
EDGE: Explaining Deep Reinforcement Learning Policies

S1 Additional Technical Details

Evidence Lower Bound. In the following, we derive the evidence lower bound (ELBO) in the Eqn.
(3) of Section 3.3 and explain why maximizing it is equivalent to minimizing the KL divergence from
the variational joint distribution to the true posterior. Specifically, we start with the log marginal
likelihood log p(y|X,Z) and show how to derive ELBO from it
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where we omit the parameters {Θn,Θk,Θp} and q(u) is the variational distribution. The (a) step is
according to the Jensen’s inequality. As we can observe from Eqn. (1), maximizing the ELBO will
automatically maximize the marginal likelihood. Below, we derive the ELBO from the KL divergence
from q(f ,u) to p(f ,u|y).
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Since KL[q(f ,u)||p(f ,u|y)] ≥ 0, Eqn (2) shows that ELBO is a lower bound on the log marginal
likelihood log p(y). In addition, since log p(y) is independent from q(f ,u), maximizing the ELBO will
automatically minimize KL[q(f ,u)||p(f ,u|y)].

Marginal Variational Posterior with Whitening. In our model, we apply the “whitening”
operation proposed in [19]. Specifically, we first define u = Lv, where LLT = KZZ and p(v) =
N (0, I). Instead of directly defining q(u), here, we define a variational distribution for v, denoted as
q(v) = N (µv,S). Then, we can compute q(u) = N (Lµv, LSLT ). Recall that q(f ,u) = p(f |u)q(u) and
p(f |u) = N (KXZK

�1
ZZu,KXX −KXZK

�1
ZZK

T
XZ), we can compute q(f) as
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∫
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�1/2
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Below, we denote µf = KXZK
�1/2
ZZ µv and Σf = KXX+KXZK

�1/2
ZZ (S−I)K

�1/2
ZZ KT

XZ . Note that, here
we use the true marginal variational posterior, in our implementation, we also enable the widely applied

SoR approximation [23], i.e., q(f |u) ≈ KXZK
�1/2
ZZ µv. With SoR, q(f) ≈ N (µf ,KXZK

�1/2
ZZ SK

�1/2
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XZ).
It should also be noted that, with whitening, the variational parameters change from {µ,Σ} to {µv,S}
and the KL divergence term in ELBO becomes KL[q(v)||p(v)].

Expected Conditional Log Likelihood in Regression Model. Recall that our regression model
has an analytical form of the likelihood term in the ELBO. Here, we derive this analytical from of the
expected conditional log likelihood. Specifically, we first rewrite our regression model as follows:

f |X ∼ N (0, k = α2
tkγt

+ α2
ekγe

), yi|f (i) ∼ N (f (i)wT , σ2) . (4)

With the q(f) in Eqn. (3), we then compute the expected conditional log likelihood as
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(5)

where Eq(f)[(y − FwT )T (y − FwT )] can be computed as follows:

Eq(f)[(y − FwT )T (y − FwT )] = Eq(f)[y
Ty −wFTy − yTFwT + wFTFwT ]

= yTy −wνTf y − yT νfw
T + wEq(f)[F
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∑
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(6)

where νf ∈ RN�T is the matrix form of µf . ν
(i)
f ∈ R1�T is the i-th row of νf , representing the mean of

the variational posterior of F(i). After computing the expectation of each element in FTF and combine
them together, we have

Eq(f)[F
TF] =

∑
N
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(i)
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(i)
f )T ν

(i)
f ] , (7)

where Σ
(i)
f ∈ RT�T is the covariance matrix of the variational posterior of F(i). Plugging Eqn. (7) into

Eqn. (6) and Eqn. (5), we have

Eq(f)[(y − FwT )T (y − FwT )] =
−N

2
[log σ2 + log 2π +

1

σ2

∑
i
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f wT )2 + wΣ

(i)
f wT )] . (8)

With the analytical form in Eqn. (8), we can minimize the exact ELBO for our regression model
without any approximation.

Predictive Distributions. Although our model mainly focuses on providing explanations, it can
also perform prediction with the predictive distribution. In the following, we derive the predictive
distribution of our regression and classification model with the variational distributions. Given a set
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Figure S1: Overview ofEDGEwith a mixing weight given by an MLP.

of testing episodesX � 2 RN � T � (ds + da ) , we �rst compute the variational posterior of their GP outputs
f � according to Eqn. (3).

q(f � ) =
Z

p(f � ju)q(u)du = N (K X � Z K � 1=2
ZZ � v ; K X � X + K X � Z K � 1=2

ZZ (S � I )K � 1=2
ZZ K T

X � Z ) ; (9)

wheref � v ; Sg are the solved variational parameters. Below, we denote the mean and covariance matrix
in q(f � ) as � � and � � . After obtaining q(f � ), we then discuss how to conduct prediction in our regression
and classi�cation model. Regarding the regression model, which has a Gaussian likelihood, we can
directly compute the marginal likelihood distribution as the predictive distribution, i.e.,

p(y ) =
Z

p(y jf � )q(f � )df � = N (� y ; � y ) ; (10)

where � y 2 RN � can be computed as

� y = E[y ] = E[F � w T ] = � � w T ; (11)

where � � 2 RN � � T is the matrix form of � � . Then ,we compute � y 2 RN � � N � as

� y = Var[ y ] = Cov[ F � w T ; F � w T ] + I � 2 ; (12)

where Cov[(F � w T ) i ; (F � w T ) j ] = w(� � ) iT :( i +1) T;jT :( j +1) T w T . After computing the marginal predictive
distribution, we can make prediction using its mean� y and access the prediction uncertainty from � y .

For the classi�cation model, the marginal likelihood is intractable due to the non-Gaussian likeli-
hood. We follow the prediction procedure proposed in [8] and use the MC method to make predictions.
Speci�cally, we �rst sample B samples fromq(f � ) and compute the conditional likelihood distribution
p(yjf � ) using the drawn samples. Then, we compute the mean of the probability in the conditional
distributions ( i.e., 1

B

P
b softmax(F (b) W T )) as the �nal predictions.

EDGE with an Input-speci�c Mixing Weight. Recall that our proposed model can provide
input-speci�c explanations by replacing the constant mixing weight with a neural network. As is shown
in Fig. S1, we use a simple MLPe� w with three layers, i.e., a linear layer with T number of neurons,
a LeakyReLU activation layer, and a linear layer with TK number of neurons. Given the episode
encoding ofN episodesC 2 RN � T � 2q, in which each element is the concatenation of that time step's
unique embedding and the episode embedding of the corresponding episode (i.e., [h ( i )

t ; e( i ) ]). We �rst
sum the last dimension of each element and obtainC0 2 RN � T (i.e., C0 =

P
c C � ;� ;c ). Second, we input

C0 into the network and get the corresponding output e� w (C) 2 RN � T K , whereK is the total number
of classes in our classi�cation model. Third, we transforme� w (C) into the input-dependent mixing
weight W x 2 RN � T � K . Finally, we manipulate the GP output F 2 RN � T with W x and obtain the
predictions P 2 RN � K . To ensure the explainability and stability, we borrow the idea from [1] and
design a local-linear regularization fore� w . Note that since our feature extractor is non-parametric,
the regularization proposed in [1] is not applicable to our model. Speci�cally, to ensure local linearity,
we propose to minimizeL e = ke� w (C0) � e� w (C0 + � c)k1 together with the ELBO, where � is a local

3


	Additional Technical Details
	Implementation Details and Experiment Setups
	Implementations and Hyper-parameter selections
	Experiment Setups

	Additional Evaluations on Games with Delayed Rewards
	Additional Use Cases on Games with Delayed Rewards
	Evaluation on Games with Instant Rewards
	Hypothesis Test
	User Study
	Comparison of Our Attack with An Existing Attack
	Potential Social Impact

