classifier. This classifier is trained to predict the probability of
entire sentence being formal given only a prefix (we train it similarly to pFORMAL(y) by fine-tuning
GPT2). This method only works with categorical features like formality and is not extensible to
constraints like semantic similarity. We decode using the hyperparameters recommended in [72].

To show the benefits of the constrained optimization setup, we show additional comparisons with a
linear combination of objectives in Appendix C

Following the baseline model Krishna et al. [29], we evaluate the generated sentences with the
following metrics: (a) fluency or grammatical wellformedness measured by the accuracy of a
RoBERTa-based classifier model [41] trained on CoLA [65], averaged over all outputs, (b) transfer:
measured by a RoBERTa-based classifier model [41] trained on the GYAFC training corpus, and
finally (c) WSIM [68], a subword embedding based similarity model trained on a large-scale para-
phrase corpus which performs well on STS benchmarks [4] as well. We measure this metric both
with respect to the input and the provided references.5 In addition, we also report USIM.

Results The style transfer results are summarized in table 1. If we only incorporate a formality
constraint, we observe that compared to FUDGE our method significantly improves transfer accuracy
at the expense of content preservation. Adding semantic similarity constraints on the other hand
improves both transfer as well as content preservation with the largest gains achieved when all the
constraints are considered together. Qualitative analysis shows that MUCOCO’s outputs are typically
more fluent and have stronger formality signals, but all of the models are prone to propagating errors
from the paraphrasing model (see examples in the Appendix table 4).

5Each input sentence has 4 references, we choose the highest WSIM value to compute the average.
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Content
Preservation
(w.r.t. input)

Content
Preservation

(w.r.t. ref)
Method Constraint Fluency Transfer

WSIM USIM WSIM USIM

STRAP None 91% 78% 0.69 0.77 0.72 0.80
FUDGE FORMAL(y) 90% 85% 0.71 0.77 0.73 0.81
MUCOCO FORMAL(y) 89% 93% 0.67 0.75 0.72 0.78
MUCOCO USIM(x, y) 92% 85% 0.71 0.78 0.74 0.81
MUCOCO USIM(x, y), WMD(x, y) 92% 87% 0.73 0.79 0.77 0.86
MUCOCO SIM(x, y), WMD(x, y), FORMAL(y) 93% 92% 0.71 0.79 0.75 0.84

Table 1: Automatic evaluation of fluency, formality transfer, and content preservation for informal-to-
formal style transfer models.

3.2 Style-controlled Machine Translation

We now evaluate MUCOCO in the task of formality transfer in machine translation. Given a trained
MT model, decoding is often done using beam search and the highest probability beam candidate is
chosen as the final output. Prior work has explored adding rule-based or heuristic constraints such
as length penalty or coverage [71] to rerank beam candidates, and adding lexical constraints like
penalizing n-gram repetitions [21]. In this experiment, we target sentence-level constraints which are
otherwise difficult to incorporate in a left-to-right decoding process. Given a trained MT model and
the source text x, we use negative log-probability of the translation y under the MT model as our
primary objective and incorporate the following constraints for decoding in different combinations:

Cross-lingual Similarity Similar to USIM, we define XSIM(x,y) = cosine(CM(x), CM(y)),
where CM is a multilingual encoder trained by distilling a monolingual model like M described ear-
lier [56]. More details of training are available in the Appendix D. Averaging across the development
set, we use 0.2 as the threshold for the constraint.

Formality Unlike style transfer, where the goal is to rewrite text in the desired style, here we seek to
generate translations in a desired style directly from an MT model which was not explicitly trained to
conform to a specific style. We train a classifier pFORMAL(y) similarly to one described in previous
section by fine-tuning GPT2, but with a different input-embedding table to match the vocabulary of
the decoder of the MT model. Again, we use log pFORMAL(y) > log(0.5) as the constraint.

Baselines and Evaluation Metrics We compare MUCOCO with the following two baselines:

BEAMSEARCH: We decode directly from the translation model with a beam search of size 5.

FUDGE [72]: defined similarly as in the style transfer task but trained to match the decoder vocabulary.
As mentioned before, FUDGE only works with categorical attributes like formality and is not easily
extensible to constraints like cross-lingual similarity. We use the recommended hyperparameters by
Yang and Klein [72] for decoding.

In Yang and Klein [72], the authors also compare FUDGE with other baselines such as PPLM [8] and
BEAMSEARCH followed by style transfer. They show that FUDGE vastly outperforms these baselines.
Hence, we only show comparisons with FUDGE in this work. We evaluate along the following metrics:
(a) BLEU [46]: a standard metric for evaluating MT, (b) BERTScore [75]: an embedding-based
metric which is more robust to changes in surface forms of the words than BLEU. (b) transfer: the
same RoBERTa-based formality classifier as in our style transfer experiments. We also report XSIM,
the constraint we use for decoding.

We experiment with French to English translation with a subset of the OpenSubtitles test set [38]
containing 1360 sentence pairs.6 This test set contains informal spoken language for both source
and target. For the primary objective, we use the Marian Transformer based French (fr) to English
(en) model [24] through Huggingface. We summarize the results of this experiment in table 2 with
selected examples in the Appendix table 5.

6We create this subset by filtering the original test set to contain only sentence pairs for which beam search
translations are classified as informal.
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Method Constraint BLEU BertScore Formality(%) XSIM

BEAMSEARCH None 42.1 0.932 0% 0.85
MUCOCO XSIM(x,y) 42.7 0.939 4% 0.88
FUDGE FORMAL(y) 39.2 0.922 6% 0.83
MUCOCO FORMAL(y) 37.5 0.913 30% 0.83
MUCOCO FORMAL(y), XSIM(x,y) 39.8 0.935 23% 0.86

Table 2: Results of style-controlled machine translation experiments.

Results By just using a cross-lingual similarity metric without modifying the model at all, we observe
+0.6 improvement in BLEU score as well as BERTScore. Adding a formality constraint leads to
considerable gain in formality of the outputs with a drop in BLEU; using both XSIM and FORMAL
helps recover some of the drop. The drop in BLEU is unsurprising: since BLEU is a surface-level
metric it naturally penalizes the translations that are rephrased to conform to formality constraints.
Indeed, as shown in table 5, adding a formality constraint leads to changes in sentence structure and
vocabulary. On the other hand, we see improvements in BERTScore which is an embedding-based
metric, more robust to paraphrasing.

To further validate our results, we conduct a human evaluation of the generated translations. We
randomly sample 100 source sentences and their translations generated by beam search and MUCOCO
with both FORMAL and XSIM constraints. Two annotators (highly proficient in French and English) to
rank the translations on faithfulness (is the source meaning reflected in the translation?) and formality.
The options are randomized. On the translation pairs where both annotators agree (79 out of 100),
the ones generated by our method were favored by annotators 37% percent of the time, while beam
search translations were favored only 18% of the time, and 21% translations were equally favored.

4 Discussion

Simultaneously controlling several attributes One of the main advantages of our proposed ap-
proach is its flexibility to introduce any number of constraints (as long as they are differentiable)
to the decoding objective. To illustrate this advantage we consider the following problem: given
a sentence annotated with following attributes: age group of the author, formality, and sentiment
magnitude, rewrite it such that any chosen combination of the attributes are modified while keeping
the others fixed and the content preserved [42, 33]. For our primary objective, we use a inverse-
paraphrasing model as defined in §3.1 which we train on a corpus of Yelp Reviews7 [49]. First, we
paraphrase each sentence in the corpus as described in Krishna et al. [29] creating a pseudo-parallel
corpus (of reviews and their paraphrases) and train G as an inverse-paraphrase model to translate the
paraphrases back to the original reviews. We use USIM and WMD for semantic similarity constraints
and three classifiers for (a) age group of the author (binary; < 30 years or > 30 years); (b) formality
of the review (binary: informal or formal); (c) sentiment magnitude (five-class classifier ratings of 1 to
5). Here we focus on sentiment amplification rather than transfer. That is, changing the 4-star rating
of an input to 5 (or 2 to 1). Details of the classifiers and the data used are provided in Appendix D.2.8
Table 6 shows examples of generated sentences with different combinations of attribute values. We do
not focus on sentiment transfer in this setting (e.g. changing a 1-star review to 5-star review) because
it also changes the meaning of the utterance making semantic similarity and sentiment constraints
incompatible with each other where satisfying one violates the other.

Finding other solutions on the Pareto front As described in §2, the thresholds ε, ξ are tunable
hyperparameters that allow us to find different solutions on the Pareto front. In our experiments so
far, based on expected outcomes and how the constraints are defined, we showed results with only
one threshold for each constraint. For example, ideally for a well-calibrated text classifier based
constraint, this technique should be able to find solutions for any probability as threshold, but most
neural-network based classifiers are not well-calibrated and predict the highest probability output as
the label, hence a natural threshold for binary-classifiers is a label probability > 0.5. In Appendix

7This corpus is sentence-tokenized and lowercased with 2.2M sentences not labeled for any attributes.
8Due to lack of an established benchmark for this task and due to many possible combinations of attributes,

we do not report quantitative results.
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table 8, we show how the outputs change if we modify this threshold to different values. We observe
that in most cases the optimization converges to generate words more commonly associated with
formality. On the other hand, semantic similarity between two sentences is even harder to define, is
less robust to noise, and varies with writing styles of the input sentences. As shown, increasing this
threshold for semantic similarity can lead to repetitions and disfluency.

Speed and memory requirements The presented decoding algorithm treats each token in the output
sequence y as a parameter for gradient-descent which involves multiple forward and backward passes
through the primary generative model G as well as attribute models. Given an expected sequence
length L, it optimizes L × V parameters which is both memory and time intensive compared to
left-to-right decoding. For example, on a single GeForce RTX 2080 Ti (12GB) on which we run
all presented experiments, with a batch size of 1, our approach takes approximately 90 minutes on
average to decode around 1200 sentences compared to around 20 minutes for FUDGE [72] with a
single constraint. For reference, unconstrained beam-search takes 2-5 minutes. Given enough GPU
capacity, however, this approach can easily be extended to larger-batches to improve decoding speed.
We do not conduct this experiment due to limited available resources. Using 16-bit floating point
operations, this can further be improved. Another way of improving memory efficiency would be to
optimize not for tokens directly but instead optimize for token embeddings [30]. This formulation
also removes the requirement for all the models to share a vocabulary. We plan to investigate this in
future work. Finally, given the capability of this approach to incorporate multiple constraints, it can
also be used to generate pseudo-parallel data with different attribute combinations which then could
be used to train supervised models for attributes for interest resulting in faster models at inference.

5 Ethical considerations

Language generation is a growing research area, and state-of-the-art techniques are still not powerful
enough to facilitate fine-grained control over generated content. In the current form, large language
models have the potential to generate harmful and biased language. For example, language generators
are prone to generating toxic [15] and non-factual content [45], especially when used maliciously [63,
64, 74]. Controlled text generation techniques can be used to mitigate many such problematic biases
already encoded in large language models [16, 1, 40]. They also have many other positive use-cases,
for example, anonymizing personal attributes in written text [54], and even aiding authors in avoiding
implicit biases in their writing [44, 14]. However, none of the existing approaches, including ours,
can sufficiently address these issues yet.

We also caution that there are additional risks of adversarial applications of controlled text generation
research. The same algorithms that help us control for content preservation and mitigate biases
can be used maliciously, to generate misinformation, incorporate pernicious biases, target specific
individuals to influence public opinion and seed polarization via manipulating the generated content.
For example, when style transfer techniques are used in conjunction with users’ personal attributes
such as gender, they can amplify harmful social biases. We thus opted not to include gender transfer
in our experiments.

Nevertheless, these issues should not discourage the scientific exploration that will advance the
state-of-the-art in many positive usages of controlled text generation, including in machine translation,
question answering, summarization, dialogue, etc. In parallel, future research should focus on
developing better defense methods against mis-using these models maliciously, in a way that could
cause societal harms [74].

6 Related Work

Recent work on controllable text generation can be divided into two categories. The first focuses
on directly training attribute-conditional models either through fine-tuning pretrained models with
attribute-specific corpora [13, 29, 5] or via training conditional generative networks [33, 76, 49, 73].
More broadly, this includes methods for text style transfer. Unlike MUCOCO, these methods are
not easily extensible and require training or fine-tuning a new model to incorporate new attributes.
For example, CTRL [26] train a large scale language model (1.6B parameters) from scratch with
55 control codes capable of generating high-quality text but is very expensive to train. The second
line of work, in line with MUCOCO, aims to incorporate control in pre-trained models without
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retraining them. For example, GEDI [28] trains smaller class-conditional LMs and uses them as
discriminators for guided generation. More recently, FUDGE [72] and DEXPERT [40] propose changes
to left-to-right decoding in language models by modifying the vocabulary distribution at every step
using attribute classifiers and ensemble of language models trained on attribute-specific corpora.
Although lightweight, these approaches are, by design, prone to a trade-off between preserving
content and enforcing the attributes in the generated text. Also related to this work is NEUROLOGIC
DECODING [43] which uses approximate search in the discrete space (similar to beam search) to
satisfy predicate logic constraints. Our work is most closely related to Plug and Play Language
Models [8] which use gradients from the attribute models to update the prediction. They work by
updating the model activations rather than token probabilities which limits their applicability to only
unconditional language models. Furthermore, due to their autoregressive nature, these approaches do
not guarantee sequence-level control as they only look at the prefix generated up to a certain step.
These are also limited to categorical attributes and can not enforce real-valued controls like semantic
similarity.

Gradient-descent based optimization to generate text has been explored in prior work for improving
machine translation [19], paraphrasing [50] and generating adversarial examples [59]. These methods
however rely on linear combinations of various objectives which as we discuss in §2 are not optimal
for non-convex neural-network based models. This phenomenon has also been studied in multi-task
learning [36, 37, 57] where linear combination of multiple task losses is the most common approach
and approaches for multi-objective gradient descent have been proposed. These approaches can also
be explored for text generation in the future.

7 Conclusion

We present MUCOCO, a decoding algorithm for controlled generation from (conditional) language
models that flexibly combines pretrained LMs with any differentiable constraints. With experiments
on style transfer and controlled machine translation, and multiple combination of constraints, we
show the effectiveness of this approach. In addition to its potential applications in factual rewriting
and debiasing text, this work holds promise in making language generation models personalizable
and adaptive to different dialects or even individual speakers, since MUCOCO re-uses pre-trained
LMs without adaptation and can incorporate constraints (e.g., dialect or user properties) trained on
very little data. Future work will explore more sophisticated optimization techniques to improve the
computational efficiency of our approach, and gradient-descent based methods for sampling [67]
which will allow to sample from the language models with constraints.
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