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Abstract
Deep reinforcement learning (RL) algorithms are predominantly evaluated by1

comparing their relative performance on a large suite of tasks. Most published2

results on deep RL benchmarks compare point estimates of aggregate performance3

such as mean and median scores across tasks. However, only reporting point4

estimates ignores the statistical uncertainty implied by the use of a finite number5

of evaluation runs. Beginning with the Arcade Learning Environment (ALE), the6

shift towards computationally-demanding benchmarks has led to the practice of7

evaluating only a handful of runs per task, exacerbating the statistical uncertainty8

in point estimates. In this paper, we argue that reliable evaluation in the few-run9

deep RL regime cannot ignore the uncertainty in results without running the risk10

of slowing down progress in the field. We illustrate this point using a case study11

on the Atari 100k benchmark, where we find substantial discrepancies between12

conclusions drawn from point estimates alone versus a more thorough statistical13

analysis. With the aim of increasing the field’s confidence in reported results with14

a handful of runs, we assert reporting interval estimates of aggregate performance15

and propose performance distributions to account for the variability in results, as16

well as present more robust and efficient aggregate metrics, such as interquartile17

mean scores, to achieve small uncertainty in results. Using such statistical tools,18

we scrutinize performance evaluations of existing algorithms on other widely used19

benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again20

revealing discrepancies in prior comparisons. Our findings call for a change in21

how we evaluate performance in deep RL, for which we present a more rigorous22

evaluation methodology to prevent unreliable results from stagnating the field.23

1 Introduction24

Research in artificial intelligence, and particularly deep reinforcement learning (RL), relies on25

evaluating aggregate performance on a diverse suite of tasks to assess progress. Quantitative26

evaluation on a suite of tasks, such as Atari games [4], reveals strengths and limitations of methods27

while simultaneously guiding researchers towards methods with promising results. Performance of28

RL algorithms is usually summarized with a point estimate of task performance measure, such as29

mean and median performance across tasks, aggregated over independent training runs1.30

A small number of training runs (Figure 1) coupled with high variability in performance of deep RL31

algorithms [11, 12, 32, 54], often leads to substantial statistical uncertainty in reported point estimates.32

While evaluating more runs per task has been prescribed to reduce uncertainty and obtain reliable33

estimates [15, 32, 37], 3-10 runs are prevalent in deep RL as it is often computationally prohibitive34

to evaluate more runs. For example, 5 runs each on 50+ Atari 2600 games in ALE using standard35

protocol [55] requires more than 1000 GPU training days. As we move towards more challenging36

and complex RL benchmarks (e.g., StarCraft [82]), evaluating more than a handful of runs will37

1A run can be different from using a fixed random seed as fixing the seed may not be able to control all
sources of randomness such as randomness from non-determinism of ML frameworks with GPUs.
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become increasingly demanding due to increased amount of compute and data needed to tackle such38

tasks. Additional confounding factors, such as exploration in the low-data regime, exacerbates the39

performance variability in deep RL – as seen on the Atari 100k benchmark [38] – often requiring40

many more runs to achieve negligible statistical uncertainty in reported estimates.41
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Figure 1: Number of runs in RL over the
years. Beginning with DQN [57] on the ALE,
5 or less runs are common in the field. Here,
we show representative RL papers with empir-
ical results, in the order of their publication
year: TD-learning [73], Sparse coding [74], Op-
tions [76], Tetris (CEM) [77], Batch-Q [23],
ALE [4], DQN [57], AlphaGo [70], A3C [58],
DDPG [51], ES [66], PPO [68], SAC [27], Al-
phaStar [82], Go-Explore [20], OpenAI Five [7],
Balloon navigation [6] and MuZero [67].

Ignoring the statistical uncertainty in results on deep42

RL benchmarks gives a false impression of fast sci-43

entific progress in the field. It inevitably evades the44

question: “Would similar findings be obtained with45

new independent runs under different random condi-46

tions?” This could steer researchers towards superfi-47

cially beneficial methods [18], often at the expense48

of better methods being neglected or even rejected49

early [50, 53] as such methods fail to outperform in-50

ferior methods simply due to less favorable random51

conditions. Furthermore, reporting point estimates can52

erroneously lead the field to conclude which methods53

are state-of-the-art [9, 64], ensuing wasted effort and54

sometimes degradation in performance over existing55

methods when applied in practice [80]. Moreover, not56

reporting the uncertainty in deep RL results makes57

them difficult to reproduce except under the exact58

same random conditions, which could lead to a reproducibility crisis similar to the one that plagues59

other fields [3, 34, 59]. Finally, unreliable results could erode trust in deep RL research itself [35].60

How do we reliably evaluate performance on deep RL benchmarks with only a handful of runs? As61

a practical solution that is easily applicable with 3-10 runs per task, we propose a more rigorous62

evaluation methodology that accounts for uncertainty in results. Since any performance estimate63

based on a finite number of runs is a random variable, we argue that it should be treated as such.64

Specifically, aggregate performance measures should be reported using interval estimates such as65

bootstrap confidence intervals [21], as opposed to point estimates. We also present more efficient and66

robust alternatives to existing aggregate measures, such as interquartile mean, which are not unduly67

affected by outliers and have small uncertainty even with a handful of runs. Furthermore, to reveal68

the variability in performance across tasks, we propose reporting performance distributions across all69

runs. Compared to prior work [4, 63], these distributions result in performance profiles [19] that are70

statistically unbiased, more robust to outliers, and require fewer runs for smaller uncertainty.71

In this work, we show that recent deep RL papers compare unreliable point estimates, which are72

dominated by statistical uncertainty, as well as exploit non-standard evaluation protocols, using a73

case study on Atari 100k (Section 3). Then, we illustrate how to reliably evaluate performance with74

only a handful of runs using our proposed methodology (Section 4). To exemplify the necessity of75

such methodology, we scrutinize performance evaluations of existing algorithms on widely used76

benchmarks, including the ALE [4] (Atari 100k, Atari 200M), Procgen [13] and DeepMind Control77

Suite [78], again revealing discrepancies in prior comparisons (Section 5). Our findings call for a78

change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation79

methodology to prevent unreliable results from stagnating the field.80

2 Formalism81

We consider the setting in which a reinforcement learning algorithm is evaluated on M tasks. For82

each of these tasks, we perform N independent runs which each provide a scalar, normalized score83

xm,n, m = 1, . . . ,M and n = 1, . . . , N . These normalized scores are obtained by linearly rescaling84

per-task scores2 based on two reference points; for example, performance on the Atari games is85

typically normalized with respect to a random agent and an average human, who are assigned a86

normalized score of 0 and 1 respectively [57]. We denote the set of normalized scores by x1:M,1:N .87

In most experiments, there is inherent randomness in the scores obtained from different runs. This88

randomness can arise from stochasticity in the task, exploratory choices made during learning,89

randomized initial parameters, but also hardware considerations such as non-determinism in GPUs90

2Often the average undiscounted return obtained during an episode (see Sutton and Barto [75] for an
explanation of the reinforcement learning setting).
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Figure 2: Left. Distribution of median normalized scores computed using 100,000 different sets of N runs
subsampled uniformly with replacement from 100 runs. For a given algorithm, the sampling distribution shows
the variation in the median scores when re-estimated using a different set of runs. The reported point estimates
of median, as shown by dashed lines, do not provide any information about the variability in median scores and
severely overestimate or underestimate the expected median. We use the same number of runs as reported by
publications: N = 5 runs for DER, OTR and DrQ, N = 10 runs for SPR andN = 20 runs for CURL. Right. 95%
CIs for median and IQM scores (Figure 8) for varying N . There is a substantial uncertainty in median scores
even with 50 runs. IQM has much smaller CIs than median. While improvement from SPR over DER with 5 to
25 runs is not statistically significant, claiming “no improvement” would also be misleading as evaluating more
runs indeed shows that the improvement is significant.

and in machine learning frameworks. We model the algorithm’s normalized score on the mth task91

as a real-valued random variable Xm. Then, the score xm,n is a realization of the random variable92

Xm,n, which is identically distributed as Xm. For τ ∈ R, we define the tail distribution function of93

Xm as Fm(τ) = P(Xm > τ). For a collection of scores y1:K , the empirical tail distribution function94

is given by F̂ (τ ; y1:K) = 1
K

∑K
k=1 1[yk > τ ]. In particular, we write F̂m(τ) = F̂ (τ ;xm,1:N ).95

The aggregate performance of an algorithm maps the set of normalized scores x1:M,1:N to a scalar96

value. Two common aggregate performance metrics are the mean and median normalized scores. If97

we denote by x̄m = 1
N

∑N
n=1 xm,n the average score on task m across N runs, then these aggregate98

metrics are Mean(x̄1:M ) and Median(x̄1:M ). More precisely, we call these sample mean and sample99

median since they are computed from a finite set of N runs. Since x̄m is a realization of the random100

variable X̄m = 1
N

∑N
n=1Xm,n, the sample mean and median scores are point estimates of the101

random variables Mean(X̄1:M ) and Median(X̄1:M ) respectively. We call true mean and true median102

the metrics that would be obtained if we had unlimited experimental capacity (N →∞), given by103

Mean(E[X1:M ]) and Median(E[X1:M ]) respectively.104

Confidence intervals (CIs) for a statistic can be interpreted as an estimate of plausible values for the105

true statistic. A α× 100% CI computes an interval such that if we rerun the experiment and construct106

the CI using a different set of runs, the fraction of calculated CIs (which would differ for each set of107

runs) that contain the true statistic would tend towards α× 100%, where α ∈ [0, 1] is the nominal108

coverage rate. 95% CIs are typically used in practice. If the true statistic lies outside the 95% CI,109

then a sampling event has occurred which had a probability of 5% of happening by chance.110

Remark. Following Amrhein et al. [2], Wasserstein et al. [84], we recommend the use of confi-111

dence intervals for measuring the uncertainty in results and showing effect sizes (e.g., performance112

improvements over baseline) that are compatible with the given data. Furthermore, we emphasize113

using statistical thinking but avoid statistical significance tests (e.g., p-value < 0.05) because of their114

dichotomous nature (significant vs. not significant) and common misinterpretations [24, 26, 56] such115

as 1) lack of statistically significant results does not demonstrate the absence of effect, and 2) given116

enough data, any trivial effect can be statistically significant but may not be practically significant.117

3 Case Study: The Atari 100k benchmark118

We begin with a case study to illustrate the pitfalls arising from the naïve use of point estimates in119

the few-run regime. Our case study concerns the Atari 100k benchmark [38], a popular offshoot of120

the ALE for evaluating data-efficiency in deep RL. In this benchmark, algorithms are evaluated on121

only 100k steps (two hours of real-time game-play) for each of its 26 games, versus 200M frames122
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in the ALE benchmark. Prior reported results on this benchmark have been computed mostly from123

3 [30, 43, 47] or 5 runs [38, 39, 41, 42, 52, 65, 79, 87], and more rarely, 10 [31, 69] or 20 runs [44].124
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Figure 3: Expected sample median scores. The expected score for N
runs is computed by repeatedly subsampling N runs with replacement
out of 100 runs for 100,000 times.

Our case study compares the per-125

formance of five recent deep RL126

algorithms, namely: (1) DER [79]127

and (2) OTR [39], (3) DrQ [41],128

(4) CURL [44], and (5) SPR [69].129

We chose these methods as repre-130

sentative of influential algorithms131

within this benchmark; SPR, in132

particular, is currently reported as133

state-of-the-art on Atari 100k. Since good performance on one game can result in unduly high sample134

means without providing much information about performance on other games, it is common to135

measure performance on Atari 100k using sample medians. Refer to the Appendix for more details.136

We investigate statistical variations in the few-run regime by evaluating 100 independent runs for137

each algorithm, where the score for a run is the average returns obtained in 100 evaluation episodes138

taking place after training. Each run corresponds to training one algorithm on each of the 26 games139

in Atari 100k. This provides us with 26× 100 scores per algorithm, which we then subsample with140

replacement to 3–100 runs. The subsampled scores are then used to produce a collection of point141

estimates whose statistical variability can be measured. We begin by using this experimental protocol142

to highlight statistical concerns regarding median normalized scores.143

High variability in reported results. Our first observation is that the sample medians reported144

in the literature exhibit substantial variability when viewed as random quantities that depend on a145

small number of sample runs (Figure 2, left). This shows that there is a fairly large potential for146

drawing erroneous conclusions based on point estimates alone. As a concrete example, our analysis147

suggests that DER may in fact be better than OTR, unlike what the reported point estimates suggest.148

We conclude that in the few-run regime, point estimates are unlikely to provide definitive answers to149

the question: “Would we draw the same conclusions were we to re-evaluate our algorithm with a150

different set of runs?151

Substantial bias in sample medians. The sample median is a biased estimator of the true median:152

E[Median(X̄1:M )] 6= Median(E[X1:M ]) in general. In the few-run regime, we find that this bias153

can dominate the comparison between algorithms, as evidenced in Figure 3. For example, the score154

difference between sample medians with 5 and 100 runs for SPR (+0.03 points) is about 43% of its155

mean improvement over the previous state-of-the-art, DrQ (+0.07 points). Adding to the issue, the156

magnitude and sign of this bias strongly depends on the algorithm being evaluated.157

Statistical concerns cannot be satisfactorily addressed with few runs. While claiming statistical158

power from 3 or fewer runs may naturally raise eyebrows, folk wisdom in experimental RL suggests159

that 20 or 30 runs are enough. By calculating 95% confidence intervals (CIs)3 on sample medians for160

a varying number of runs (Figure 2, right), we find that this number is closer to 50–100 runs in Atari161

100k – far too many to be computationally feasible for most research projects.162

In a separate experiment, we consider two identical N -run experiments involving SPR, except that163

we artificial inflate one of the experiments’ score by a fixed fraction or lift of +`% (Figure 4). In164

particular, ` = 0 corresponds to running the same experiment twice. We find that statistically165

defensible improvements with median scores is only achieved for 25 runs (` = 25) and 100 runs166

(` = 10). With ` = 0, even 100 runs are insufficient, with deviations of 20% possible.167

Changes in evaluation protocols invalidates comparisons to prior work. A typical and relatively168

safe approach for measuring the performance of an RL algorithm is to average the scores received in169

their final training episodes [55]. However, the field has seen a number of alternative protocols used,170

including reporting the maximum evaluation score achieved during training [1, 57] or across multiple171

runs. A similar protocol is also used by CURL and SUNRISE [47] (see Appendix).172

Because learning curves are not in general monotonic, results produced under the maximum-during-173

training protocol are in general incomparable with end-performance reported results. In addition,174

3Specifically, we use the m/n bootstrap [8] to calculate the interval between [2.5th, 97.5th] percentiles of
the distribution of sample medians.
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Figure 6: Validating 95% Stratified Bootstrap
CIs for a varying number of runs for median and
IQM scores for DER. The true coverage % is com-
puted by sampling 20,000 sets of K runs without
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tion of 95% CIs that contains the true estimate
approximation based on 200 runs. Percentile CIs
has the best coverage while achieving a small in-
terval width to other methods. Also, CI widths for
IQM are smaller than that of median. We also note
that with 3 runs, bootstrap CIs underestimate the
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without care this protocol introduces an additional source of positive statistical bias, since the175

maximum of a set of random variables is a biased estimate of their true maximum. Empirically, we176

find that the two protocols produce substantially different results (Figure 5), of a magnitude greater177

than the actual difference in score. In particular, evaluating DER with CURL’s protocol results in178

scores far above those reported for CURL. In other words, this gap in evaluation procedures resulted179

in CURL being assessed as achieving a greater true median than DER, where our experiment gives180

strong support to DER being superior. Similarly, we find that nearly all of SUNRISE’s improvement181

over DER can be explained by the change in evaluation protocol (Figure 5).182

4 Accounting for Uncertainty in Deep RL Evaluation183

Our case study shows how increasing the number of runs alone cannot address the issues posed by184

statistical uncertainty, at least not when applied to computationally demanding deep RL benchmarks.185

In this section, we identify three tools for improving the quality of experimental reporting in the186

few-run regime, all aligned with the principle of accounting for statistical uncertainty in results.187

Interval estimates. We first reaffirm the importance of reporting interval estimates to indicate the188

range within which an algorithm’s aggregate performance is believed to lie. Concretely, we propose189

using bootstrap CIs [21] with stratified sampling for aggregate performance, a method that can be190

applied to small sample sizes and is better justified than reporting sample standard deviations in this191

context. While prior work has recommended using bootstrap CIs for reporting uncertainty in single192

task results with N runs [11, 15, 32], this is less useful when N is small, as bootstrapping assumes193

that re-sampling from the data approximates sampling from the true distribution. We can do better by194

aggregating samples across tasks, for a total of MN random samples.195

To compute the stratified bootstrap CIs, we re-sample runs with replacement independently for196

each task to construct an empirical bootstrap sample with N runs each for M tasks from which we197

calculate a statistic and repeat this process many times to approximate the sampling distribution of198

the statistic. We measure the reliability of this technique in Atari 100k for variable N , by comparing199

the nominal coverage of 95% to the “true” coverage from the estimated CIs (Figure 6) for different200

bootstrap methods (percentile, basic, bias-corrected (BC) and bias-corrected and accelerated (BCa);201

see [22] and Appendix). We find that percentile intervals provide good interval estimates for as few202

as N = 10 runs for both median and IQM scores (defined below).203

Performance profiles. Most deep RL benchmarks yield scores that vary widely between tasks204

and may be heavy-tailed, multimodal, or possess outliers (e.g., Figure A.14). In this regime, both205

point estimates, such as mean and median scores, and interval estimates of these quantities paint an206

incomplete picture of an algorithm’s performance. Instead, we recommend the use of performance207

5
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Figure 7: Performance profiles on Atari 100K based on average score distributions (left), and score distribu-
tions (right). Shaded regions show pointwise 95% confidence bands based on percentile bootstrap with stratified
sampling. The profiles on the right are more robust to outliers and have smaller confidence bands. We use 10
runs to show the robustness of profiles with a few runs. For SimPLe [38], we use the 5 runs from their reported
results. The τ value where the profiles intersect y = 0.5 shows the median while for a non-negative random
variable, area under the performance profile corresponds to the mean.

profiles [19], commonly used in benchmarking optimization software. Performance profiles visualize208

the empirical tail distribution function (Section 2) of a random score.209

By representing the entire set of normalized scores x1:M,1:N visually, performance profiles reveal per-210

formance variability across tasks much better than interval estimates of aggregate metrics. Although211

tables containing per-task mean scores and standard deviations can reveal this variability, such tables212

tend to be overwhelming for more than a few tasks.4 In addition, performance profiles are robust to213

outlier runs and insensitive to small changes in performance across all tasks [19].214

In this paper, we propose the use of a performance profile we call run-score distributions or sim-215

ply score distributions (Figure 7, right), particularly well-suited to the few-run regime. A score216

distribution shows the fraction of runs above a certain normalized score and is given by217

F̂X(τ) = F̂ (τ ;x1:M,1:N ) =
1

M

M∑
i=1

F̂m(τ) =
1

M

M∑
i=1

1

N

N∑
n=1

1[xm,n > τ ]. (1)

One advantage of the score distribution is that it is an unbiased estimator of the underlying distribution218

F (τ) = 1
N

∑M
m=1 Fm(τ). Another advantage is that an outlier run with extremely high score can219

change the output of score distribution for any τ by at most a value of 1
MN .220

It is useful to contrast score distributions to average-score distributions, originally proposed in221

the context of the ALE [4] as a generalization of the median score. Average-score distributions222

correspond to the performance profile of a random variable X̄ , F̂X̄(τ) = F̂ (τ ; x̄1:M ), which shows223

the fraction of tasks on which an algorithm performs better than a certain score. However, such224

distributions are a biased estimate of the thing they seek to represent. Run-score distributions225

are more robust than average-score distributions, as they are a step function in 1/MN versus226

1/M intervals, and typically has less variance: σ2
X = 1

M2N

∑M
i=m Fm(τ)(1 − Fm(τ)) versus227

σ2
X̄

= 1
M2

∑M
m=1 FX̄m

(τ)(1− FX̄m
(τ)). Figure 7 illustrates these differences.228

Another alternative [63] is to replace scores in a performance profile by the probability that average229

task scores of a given method outperforms the best method (among a given set of methods), computed230

using the Welsh’s t-test [85]. However, (1) this profile is also a biased estimate, (2) less robust231

to outlier runs, (3) is insensitive to the size of performance differences, i.e., two methods that are232

uniformly 1% and 100% worse than the best method are assigned the same probability, (4) is only233

sensible when task score distributions are Gaussian, as required by Welsh’s t-test, and finally, (5) the234

ranking of methods depends on the specific set of methods being compared in such profiles.235

Robust and efficient aggregate metrics. Performance profiles allow us to compare different meth-236

ods at a glance. If one curve is strictly above another, the better method is said to stochastically237

dominate5 the other [49]. In RL benchmarks with a large number of tasks, however, stochastic domi-238

4In addition, standard deviations are sometimes omitted from tables due to space constraints.
5A random variable X has stochastic dominance over random variable Y if P (X > τ) ≥ P (Y > τ) for all

τ , and for some τ , P (X > τ) > P (Y > τ).
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nance is rarely observed: performance profiles often intersect at multiple points. Finer quantitative239

comparisons must therefore entail aggregate metrics.240
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Figure 8: Aggregate metrics. For a
non-negative random variable X , IQM
corresponds to the red shaded region
while optimality gap corresponds to
the orange shaded region in the perfor-
mance profile of X .

We can extract a number of aggregate metrics from score dis-241

tributions, including median (mixing runs and tasks) and mean242

normalized scores (matching our usual definition). As we al-243

ready argued that these metrics are deficient, we now consider244

interesting alternatives also derived from score distributions.245

As an alternative to median, we recommend using the in-246

terquartile mean (IQM). Also called 25% trimmed mean,247

IQM discards the bottom and top 25% of the runs and cal-248

culates the mean score of the remaining runs. IQM interpolates249

between mean and median, which are 0% and almost 50%250

trimmed means respectively. IQM is robust to outliers yet has251

considerably less bias than median. It is also a better indicator252

of overall performance than the median as it is calculated using253

50% of the runs (versus at most two tasks). Our experiments254

show that IQM results in much smaller CIs (Figure 2 (right)255

and 6) and is able to detect a given improvement with far fewer runs (Figures 4 and A.13).256

As a robust alternative to mean, we recommend using the optimality gap: the amount by which the257

algorithm fails to meet a minimum score of γ = 1.0 (orange region in Figure 8). This assumes that a258

score of 1.0 is a desirable target beyond which improvements are not very important, for example259

when the aim is to obtain human-level performance. Naturally, the threshold γ may be chosen260

differently based on the normalization scheme in use, which we discuss further in the Appendix.261

If one is interested in knowing how robust an improvement from an algorithm X over an algorithm262

Y is, another possible metric to consider is the average probability of improvement – this metric263

shows how likely it is forX to outperform Y on a randomly selected task. Specifically, P (X > Y ) =264

1
M

∑M
m=1 P (Xm > Ym) where P (Xm > Ym) is the probability that X is better than Y on task m.265

Note that, unlike IQM and optimality gap, this metric does not account for the size of improvement.266

While finding the best aggregate metrics is still an open question, our proposed alternatives are more267

robust and require fewer runs to reduce uncertainty than the ones currently used in practice.268

5 Re-evaluating Evaluation on Deep RL Benchmarks269

5.1 Arcade Learning Environment: Atari 200M270

Training RL agents for 200M frames on the ALE [4, 55] is the most widely recognized benchmark in271

deep RL. We revisit some popular methods which demonstrated progress on this benchmark and reveal272

discrepancies in their findings as a consequence of ignoring the uncertainty in their results (Figure 9).273

For example, DreamerV2 [29] exhibits a large amount of uncertainty in aggregate scores. While274

M-IQN [81] claimed better performance than Rainbow [33] in terms of median normalized scores,275

their interval estimates strikingly overlap. Similarly, while C51 [4] is considered substantially better276

7



DQN (Nature) DQN (Adam) C51 REM Rainbow IQN M-IQN DreamerV2

0 1 2 3 4 5 6 7 8
Human Normalized Score (τ)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 sc

or
e 

≥
τ

0.25 0.50 0.75 1.00 1.25
0.4

0.6

0.8

1.0

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

IQ
M

 H
um

an
 N

or
m

al
iz

ed
 S

co
re

Figure 10: Atari 200M evaluation. Left. Score distributions using human-normalized scores obtained after
training for 200M frames. Right. Sample-efficiency of agents as a function of number of frames measured via
IQM human-normalized scores. Shaded regions show pointwise 95% percentile stratified bootstrap CIs.
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Figure 11: Procgen evaluation results based on easy mode comparisons [61]. Left. Score distributions which
compare PPO [68], MixReg [83], UCB-DrAC [62], PLR [36], PPG [14] and IDAAC [61]. Shaded regions
indicate 95% percentile stratified bootstrap CIs. Right. Each row shows the probability of improvement, with
95% bootstrap CIs, that the algorithm X on the left outperforms algorithm Y on the right, given that X was
claimed to be better than Y . For all algorithms, results are based on 10 runs per task.

than DQN [57], the interval estimates as well as performance profiles for DQN (Adam) and C51277

overlap significantly. Figure 9 reveals an interesting limitation of aggregate metrics: depending on278

the choice of metric, the ordering between algorithms changes (e.g., Median vs. IQM). Additionally,279

the change of algorithm ranking between optimality gap and IQM/median scores reveal that while280

recent algorithms typically show performance gains relative to humans on average, their performance281

seems to be worse on games below human performance. The performance profile in Figure 10 (left)282

illustrates the nuances present when comparing different algorithms. For example, IQN seems to283

be better than Rainbow for τ ≥ 2, but worse for τ < 2. Similarly, the profiles of DreamerV2 and284

M-IQN for τ < 8 intersect at multiple points. To compare sample efficiency of the agents, we also285

present their IQM scores as a function of number of frames in Figure 10 (right).286

5.2 Procgen benchmark287

Procgen [13] is a popular benchmark, consisting of 16 diverse tasks, for evaluating generalization in288

RL. Recent papers report mean PPO-normalized scores on this benchmark to emphasize the gains289

relative to PPO [68] as most methods are built on top of it. However, Figure 11 (left) shows that290

PPO-normalized scores typically have a heavy-tailed distribution making the mean scores highly291

dependent on performance on a small fraction of tasks. Instead, we recommend using normalization292

based on the estimated minimum and maximum scores on ProcGen [13] and reporting aggregate293

metrics based on such scores (see Appendix).294

While publications make binary claims about whether they improve over prior methods, such295

improvements are inherently probabilistic. To reveal this discrepancy, we investigate the following296

question: “What is the probability that an algorithm which claimed improvement over a prior297

algorithm performs better than it?” (Figure 11, right). While this probability does not distinguish298

between two algorithms which uniformly improve on all tasks by 1% and 100%, it does highlight299

how likely an improvement is. For example, there is only a 40− 50% chance that UCB-DrAC [62]300
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Figure 12: DeepMind Control Suite evaluation results, averaged across 6 tasks, on the 100K and 500K bench-
mark. We compare SAC+AE [86], SLAC [46], Dreamer [28], CURL [72], RAD [45], DrQ [40], PISAC [48],
SUNRISE [47], and CURL-D2RL [71]. The ordering of the algorithms in the figures is based on their claimed
relative performance – all algorithms except Dreamer claimed improvement over at least one algorithm placed
below them. Individual runs for each method were provided by from their respective authors except for CURL,
CURL-D2RL, and SUNRISE for which we used their reported scores. (a) Interval estimates show 95% stratified
bootstrap CIs for methods with individual runs and 95% studentized CIs for the rest. Normalized scores are
computed by dividing by the maximum score (=1000). (b) The ith column in the rank distribution plots show
the probability that a given method is assigned rank i, averaged across tasks, when compared to other methods.
These distributions are estimated using stratified bootstrap with 200,000 repetitions.

improves upon PLR [36]. We note that a number of improvements reported in the existing literature301

are only 50− 70% likely.302

5.3 DM Control Suite303

Recent continuous control papers benchmark performance on 6 tasks in DM Control [78] at 100k304

and 500k steps. Typically, such papers claim improvement based on higher mean scores per task305

regardless of the variability in those scores. However, we find that when accounting for uncertainty306

in results, most algorithms do not consistently rank above algorithms they claimed to improve307

upon (Figure 12b). Furthermore, there are huge overlaps in 95% CIs of mean normalized scores for308

most algorithms (Figure 12a). These findings suggest that a lot of the reported improvements are309

spurious, resulting from randomness in the experimental protocol.310

6 Discussion311

We saw, both in our case study on the recent Atari 100k benchmark and with our analysis of312

other benchmarks commonly used by the RL community, that statistical issues can have a sizeable313

influence on reported results, in particular when point estimates are used or evaluation protocols314

are not kept constant within comparisons. Despite earlier calls for more experimental rigor in deep315

RL [11, 15, 16, 32, 37], our analysis shows that the field has not yet found sure footing in this regards.316

In part, this is because the issue of reproducibility is a complex one; where our work is concerned317

with our confidence about and interpretation of reported results (what Goodman et al. [25] calls318

results reproducibility), others [60] have highlighted that there might be missing information about319

the experiments themselves (methods reproducibility). We remark that the problem is not solved by320

fixing random seeds, as has sometimes been proposed, since it does not really address the question of321

whether an algorithm would perform well under similar conditions but with different seeds, as well322

as fixed seeds might benefit certain algorithms more than others. Nor can the problem be solved by323

the use of dichotomous statistical significance tests, as discussed in Section 2.324

One way to minimize the risks associated with statistical effects is to report results in a more325

complete fashion, paying close attention to bias and uncertainty within these estimates. To support326

RL researchers in this endeavour, we will release an easy-to-use Python library as well as a colab327

notebook for producing and analyzing performance profiles, robust aggregate metrics, and interval328

estimates, as well as all the runs used in our experiments. Again, we emphasize the importance of329

published papers providing results for all runs to allow for future statistical analyses.330

Given the substantial influence of statistical considerations in experiments involving 40-year old Atari331

2600 video games and low-DOF robotic simulations, we argue that it is unlikely that an increase in332

available computation will resolve the problem for the future generation of RL benchmarks. Instead,333

just as a well-prepared rock-climber can skirt the edge of the steepest precipices, it seems likely that334

ongoing progress in reinforcement learning will require greater experimental discipline.335
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A Appendix576

A.1 Atari 100k: Additional Details and Results577

Due to unavailability of open-source code for DER, DrQ and OTR for Atari 100k, we re-implemented578

them using Dopamine [10], a reproducible deep RL framework. For CURLand SPR, we used the579

open-source code released by the authors.580
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Figure A.13: Detecting score differences. Left. 95% CIs for differences in median scores. Right. 95% CIs for
differences in IQM scores. Median requires many more runs than IQM for small uncertainty.
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Figure A.14: Per-game score distributions. Histogram plot with kernel density estimate of human-normalized
scores of DER [79] on 26 games in the Atari 100k benchmark. Each histogram plot is based on 100 runs
per game. For most games, the distributions are either skewed (e.g., KUNGFUMASTER), heavy-tailed (e.g.,
BANKHEIST, FROSTBITE) or multimodal (e.g., QBERT)

.

Non-standard Evaluation Protocols. On Atari 100k, CURL [44] and SUNRISE [47] used such581

protocols. CURL reported the maximum performance over 10 different evaluations during training.582

As a result, natural variability in both evaluation itself and in the agent’s performance during training583

contribute to overestimation. Applying the same procedure to CURL’s baseline DER leads to scores584

far above those reported for CURL (Figure 5, “Max during training”). In other words, this gap in585

evaluation procedures allowed CURLto claim superiority to DER, when the reverse is true in reality.586

In the case of SUNRISE, the maximum was taken over eight hyperparameter configurations separately587

for each game, with three runs each. We simulate this procedure for DER (also SUNRISE’s baseline),588

using a dummy hyperparameter. We find that nearly all of SUNRISE’s improvement over DER can be589

explained by this evaluation scheme (Figure 5, “Max over groups”).590

To the appendix! We also recommend reporting probability of being superhuman, P (X > 1),591

instead of number of games above average human performance [33, 69], a commonly used metric on592
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ALE. While finding the best performance metrics is still an open question, our proposed alternatives593

are more robust and require fewer runs to reduce uncertainty than the ones currently used in practice.594
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