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Abstract

We introduce a generic template for developing regret minimization algorithms in
the Stochastic Shortest Path (SSP) model, which achieves minimax optimal regret
as long as certain properties are ensured. The key of our analysis is a new technique
called implicit finite-horizon approximation, which approximates the SSP model
by a finite-horizon counterpart only in the analysis without explicit implementation.
Using this template, we develop two new algorithms: the first one is model-free
(the first in the literature to our knowledge) and minimax optimal under strictly
positive costs; the second one is model-based and minimax optimal even with
zero-cost state-action pairs, matching the best existing result from [Tarbouriech
et al., 2021b]. Importantly, both algorithms admit highly sparse updates, making
them computationally more efficient than all existing algorithms. Moreover, both
can be made completely parameter-free.

1 Introduction

We study the Stochastic Shortest Path (SSP) model, where an agent aims to reach a goal state
with minimum cost in a stochastic environment. SSP is well-suited for modeling many real-world
applications, such as robotic manipulation, car navigation, and others. Although it is widely studied
empirically (e.g., [Andrychowicz et al., 2017, Nasiriany et al., 2019]) and in optimal control theory
(e.g., [Bertsekas and Tsitsiklis, 1991, Bertsekas and Yu, 2013]), it has received less attention under
the regret minimization setting where a learner needs to learn the environment and improve her policy
on-the-fly through repeated interaction. Specifically, the problem proceeds in K episodes. In each
episode, the learner starts at a fixed initial state, sequentially takes action, suffers some cost, and
transits to the next state, until reaching a predefined goal state. The performance of the learner is
measured by her regret, which is the difference between her total costs and that of the best policy.

Tarbouriech et al. [2020a] develop the first regret minimization algorithm for SSP with a regret bound
of Õ(D3/2S

√
AK/cmin), where D is the diameter, S is the number of states, A is the number of

actions, and cmin is the minimum cost among all state-action pairs. Cohen et al. [2020] improve
over their results and give a near optimal regret bound of Õ(B?S

√
AK), where B? ≤ D is the

largest expected cost of the optimal policy starting from any state. Even more recently, Cohen et al.
[2021] achieve minimax regret of Õ(B?

√
SAK) through a finite-horizon reduction technique, and

concurrently Tarbouriech et al. [2021b] also propose minimax optimal and parameter-free algorithms.
Notably, all existing algorithms are model-based with space complexity Ω(S2A). Moreover, they all
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update the learner’s policy through full-planning (a term taken from [Efroni et al., 2019]), incurring a
relatively high time complexity.

In this work, we further advance the state-of-the-art by proposing a generic template for regret
minimization algorithms in SSP (Algorithm 1), which achieves minimax optimal regret as long as
some properties are ensured. By instantiating our template differently, we make the following two
key algorithmic contributions:

• In Section 4, we develop the first model-free SSP algorithm called LCB-ADVANTAGE-SSP
(Algorithm 2). Similar to most model-free reinforcement learning algorithms, LCB-ADVANTAGE-
SSP does not estimate the transition directly, enjoys a space complexity of Õ(SA), and also takes
only O (1) time to update certain statistics in each step, making it a highly efficient algorithm.
It achieves a regret bound of Õ(B?

√
SAK + B5

?S
2A/c4min), which is minimax optimal when

cmin > 0. Moreover, it can be made parameter-free without worsening the regret bound.

• In Section 5, we develop another simple model-based algorithm called SVI-SSP (Algorithm 3),
which achieves minimax regret Õ(B?

√
SAK +B?S

2A) even when cmin = 0, matching the best
existing result by Tarbouriech et al. [2021b].1 Notably, compared to their algorithm (as well as
other model-based algorithms), SVI-SSP is computationally much more efficient since it updates
each state-action pair only logarithmically many times, and each update only performs one-step
planning (again, a term taken from [Efroni et al., 2019]) as opposed to full-planning (such as value
iteration or extended value iteration); see more concrete time complexity comparisons in Section 5.
SVI-SSP can also be made parameter-free following the idea of [Tarbouriech et al., 2021b].

We include a summary of regret bounds of all existing SSP algorithms as well as more complexity
comparisons in Appendix A.

Techniques Our main technical contribution is a new analysis framework called implicit finite-
horizon approximation (Section 3), which is the key to analyze algorithms developed from our
template. The high level idea is to approximate an SSP instance by a finite-horizon counterpart.
However, the approximation only happens in the analysis, a key difference compared to [Chen et al.,
2021, Chen and Luo, 2021, Cohen et al., 2021] that explicitly implement such an approximation in
their algorithms. As a result, our method not only avoids blowing up the space complexity by a factor
of the horizon, but also allows one to derive a horizon-free regret bound (more explanation to follow).

In order to achieve the minimax optimal regret, our model-free algorithm LCB-ADVANTAGE-SSP
uses a key variance reduction idea via a reference-advantage decomposition by [Zhang et al., 2020b].
However, crucial distinctions exist. For example, we update the reference value function more
frequently instead of only one time, which helps reduce the sample complexity and improve the
lower-order term in the regret bound. We also maintain an empirical upper bound on the value
function in a doubling manner, which is the key to eventually make the algorithm parameter-free. On
the other hand, for our model-based algorithm SVI-SSP, we adopt a special Bernstein-style bonus
term and bound the learner’s total variance via recursion, taking inspiration from [Tarbouriech et al.,
2021b, Zhang et al., 2020a].

Empirical Evaluation We support our theoretical findings with experiments in Appendix H. Our
model-free algorithm demonstrates a better convergence rate compared to vanilla Q learning with
naive ε-greedy exploration. Our model-based algorithm has competitive performance compared to
other model-based algorithms, while spending the least amount of time in updates.

Related Work For a detailed comparison of existing results for the same problem, we refer the
readers to [Tarbouriech et al., 2021b, Table 1] as well as our Table 1. There are also several
works [Rosenberg and Mansour, 2020, Chen et al., 2021, Chen and Luo, 2021] that consider the even
more challenging SSP setting where the cost function is decided by an adversary and can change over
time. Apart from regret minimization, Tarbouriech et al. [2021a] study the sample complexity of SSP
with a generative model; Lim and Auer [2012] and Tarbouriech et al. [2020b] investigate exploration
problems involving multiple goal states (multi-goal SSP).

1Depending on the available prior knowledge, the final bounds achieved by SVI-SSP are slightly different,
but they all match that of EB-SSP. See [Tarbouriech et al., 2021b, Table 1] for more details.
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The special case of SSP with a fixed horizon has been studied extensively, for both stochastic costs
(e.g., [Azar et al., 2017, Jin et al., 2018, Efroni et al., 2019, Zanette and Brunskill, 2019, Zhang
et al., 2020a]) and adversarial costs (e.g., [Neu et al., 2012, Zimin and Neu, 2013, Rosenberg and
Mansour, 2019, Jin et al., 2020]). Importantly, recent works [Wang et al., 2020, Zhang et al., 2020a]
find that when the cost for each episode is at most a constant, it is in fact possible to obtain a regret
bound with only logarithmic dependency on the horizon. Tarbouriech et al. [2021b] generalize
this concept to SSP and define horizon-free regret as a bound with only logarithmic dependence
on the expected hitting time of the optimal policy starting from any state (which is bounded by
B?/cmin). They also propose the first algorithm with horizon-free regret for SSP, which is important
for arguing minimax optimality even when cmin = 0. Notably, our model-based algorithm SVI-SSP
also achieves horizon-free regret (but the model-free one does not).

2 Preliminaries

An SSP instance is defined by a Markov Decision Process (MDP) M = (S,A, sinit, g, c, P ), where
S is the state space, A is the action space, sinit ∈ S is the initial state, and g /∈ S is the goal state.
When taking action a in state s, the learner suffers a cost drawn in an i.i.d manner from an unknown
distribution with mean c(s, a) ∈ [0, 1] and support [cmin, 1] (cmin ≥ 0), and then transits to the next
state s′ ∈ S+ = S ∪ {g} with probability Ps,a(s′). We assume that the transition P and the cost
mean c are unknown to the learner, while all other parameters are known.

The learning process goes as follows: the learner interacts with the environment for K episodes. In
the k-th episode, the learner starts in initial state sinit, sequentially takes an action, suffers a cost, and
transits to the next state until reaching the goal state g. More formally, at the i-th step of the k-th
episode, the learner observes the current state ski (with sk1 = sinit), takes action aki , suffers a cost cki ,
and transits to the next state ski+1 ∼ Pski ,aki . An episode ends when the current state is g, and we
define the length of episode k as Ik, such that skIk+1 = g.

Learning Objective At a high level, the learner’s goal is to reach the goal with a small total cost.
To this end, we focus on proper policies — a (stationary and deterministic) policy π : S → A is a
mapping that assigns an action π(s) to each state s ∈ S, and it is proper if the goal is reached with
probability 1 when following π (that is, taking action π(s) whenever in state s). Given a proper policy
π, one can define the cost-to-go function V π : S → [0,∞) as V π(s) = E

[∑I
i=1 ci

∣∣∣P, π, s1 = s
]
,

where the expectation is with respect to the randomness of the cost ci incurred at state-action pair
(si, π(si)), next state si+1 ∼ Psi,π(si), and the number of steps I before reaching g. The optimal
proper policy π? is then defined as a policy such that V π

?

(s) = minπ∈Π V
π(s) for all s ∈ S , where

Π is the set of all proper policies assumed to be nonempty. The formal objective of the learner is then
to minimize her regret against π?, the difference between her total cost and that of the optimal proper
policy, defined as

RK =

K∑
k=1

Ik∑
i=1

cki −K · V ?(sinit),

where we use V ? as a shorthand for V π
?

. The minimax optimal regret is known to be Õ(B?
√
SAK),

where B? = maxs∈S V
?(s), and S = |S+| and A = |A| are the numbers of states (including the

goal state) and actions respectively [Cohen et al., 2020].

Bellman Optimality Equation For a proper policy π, the corresponding action-value function
Qπ : S × A → [0,∞) is defined as Qπ(s, a) = c(s, a) + Es′∼Ps,a [V π(s′)]. Similarly, we use Q?

as a shorthand for Qπ
?

. it is known that π? satisfies the Bellman optimality equation: V ?(s) =
mina∈AQ

?(s, a) for all s ∈ S [Bertsekas and Tsitsiklis, 1991].

Assumption on cmin Similar to many previous works, our analysis requires cmin being known and
strictly positive. When cmin is unknown or known to be 0, a simple workaround is to solve a modified
SSP instance with all observed costs clipped to ε if they are below some ε > 0, so that cmin = ε > 0.
Then the regret in this modified SSP is similar to that in the original SSP up to an additive term of
order O (εK) [Tarbouriech et al., 2020a]. Therefore, throughout the paper we assume that cmin is
known and strictly positive unless explicitly stated otherwise.
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Algorithm 1 A General Algorithmic Template for SSP
Initialize: t← 0, s1 ← sinit, Q(s, a)← 0 for all (s, a) ∈ S ×A.
for k = 1, . . . ,K do

repeat
1 Increment time step t +← 1.
2 Take action at = argminaQ(st, a), suffer cost ct, transit to and observe s′t.
3 Update Q (so that it satisfies Property 1 and Property 2).
4 if s′t 6= g then st+1 ← s′t; else st+1 ← sinit, break.

Record T ← t (that is, the total number of steps).

Other Notations For simplicity, we use CK =
∑K
k=1

∑Ik
i=1 c

k
i in the analysis to denote the total

costs suffered by the learner over K episodes. For a function X : S+ → R and a distribution P
over S+, denote by PX = ES∼P [X(S)], PX2 = ES∼P [X(S)2], and V(P,X) = VARS∼P [X(S)]
the expectation, second moment, and variance of X(S) respectively where S is drawn from P . For
a scalar x, define (x)+ = max{x, 0}, and denote by dxe2 = 2dlog2 xe and bxc2 = 2blog2 xc the
closest power of two upper and lower bounding x respectively. For an integer m, [m] denotes the set
{1, . . . ,m}. In pseudocode, x +← y is a shorthand for the increment operation x← x+ y.

3 Implicit Finite-Horizon Approximation

In this section, we introduce our main analytical technique, that is, implicitly approximating the
SSP problem with a finite-horizon counterpart. We start with a general template of our algorithms
shown in Algorithm 1. For notational convenience, we concatenate state-action-cost trajectories of all
episodes as one single sequence (st, at, ct) for t = 1, 2, . . . , T , where st ∈ S is one of the non-goal
state, at ∈ A is the action taken at st, and ct is the resulting cost incurred by the learner. Note that
the goal state g is never included in this sequence (since no action is taken there), and we also use the
notation s′t ∈ S+ to denote the next-state following (st, at), so that st+1 is simply s′t unless s′t = g
(in which case st+1 is reset to the initial state sinit); see Line 4.

The template follows a rather standard idea for many reinforcement learning algorithms: maintain an
(optimistic) estimate Q of the optimal action-value function Q?, and act greedily by taking the action
with the smallest estimate: at = argminaQ(st, a); see Line 2. The key of the analysis is often to
bound the estimation error Q?(st, at)−Q(st, at), which is relatively straightforward in a discounted
setting (where the discount factor controls the growth of the error) or a finite-horizon setting (where
the error vanishes after a fixed number of steps), but becomes highly non-trivial for SSP due to the
lack of similar structures.

A natural idea is to explicitly solve a discounted problem or a finite-horizon problem that approximates
the original SSP well enough. Unfortunately, both approaches are problematic: approximating an
undiscounted MDP by a discounted one often leads to suboptimal regret [Wei et al., 2020]; on the
other hand, while explicitly approximating SSP with a finite-horizon problem can lead to optimal
regret [Chen et al., 2021, Cohen et al., 2021], it greatly increases the space complexity of the
algorithm, and also produces non-stationary policies, which is unnatural and introduces unnecessary
complexity since the optimal policy in SSP is stationary.

Therefore, we propose to approximate the original SSP instance M with a finite-horizon counterpart
M̃ implicitly (that is, only in the analysis). We defer the formal definition of M̃ to Appendix C,
which is similar to those in [Chen et al., 2021, Cohen et al., 2021] and corresponds to interacting with
the original SSP for H steps (for some integer H) and then teleporting to the goal. All we need in the
analysis are the optimal value function V ?h and optimal action-value function Q?h of M̃ for each step
h ∈ [H], which can be defined recursively without resorting to the definition of M̃ :

Q?h(s, a) = c(s, a) + Ps,aV
?
h−1, V ?h (s) = min

a
Q?h(s, a), (1)
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withQ?0(s, a) = 0 for all (s, a).2 Intuitively,Q?H approximatesQ? well whenH is large enough. This
is formally summarized in the lemma below, whose proof is similar to prior works (see Appendix C).
Lemma 1. For any value of H , Q?H(s, a) ≤ Q?(s, a) holds for all (s, a). For any β ∈ (0, 1), if
H ≥ 4B?

cmin
ln(2/β) + 1, then Q?(s, a) ≤ Q?H(s, a) +B?β holds for all (s, a).

In the remaining discussion, we fix a particular value of H . To carry out the regret analysis, we now
specify two general requirements of the estimate Q. Let Qt be the value of Q at the beginning of
time step t (that is, the value used in finding at). Then Qt needs to satisfy:
Property 1 (Optimism). With high probability, Qt(s, a) ≤ Q?(s, a) holds for all (s, a) and t ≥ 1.
Property 2 (Recursion). There exists a “bonus overhead” ξH > 0 and an absolute constant d > 0
such that the following holds with high probability:

T∑
t=1

(Q̊(st, at)−Qt(st, at))+ ≤ ξH +

(
1 +

d

H

) T∑
t=1

(V̊ (st)−Qt(st, at))+,

for Q̊ = Q?h and V̊ = V ?h−1 (h = 1, . . . ,H) as well as Q̊ = Q? and V̊ = V ?.3

Property 1 is standard and can usually be ensured by using a certain “bonus” term derived from
concentration equalities in the update. These bonus terms on (st, at) accumulate into some bonus
overhead in the final regret bound, which is exactly the role of ξH in Property 2. In both of our
algorithms, ξH has a leading-order term Õ(

√
B?SACK) and a lower-order term that increases in H .

Property 2 is a key property that provides a recursive form of the estimation error and allows us to
connect it to the finite-horizon approximation. This is illustrated through the following two lemmas.

Lemma 2. Property 2 implies
∑T
t=1(Q?H(st, at)−Qt(st, at))+ ≤ O (HξH).

Proof. With Q̊ = Q?H and V̊ = V ?H−1, Property 2 implies
T∑
t=1

(Q?H(st, at)−Qt(st, at))+ ≤ ξH +

(
1 +

d

H

) T∑
t=1

(V ?H−1(st)−Qt(st, at))+

≤ ξH +

(
1 +

d

H

) T∑
t=1

(Q?H−1(st, at)−Qt(st, at))+,

where in the last step we use the optimality of V ?H−1 from Eq. (1). Repeatedly applying

this argument, we eventually arrive at
∑T
t=1(Q?H(st, at) − Qt(st, at))+ ≤ H

(
1 + d

H

)H
ξH +(

1 + d
H

)H∑T
t=1(Q?0(st, at) − Qt(st, at))+ = O (HξH), where the last step uses the facts

Q?0(st, at) = 0 and
(
1 + d

H

)H ≤ ed (an absolute constant).

Lemma 3. For any β ∈ (0, 1), if H ≥ 4B?
cmin

ln(2/β) + 1, then Property 1 and Property 2 together

imply
∑T
t=1Q

?(st, at)− V ?(st) = O (βCK + ξH).

Proof. Applying Property 2 with Q̊ = Q? and V̊ = V ?, we have
∑T
t=1(Q?(st, at)−Qt(st, at))+ ≤

ξH +
(
1 + d

H

)∑T
t=1(V ?(st)−Qt(st, at))+. Now note that by Property 1, the Bellman optimality

equation V ?(st) = minaQ
?(st, a), and the fact Qt(st, at) = minaQt(st, a) (by the definition of

at), the arguments within the clipping operation (·)+ are all non-negative and thus the clipping can
be removed. Rearranging terms then gives

T∑
t=1

Q?(st, at)− V ?(st) ≤ ξH +
d

H

T∑
t=1

(V ?(st)−Qt(st, at))

≤ ξH +
d

H

T∑
t=1

(Q?(st, at)−Qt(st, at)). (optimality of V ?)

2Note that our notation is perhaps unconventional compared to most works on finite-horizon MDPs, where
Q?

h usually refers to our Q?
H−h. We make this switch since we want to highlight the dependence on H for Q?

H .
3Note that ξH might be a random variable. In fact, it often depends on CK .
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It remains to bound the last term using the finite-horizon approximation Q?H as a proxy:

T∑
t=1

(Q?(st, at)−Qt(st, at)) =

T∑
t=1

(Q?(st, at)−Q?H(st, at) +Q?H(st, at)−Qt(st, at))

= O (TB?β +HξH) ,

where the last step uses Lemma 1 and Lemma 2. Importantly, this term is finally scaled by d/H ,
which, together with the fact TB?H ≤ cminT ≤ CK , proves the claimed bound.

Readers familiar with the literature might already recognize the term
∑T
t=1Q

?(st, at) − V ?(st)
considered in Lemma 3, which is closely related to the regret. Indeed, with this lemma, we can
conclude a regret bound for our generic algorithm.

Theorem 1. For any β ∈ (0, 1), if H ≥ 4B?
cmin

ln(2/β) + 1, then Algorithm 1 ensures (with high
probability) RK = Õ

(√
B?CK +B? + βCK + ξH

)
.

Proof. We first decompose the regret as follows, which holds generally for any algorithm:

RK =

K∑
k=1

(
Ik∑
i=1

cki − V ?(sk1)

)

≤
K∑
k=1

Ik∑
i=1

(
cki − V ?(ski ) + V ?(ski+1)

)
=

T∑
t=1

(ct − V ?(st) + V ?(s′t))

=

T∑
t=1

(ct − c(st, at)) +

T∑
t=1

(V ?(s′t)− Pst,atV ?) +

T∑
t=1

(Q?(st, at)− V ?(st)). (2)

The first and the second term are the sum of a martingale difference sequence (since s′t is drawn from
Pst,at) and can be bounded by Õ

(√
CK
)

and Õ
(√
B?CK +B?

)
respectively using concentration

inequalities; see Lemma 4, Lemma 35, and Lemma 5. The third term can be bounded using Lemma 3
directly, which finishes the proof.

To get a sense of the regret bound in Theorem 1, first note that since 1/β only appears in a logarithmic
term of the required lower bound of H , one can pick β to be small enough so that the term βCK is
dominated by others. Moreover, if ξH is Õ(

√
B?SACK) plus some lower-order term ρH (which as

mentioned is the case for our algorithms), then by solving a quadratic of
√
CK , the regret bound of

Theorem 1 implies RK = Õ(B?
√
SAK + ρH), which is minimax optimal (ignoring ρH )!

Based on this analytical technique, it remains to design algorithms satisfying the two required
properties. In the following sections, we provide two such examples, leading to the first model-free
SSP algorithm and an improved model-based SSP algorithm.

4 The First Model-free Algorithm: LCB-ADVANTAGE-SSP

In this section, we present a model-free algorithm (the first in the literature) called LCB-ADVANTAGE-
SSP that falls into our generic template and satisfies the required properties. It is largely inspired
by the state-of-the-art model-free algorithm UCB-ADVANTAGE [Zhang et al., 2020b] for the finite-
horizon problem. The pseudocode is shown in Algorithm 2, with only the lines instantiating the
update rule of the Q estimates numbered. Importantly, the space complexity of this algorithm is only
O (SA) since we do not estimate the transition directly or conduct explicit finite-horizon reduction,
and the time complexity is only O (1) in each step.

Specifically, for each state-action pair (s, a), we divide the samples received when visiting (s, a)
into consecutive stages of exponentially increasing length, and only update Q(s, a) at the end of a
stage. The number of samples ej in stage j is defined through e1 = H and ej+1 = b(1 + 1/H)ejc
for some parameter H . Further define L? = {Ej}j∈N+ with Ej =

∑j
i=1 ei, which contains all the

indices indicating the end of some stage. As mentioned, the algorithm only updates Q(s, a) when the

6



Algorithm 2 LCB-ADVANTAGE-SSP
Parameters: horizon H , threshold θ?, and failure probability δ ∈ (0, 1).
Define: L? = {Ej}j∈N+ where Ej =

∑j
i=1 ei, e1 = H and ej+1 = b(1 + 1/H)ejc.

Initialize: t← 0, s1 ← sinit, B ← 1, for all (s, a), N(s, a)← 0,M(s, a)← 0.
Initialize: for all (s, a), Q(s, a)← 0, V (s)← 0, V ref(s)← V (s), Ĉ(s, a)← 0.
Initialize: for all (s, a), µref(s, a)← 0, σref(s, a)← 0, µ(s, a)← 0, σ(s, a)← 0, v(s, a)← 0.
for k = 1, . . . ,K do

repeat
Increment time step t +← 1.
Take action at = argminaQ(st, a), suffer cost ct, transit to and observe s′t.

1 Increment visitation counters: n = N(st, at)
+← 1,m = M(st, at)

+← 1.

2 Update global accumulators: µref(st, at)
+← V ref(s′t), σref(st, at)

+← V ref(s′t)
2,

Ĉ(st, at)
+← ct.

3 Update local accumulators: v(st, at)
+← V (s′t), µ(st, at)

+← V (s′t)− V ref(s′t), σ(st, at)
+←

(V (s′t)− V ref(s′t))
2.

4 if n ∈ L? then
5 Compute ι ← 256 ln6(4SAB8

?n
5/δ), cost estimator ĉ = Ĉ(st,at)

n , bonuses b′ ←

2
√

B2ι
m +

√
ĉι
n + ι

n and b←√
σref(st,at)/n− (µ

ref(st,at)/n)2

n
ι+

√
σ(st,at)/m− (µ(st,at)/m)2

m
ι+

(
4B

n
+

3B

m

)
ι+

√
ĉι

n
.

6 Q(st, at)← max
{
ĉ+ v(st,at)

m − b′, Q(st, at)
}

.

7 Q(st, at)← max
{
ĉ+ µref(st,at)

n + µ(st,at)
m − b,Q(st, at)

}
.

8 V (st)← minaQ(st, a).
9 if V (st) > B then B ← 2V (st).

10 Reset local accumulators: v(st, at)← 0, µ(st, at)← 0, σ(st, at)← 0,M(st, at)← 0.

11 if
∑
aN(st, a) is a power of two not larger than θ? then V ref(st)← V (st).

if s′t 6= g then st+1 ← s′t; else st+1 ← sinit, break.

total number of visits to (s, a) falls into the set L? (Line 4). The algorithm also maintains an estimate
V for V ?, which always satisfies V (s) = minaQ(s, a) (Line 8), and importantly another reference
value function V ref whose role and update rule are to be discussed later.

In addition, some local and global accumulators are maintained in the algorithm. Local accumulators
only store information related to the current stage. These include: M(s, a), the number of visits to
(s, a) within the current stage; v(s, a), the cumulative value of V (s′) within the current stage, where
s′ represents the next state after each visit to (s, a); and finally µ(s, a) and σ(s, a), the cumulative
values of V (s′)− V ref(s′) and its square respectively within the current stage (Line 3). These local
accumulators are reset to zero at the end of each stage (Line 10).

On the other hand, global accumulators store information related to all stages and are never reset.
These include: N(s, a), the number of visits to (s, a) from the beginning; Ĉ(s, a), total cost incurs
at (s, a) from the beginning; and µref(s, a) and σref(s, a), the cumulative value of V ref(s′) and its
square respectively from the beginning, where again s′ represents the next state after each visit to
(s, a) (Line 2).

We are now ready to describe the update rule of Q. The first update, Line 6, is intuitively based on the
equality Q?(s, a) = c(s, a) + Ps,aV

? and uses v(s, a)/M(s, a) as an estimate for Ps,aV ? together
with a (negative) bonus b′ derived from Azuma’s inequality (Line 5). As mentioned, the bonus is
necessary to ensure Property 1 (optimism) so that Q is always a lower confidence bound of Q? (hence
the name “LCB”). Note that this update only uses data from the current stage (roughly 1/H fraction
of the entire data collected so far), which leads to an extra

√
H factor in the regret.
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To address this issue, Zhang et al. [2020b] introduce a variance reduction technique via a reference-
advantage decomposition, which we borrow here leading to the second update rule in Line 7. This
is intuitively based on the decomposition Ps,aV ? = Ps,aV

ref + Ps,a(V ? − V ref), where Ps,aV ref is
approximated by µref(s, a)/N(s, a) and Ps,a(V ? − V ref) is approximated by µ(s, a)/M(s, a). In
addition, a “variance-aware” bonus term b is applied, which is derived from a tighter Freedman’s
inequality (Line 5). The reference function V ref is some snapshot of the past value of V , and is
guaranteed to be O(cmin) close to V ? on a particular state as long as the number of visits to this state
exceeds some threshold θ? = Õ

(
B2
?H

3SA/c2min

)
(Line 11). Overall, this second update rule not

only removes the extra
√
H factor as in [Zhang et al., 2020b], but also turns some terms of order

Õ(
√
T ) into Õ(

√
CK) in our context, which is important for obtaining the optimal regret.

Despite the similarity, we emphasize several key differences between our algorithm and that of
[Zhang et al., 2020b]. First, [Zhang et al., 2020b] maintains a different Q estimate for each step of
an episode (which is natural for a finite-horizon problem), while we only maintain one Q estimate
(which is natural for SSP). Second, we update the reference function V ref(s) whenever the number of
visits to s doubles (while still below the threshold θ?; see Line 11), instead of only updating it once
as in [Zhang et al., 2020b]. We show in Lemma 8 that this helps reduce the sample complexity and
leads to a smaller lower-order term in the regret. Third, since there is no apriori known upper bound
on V (unlike the finite-horizon setting), we maintain an empirical upper bound B (in a doubling
manner) such that V (s) ≤ B ≤ 2B? (Line 9), which is further used in computing the bonus terms b
and b′. This is important for eventually developing a parameter-free algorithm.

In Appendix D, we show that Algorithm 2 indeed satisfies the two required properties.

Theorem 2. Let H = d 4B?
cmin

ln( 2
β ) + 1e2 for β = cmin

2B2
?SAK

and θ? = Õ
(
B2
?H

3SA

c2min

)
be de-

fined in Lemma 8, then Algorithm 2 satisfies Property 1 and Property 2 with d = 3 and
ξH = Õ

(√
B?SACK +

B2
?H

3S2A
cmin

)
.

Proof Sketch. The proof of Property 1 largely follows the analysis of [Zhang et al., 2020b, Proposition
4] for the designed bonuses. To prove Property 2, similarly to [Zhang et al., 2020b] we can show:

T∑
t=1

(Q̊(st, at)−Qt(st, at))+ . ξH +

T∑
t=1

1

mt

mt∑
i=1

Psľt,i ,aľt,i
(V̊ − Vľt,i)+,

where mt is the value of m used in computing Qt(st, at), and ľt,i is the i-th time step the agent visits
(st, at) among thosemt steps. Now it suffices to show that

∑T
t=1

1
mt

∑mt
i=1 Psľt,i ,aľt,i

(V̊ −Vľt,i)+ .

(1 + 3
H )
∑T
t=1(V̊ (st)− Vt(st))+, which is proven in Lemma 13.

As a direct corollary of Theorem 1, we arrive at the following regret guarantee.

Theorem 3. With the same parameters as in Theorem 2, with probability at least 1−60δ, Algorithm 2
ensures RK = Õ

(
B?
√
SAK +

B5
?S

2A

c4min

)
.

We make several remarks on our results. First, while Algorithm 2 requires setting the two parameters
H and θ? in terms of B? to obtain the claimed regret bound, one can in fact achieve the exact same
bound without knowing B? by slightly changing the algorithm. The high level idea is to first apply
the doubling trick from Tarbouriech et al. [2021b] to determine an upper bound on B?, then try
logarithmically many different values of H and θ? simultaneously, each leading to a different update
rule for Q and V ref. This only increases the time and space complexity by a logarithmic factor,
without hurting the regret (up to log factors). Details are deferred to Section D.5.

Second, as mentioned in Section 2, when cmin is unknown or cmin = 0, one can clip all observed
costs to ε if they are below ε > 0, which introduces an additive regret term of order O (εK). By
picking ε to be of order K−1/5, our bound becomes Õ

(
K4/5

)
ignoring other parameters. Although

most existing works suffer the same issue, this is certainly undesirable, and our second algorithm to
be introduced in the next section completely avoids this issue by having only logarithmic dependence
on 1/cmin.
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Algorithm 3 SVI-SSP
Parameters: horizon H , value function upper bound B, and failure probability δ ∈ (0, 1).
Define: L = {Ej}j∈N+ , where Ej =

∑j
i=1 ei, ej = bẽjc, and ẽ1 = 1, ẽj+1 = ẽj + 1

H ej .
Initialize: t← 0, s1 ← sinit.
Initialize: for all (s, a, s′), n(s, a, s′)← 0, n(s, a)← 0, Q(s, a)← 0, V (s)← 0, Ĉ(s, a)← 0.
for k = 1, . . . ,K do

repeat
Increment time step t +← 1.
Take action at = argminaQ(st, a), suffer cost ct, transit to and observe s′t.

1 Update accumulators: n = n(st, at)
+← 1, n(st, at, s

′
t)

+← 1, Ĉ(st, at)
+← ct.

2 if n ∈ L then
3 Update empirical transition: P̄st,at(s

′)← n(st,at,s
′)

n for all s′.

4 Compute ι ← 20 ln 2SAn
δ , cost estimator ĉ ← Ĉ(s,a)

n , and bonus b ←

max
{

7

√
V(P̄st,at ,V )ι

n , 49Bι
n

}
+
√

ĉι
n .

5 Q(st, at)← max{ĉ+ P̄st,atV − b,Q(st, at)}.
6 V (st)← argminaQ(st, a).

if s′t 6= g then st+1 ← s′t; else st+1 ← sinit, break.

Finally, we point out that, just as in the finite-horizon case, the variance reduction technique is crucial
for obtaining the minimax optimal regret. For example, if one instead uses an update rule similar
to the (suboptimal) Q-learning algorithm of [Jin et al., 2018], then this is essentially equivalent to
removing the second update (Line 7) of our algorithm. While this still satisfies Property 2, the bonus
overhead ξH would be

√
H times larger, resulting in a suboptimal leading term in the regret.

5 An Optimal and Efficient Model-based Algorithm: SVI-SSP

In this section, we propose a simple model-based algorithm called SVI-SSP (Sparse Value Iteration
for SSP) following our template, which not only achieves the minimax optimal regret even when
cmin = 0, matching the state-of-the-art by a recent work [Tarbouriech et al., 2021b], but also admits
highly sparse updates, making it more efficient than all existing model-based algorithms. The
pseudocode is in Algorithm 3, again with only the lines instantiating the update rule for Q numbered.

Similar to Algorithm 2, SVI-SSP divides samples of each (s, a) into consecutive stages of (roughly)
exponentially increasing length, and only update Q(s, a) at the end of a stage (Line 2). However,
the number of samples ej in stage j is defined slightly differently through ej = bẽjc, ẽ1 = 1, and
ẽj+1 = ẽj + 1

H ej for some parameter H . In the long run, this is almost the same as the scheme used
in Algorithm 2, but importantly, it forces more frequent updates at the beginning — for example, one
can verify that e1 = · · · = eH = 1, meaning that Q(s, a) is updated every time (s, a) is visited for
the first H visits. This slight difference turns out to be important to ensure that the lower-order term
in the regret has no poly(H) dependence, as shown in Lemma 16 and further discussed in Remark 3.
More intuition on the design of this update scheme is provided in Section E.1.

The update rule for Q is very simple (Line 5). It is again based on the equality Q?(s, a) = c(s, a) +
Ps,aV

?, but this time uses P̄s,aV − b as an approximation for Ps,aV ?, where P̄s,a is the empirical
transition directly calculated from two counters n(s, a) and n(s, a, s′) (number of visits to (s, a) and
(s, a, s′) respectively), V is such that V (s) = minaQ(s, a), and b is a special bonus term (Line 4)
adopted from [Tarbouriech et al., 2021b, Zhang et al., 2020a] which ensures that Q is an optimistic
estimate of Q? and also helps remove poly(H) dependence in the regret.

SVI-SSP exhibits a unique structure compared to existing algorithms. In each update, it modifies
only one entry of Q (similarly to model-free algorithms), while other model-based algorithms such
as [Tarbouriech et al., 2021b] perform value iteration for every entry ofQ repeatedly until convergence
(concrete time complexity comparisons to follow). We emphasize that our implicit finite-horizon
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analysis is indeed the key to enable us to derive a regret guarantee for such a sparse value iteration
algorithm. Specifically, in Appendix E, we show that SVI-SSP satisfies the two required properties.
Theorem 4. If B ≥ B? and H = d 4B

cmin
ln( 2

β ) + 1e2 for β = cmin

2B2SAK , then Algorithm 3 satisfies

Property 1 and Property 2 with d = 1 and ξH = Õ(
√
B?SACK + BS2A + βCK), where the

dependence on H in ξH is hidden in logarithmic terms.

Proof Sketch. The proof of Property 1 largely follows the analysis of [Tarbouriech et al., 2021b,
Lemma 15]. To prove Property 2, we first show

∑T
t=1(Q̊(st, at)−Qt(st, at))+ . ξH+

∑T
t=1 Pt(V̊−

Vlt)+, where lt is the last time step Q(st, at) is updated. Then, the remaining main steps are shown
below with all details deferred to the corresponding key lemmas:

T∑
t=1

Pt(V̊ − Vlt)+ .

(
1 +

1

H

) T∑
t=1

Pt(V̊ − Vt)+ (Lemma 16)

.

(
1 +

1

H

) T∑
t=1

(V̊ (st)− Vt(st))+ +

(
1 +

1

H

) T∑
t=1

(Pt − Is′t)(V̊ − Vt)+

.

(
1 +

1

H

) T∑
t=1

(V̊ (st)− Vt(st))+ + ξH , (Lemma 22 and Lemma 21)

which completes the proof.

Again, as a direct corollary of Theorem 1, we arrive at the following regret guarantee.
Theorem 5. With the same parameters as in Theorem 4, with probability at least 1−12δ, Algorithm 3
ensures RK = Õ(B?

√
SAK +BS2A).

Setting B = B?, our bound becomes Õ(B?
√
SAK + B?S

2A), which is minimax optimal even
when cmin is unknown or cmin = 0 (this is because the dependence on 1/cmin is only logarithmic,
and one can clip all observed costs to ε if they are below ε = 1/K in this case without introducing
poly(K) overhead to the regret). When B? is unknown, we can use the same doubling trick from Tar-
bouriech et al. [2021b] to obtain almost the same bound (with only the lower-order term increased to
Õ
(
B3
?S

3A
)
); see Section E.5 for details.4

Comparison with EB-SSP [Tarbouriech et al., 2021b] Our regret bounds match exactly the state-
of-the-art by Tarbouriech et al. [2021b]. Thanks to the sparse update, however, SVI-SSP has a much
better time complexity. Specifically, for SVI-SSP, each (s, a) is updated at most Õ(H) = Õ(B?/cmin)

times (Lemma 16), and each update takes O(S) time, leading to total complexity Õ(B?S
2A/cmin).

On the other hand, for EB-SSP, although each (s, a) only causes Õ(1) updates, each update runs
value iteration on all entries of Q until convergence, which takes Õ(B

2
?S

2
/c2min) iterations (see their

Appendix C) and leads to total complexity Õ(B
2
?S

5A/c2min), much larger than ours.

Comparison with ULCVI [Cohen et al., 2021] Another recent work by Cohen et al. [2021] using
explicit finite-horizon approximation also achieves minimax regret but requires the knowledge of
some hitting time of the optimal policy. Without this knowledge, their bound has a large 1/c4min
dependence in the lower-order term just as our model-free algorithm. Our results in this section
show that implicit finite-horizon approximation has advantage over explicit approximation apart from
reducing space complexity: the former does not necessarily introduce poly(H) dependence even for
the lower-order term, while the latter does under the current analysis.
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Table 1: Summary of existing regret minimization algorithms for SSP with their best achievable
bounds (assuming necessary prior knowledge). Here, D,S,A are the diameter, number of states,
and number of actions of the MDP, T? is the maximum expected hitting time of the optimal policy
over all states, B? is the maximum expected costs of the optimal policy over all states, and K is the
number of episodes.

Algorithm Regret Bound

UC-SSP [Tarbouriech et al., 2020a] Õ
(
DS
√
DAK/cmin + S2AD2

)
Bernstein-SSP [Cohen et al., 2020] Õ

(
B?S
√
AK +

√
B3
?S

2A2/cmin

)
ULCVI [Cohen et al., 2021] Õ

(
B?
√
SAK + T 4

?S
2A
)

EB-SSP [Tarbouriech et al., 2021b] Õ
(
B?
√
SAK +B?S

2A
)

LCB-ADVANTAGE-SSP (Ours) Õ
(
B?
√
SAK +B5

?S
2A/c4min

)
SVI-SSP (Ours) Õ

(
B?
√
SAK +B?S

2A
)

A A Summary of Existing Bounds

A summary of existing regret minimization algorithms for SSP and their regret bounds is shown in
Table 1. Note that although LCB-ADVANTAGE-SSP has a larger lower order term depending on
Õ(1/c4min) among the minimax optimal algorithms, it actually nearly matches that of ULCVI when
T? is unknown, in which case their algorithm is run with T? replaced by its upper bound B?/cmin.

Time Complexity When cmin = 0, the cost perturbation trick is applied (see paragraph “Assump-
tion on cmin” in Section 2 for more details) and 1/cmin becomes a K-dependent quantity. This leads
to a worse K-dependent time complexity for all algorithms in Table 1 except ULCVI. In fact, this
seems to be a shared limitation of all algorithms that learns a stationary policy. On the other hand,
when T? is known, ULCVI (which learns a non-stationary policy) gives a better time complexity with
no polynomial dependency on K. How to learn a stationary policy while avoiding K-dependent time
complexity when cmin = 0 is an interesting future direction.

B Preliminaries for the Appendix

Extra Notations in Appendix Denote by ∆X the simplex over set X . For conciseness, throughout
the appendix, we use the following notational shorthands:

• Is(s′) = I{s = s′};
• Pt = Pst,at ;
• for a function ft : S ×A → R, we often abuse the notation and use ft to denote ft(st, at) when

there is no confusion from the context; in fact, in Lemma 9 and Lemma 18, we also use ft to
denote ft(s, a) for a particular (s, a) pair;
• VH = {(Q?, V ?)} ∪ {(Q?h, V ?h−1)}Hh=1.

Note that for any (Q̊, V̊ ) ∈ VH , we have Q̊(s, a) = c(s, a) + Ps,aV̊ , V̊ (s) ∈ [0, B?], V̊ (g) = 0

and V̊ (s) ≤ mina Q̊(s, a). Throughout the paper, Õ (·) also hides dependence on ln(1/δ) and lnT
where δ ∈ (0, e−1] is some failure probability, and T is a random variable but can be bounded by
CK
cmin

under strictly positive costs. We include a summary of most notations in Table 2.

Truncating the Interaction An important question in SSP is whether the algorithm halts in a finite
number of steps. To implicitly show this, we do the following trick throughout the analysis. Fix any
positive integer T ′ and explicitly stop the algorithm after T ′ steps. Our analysis will show that in

5In Table 2, “the current stage” means the current stage of (s, a) at time step t, and “the last stage” means
the last stage of (s, a) before time step t.
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Table 2: Explanation of the notations

β precision of the implicit finite horizon approximation;

Qt, Vt accumulators Q,V at the beginning of time step t;

Q?, V ? optimal value functions of the SSP instance;

Q?h, V
?
h

optimal value functions of taking h steps in the SSP instance and then
teleporting to the goal state; see Eq. (1)

CK total costs the agent suffers in K episodes;

V ref
t reference value function at the beginning of time step t;

V REF reference value function at the end of learning; see Lemma 8

CREF costs in regret of using reference value function; see Lemma 8

CREF, 2 another costs in the regret of using reference value function; see Lemma 8

Bt an upper bound of estimated value function Vt;

ĉt(s, a) cost estimator used in the last update of Qt(s, a);

nt(s, a) the number of visits to (s, a) before the current stage;5

mt(s, a) the number of visits to (s, a) in the last stage;

bt(s, a), b′t(s, a) bonus terms used in the last update of Qt(s, a);

lt,i(s, a)
the i-th time step the agent visits (s, a) among those nt(s, a) steps before
the current stage;

ľt,i(s, a)
the i-th time step the agent visits (s, a) among those mt(s, a) steps within
the last stage;

lt(s, a) the last time step the agent visits (s, a) before the current stage;

ιt(s, a) logarithmic terms used in the last update of Qt(s, a);

εt indicator of whether time step t is in the first stage of (st, at);

νt
empirical variance of the advantage (i.e., the difference between the estimate
value function and the reference value function) at time step t; see Eq. (4)

νref
t empirical variance of the reference value function at time step t; see Eq. (5)

P̄t,s,a empirical transition at (s, a) at the beginning of the current stage of (s, a);

ej , Ej the length of the j-th stage and the total length of the first j stages;

this case the regret RK is bounded by something independent of T ′, which then allows us to take T ′
to infinity and recover the original setting while maintaining the same bound. This also implicitly
shows that the algorithm must halt in a finite number of steps.

C Omitted Details for Section 3

In this section, we provide omitted details and proofs for Section 3. We first introduce the class of
finite horizon MDPs used in the approximation: given an SSP model M = (S,A, sinit, g, c, P ), we
consider the costs of interacting with M for at most H steps and then directly teleporting to the goal
state. Specifically, we define a finite-horizon SSP M̃ = (S̃,A, s̃init, g, c̃, P̃ ) as follows:

• S̃ = S × [H], s̃init = (sinit, 1) and the goal state g remains the same;

• transition from (s, h) to (s′, h′) is only possible when h′ = h + 1, and the transition
follows the original MDP: P̃ ((s′, h + 1)|(s, h), a) = P (s′|s, a) for h ∈ [H − 1] and
P̃ (g|(s,H), a) = 1;

• mean cost function also follows the original MDP: c̃k((s, h), a) = ck(s, a).
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We also defineQ?0(s, a) = V ?0 (s) = 0, Q?h(s, a) = Q̃?((s,H−h+1), a), V ?h (s) = Ṽ ?(s,H−h+1)

for h ∈ [H], where Q̃? and Ṽ ? are optimal state-action and state value functions in M̃ . Then, it is
straightforward to verify that Q?h and V ?h satisfy Eq. (1). Since M is equivalent to M̃ with H =∞,
intuitively we should have Q?(s, a) ≈ Q?H(s, a) for a sufficiently large H . The formal statement,
shown in Lemma 1, is proven below:

Proof of Lemma 1. By definition Q?h(s, a) ≤ Q?(s, a) holds for all (s, a) ∈ S × A and h ∈ [H],
since M̃ is a truncated version of M . Therefore, V ?h (s) ≤ B? holds, and the expected hitting time
(the number of steps needed to reach the goal) of the optimal policy in M̃ starting from any (s, h)
is upper bounded by B?

cmin
. By [Rosenberg and Mansour, 2020, Lemma 6], when h ≥ 4B?

cmin
ln 2

β ,

the probability of not reaching g in h steps is at most β. Denote by π̃?L the optimal policy of M̃ ,
and π?L a non-stationary policy in M which follows π̃?L for the first H steps, and then follows π?

afterwards. We have for any s ∈ S, V ?(s)−V ?H−1(s) ≤ V π?L(s)−V π̃
?
L

H−1(s) ≤ B?β, where we apply

H ≥ 4B?
cmin

ln 2
β + 1, V ?(s) ≤ V π̃

?
L(s) and V ?H−1(s) = V

π̃?L
H−1(s). Finally, Q?(s, a) − Q?H(s, a) =

Ps,a(V ? − V ?H−1) ≤ B?β.

Lemma 4. With probability at least 1− 2δ,
∑T
t=1 ct − c(st, at) = Õ

(√
CK
)
.

Proof. By Eq. (24) of Lemma 35, ‖c‖∞ ∈ [0, 1], and Lemma 36 with α = 1, with probability at
least 1− 2δ:

T∑
t=1

ct − c(st, at) = Õ


√√√√ T∑

t=1

E[c2t ]

 = Õ


√√√√ T∑

t=1

c(st, at)

 = Õ
(√

CK

)
.

The next lemma is used in the proof of Theorem 1, which shows that the sum of the variances
of the optimal value function is of order Õ(B?CK). It is also useful in bounding the overhead of
Bernstein-style confidence interval (see Lemma 11 and [Cohen et al., 2020, Lemma 4.7] for example).

Lemma 5. With probability at least 1− 2δ,
∑T
t=1 V(Pst,at , V

?) = Õ
(
B2
? +B?CK

)
.

Proof. Note that:

T∑
t=1

V(Pst,at , V
?) =

T∑
t=1

Pst,at(V
?)2 − (Pst,atV

?)2

=

K∑
k=1

Ik∑
i=1

Pski ,aki (V ?)2 − V ?(ski )2 +

K∑
k=1

Ik∑
i=1

V ?(ski )2 − (Pski ,aki V
?)2

≤
K∑
k=1

Ik∑
i=1

Pski ,aki (V ?)2 − V ?(ski+1)2 +

K∑
k=1

Ik∑
i=1

Q?(ski , a
k
i )2 − (Pski ,aki V

?)2.

(V ?(skIk+1) = 0 and V ?(ski ) ≤ Q?(ski , aki ))

For the first term, by Eq. (24) of Lemma 35 with V ?(s) ≤ B? and Lemma 30 withX = V ?(S′), S′ ∼
Pst,at , we have with probability at least 1− δ,

K∑
k=1

Ik∑
i=1

Pski ,aki (V ?)2 − V ?(ski+1)2 = Õ


√√√√ T∑

t=1

V(Pst,at , (V
?)2) +B2

?


= Õ

B?
√√√√ T∑

t=1

V(Pst,at , V
?) +B2

?

 .
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For the second term, note that:

K∑
k=1

Ik∑
i=1

Q?(ski , a
k
i )2 − (Pski ,aki V

?)2 =

K∑
k=1

Ik∑
i=1

(
Q?(ski , a

k
i )− Pski ,aki V

?
)(

Q?(ski , a
k
i ) + Pski ,aki V

?
)

≤
K∑
k=1

Ik∑
i=1

3B?c(s
k
i , a

k
i ). (Q?(s, a) ≤ 2B? and V ?(s) ≤ B? for any (s, a) ∈ S ×A)

Therefore,
∑T
t=1 V(Pst,at , V

?) = Õ
(
B?

√∑T
t=1 V(Pst,at , V

?) +B2
? +B?

∑K
k=1

∑Ik
i=1 c(s

k
i , a

k
i )

)
.

By Lemma 25 with x =
∑T
t=1 V(Pst,at , V

?) and Lemma 36, we have with probability at least 1− δ,

T∑
t=1

V(Pst,at , V
?) = Õ

(
B2
? +B?

K∑
k=1

Ik∑
i=1

c(ski , a
k
i )

)
= Õ

(
B2
? +B?CK

)
.

D Omitted Details for Section 4

Before we present the proof of Theorem 3 (Section D.3), we first quantify the sample complexity of
the reference value function (Section D.1) and prove the two required properties (Section D.2).

Extra Notations Denote by Qt(s, a), Vt(s), V ref
t (s), Bt, Nt(s, a) the value of Q(s, a), V (s),

V ref(s), B, N(s, a) at the beginning of time step t. Define Nt(s) =
∑
aNt(s, a). Denote by

nt(s, a),mt(s, a), bt(s, a), b′t(s, a), ιt(s, a), ĉt(s, a) the value of n,m, b, b′, ι, ĉ used in computing
Qt(s, a). Note that, these are not necessarily their values at time step t. For example, nt(s, a) is the
number of visits to (s, a) before the current stage (not before time t); mt(s, a) the number of visits to
(s, a) in the last stage; bt(s, a) and b′t(s, a) are the bonuses used in the last update of Qt(s, a); and
ĉt(s, a) is the cost estimator used in the last update of Qt(s, a) (bt(s, a), b′t(s, a) and ĉt(s, a) are 0
when nt(s, a) = 0). Denote by lt,i(s, a) the i-th time step the agent visits (s, a) among those nt(s, a)

steps before the current stage, and by ľt,i(s, a) the i-th time step the agent visits (s, a) among those
mt(s, a) steps within the last stage. With these notations, we have by the update rule of the algorithm:

Qt(s, a) = max

{
Qt−1(s, a), ĉt(s, a) +

1

mt

mt∑
i=1

Vľt,i(s
′
ľt,i

)− b′t,

ĉt(s, a) +
1

nt

nt∑
i=1

V ref
lt,i(s

′
lt,i) +

1

mt

mt∑
i=1

(Vľt,i(s
′
ľt,i

)− V ref
ľt,i

(s′
ľt,i

))− bt

}
,

(3)

where mt represents mt(s, a), ľt,i represents ľt,i(s, a), and similarly for nt, lt,i, bt and b′t.

We also define two empirical variances at time step t as:

νt =
1

mt

mt∑
i=1

(Vľt,i(s
′
ľt,i

)− V ref
ľt,i

(s′
ľt,i

))2 −

(
1

mt

mt∑
i=1

Vľt,i(s
′
ľt,i

)− V ref
ľt,i

(s′
ľt,i

)

)2

(4)

and

νref
t =

1

nt

nt∑
i=1

V ref
lt,i(s

′
lt,i)

2 −

(
1

nt

nt∑
i=1

V ref
lt,i(s

′
lt,i)

)2

. (5)

Here, νt and νref
t should be treated as a function of state-action pair (s, a), so that mt, nt, ľt,i, and

lt,i in the formulas all represent mt(s, a), nt(s, a), ľt,i(s, a), and lt,i(s, a). Except for Lemma 9, this
input (s, a) is simply (st, at).

Further define εt = I{nt > 0} = I{mt > 0}, and 0/0 to be 0 so that formula in the form
1
nt

∑nt
i=1Xlt,i is treated as 0 if nt = 0 (similarly for mt).
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D.1 Sample Complexity for Reference Value Function

In this section, we assume H = d 4B?
cmin

ln( 2
β ) + 1e2 for some β > 0 (the form used in Theorem 2). We

show that to obtain a reference value with precision ρ ≥ 2B?β at state s (that is, |V ref(s)−V ?(s)| ≤
ρ), Õ

(
B2
?H

3SA
ρ2

)
number of visits to state s is sufficient (Corollary 6). Moreover, the total costs

appeared in regret for a reference value function with maximum precision ρ is Õ
(
B2
?H

3S2A
ρ

)
(Lemma 8). Note that if we only update the reference value function once as in Zhang et al. [2020b],
instead of applying our “smoother” update, the total costs become Õ

(
B2
?H

3S2A
ρ2

)
.

Lemma 6. With probability at least 1 − 8δ, Algorithm 2 ensures for any non-negative weights
{wt}Tt=1,
T∑
t=1

wt(Q
?(st, at)−Qt(st, at)) ≤ B? ‖w‖1 β + Õ

(
H2SAB? ‖w‖∞ +B?

√
H3SA ‖w‖∞ ‖w‖1

)
.

Proof. Define w(0)
t = wt and w(h+1)

t+1 =
∑T
t′=1

∑mt′
i=1

w
(h)

t′
mt′

I{t = ľt′,i}. We first argue the following

properties related to w(h)
t and vector w(h) = (w

(h)
1 , . . . , w

(h)
T ). Denote by jt the stage to which time

step t belongs. When t = ľt′,i, we have mt′ = ejt . Therefore,
T∑
t′=1

mt′∑
i=1

1

mt′
I{t = ľt′,i} ≤

ejt+1

ejt
≤ 1 +

1

H
,

and thus,
∥∥w(h)

∥∥
∞ ≤ (1 + 1

H )
∥∥w(h−1)

∥∥
∞ ≤ · · · ≤ (1 + 1

H )h ‖w‖∞. Moreover,∥∥∥w(h+1)
∥∥∥

1
=

T∑
t=1

T∑
t′=1

mt′∑
i=1

w
(h)
t′

mt′
I{t = ľt′,i} =

T∑
t′=1

w
(h)
t′

mt′∑
i=1

T∑
t=1

I{t = ľt′,i}
mt′

≤
∥∥∥w(h)

∥∥∥
1
,

and thus
∥∥w(h)

∥∥
1
≤ ‖w‖1 for any h. Also note that for any {Xt}t such that Xt ≥ 0:

T∑
t=1

w
(h)
t

mt

mt∑
i=1

Xľt,i
=

T∑
t′=1

T∑
t=1

w
(h)
t

mt

mt∑
i=1

Xt′I{t′ = ľt,i} =

T∑
t′=1

w
(h+1)
t′+1 Xt′ . (6)

Next, for a fixed (s, a), by Lemma 34, with probability at least 1− δ
SA , when nt(s, a) > 0:

|c(s, a)− ĉt(s, a)| ≤ 2

√
2ĉt(s, a)

nt(s, a)
ln

2SAnt(s, a)

δ
+

19 ln 2SAnt(s,a)
δ

nt(s, a)
≤

√
ĉt(s, a)ιt
nt(s, a)

+
ιt

nt(s, a)
.

(7)
Taking a union bound, we have Eq. (7) holds for all (s, a) when nt(s, a) > 0 with probability at least
1− δ. Then by definition of b′t, we have

c(st, at)− ĉt(st, at) ≤ I{mt = 0}+ b′t. (8)

Now we are ready to prove the lemma. First, we condition on Lemma 9, which happens with
probability at least 1− 7δ. Then for any h ∈ {0, . . . ,H − 1}, Q̊ = QH−h, V̊ = QH−h−1 we have:

T∑
t=1

w
(h)
t (Q̊(st, at)−Qt(st, at))+

≤
T∑
t=1

w
(h)
t (c(st, at)− ĉt(st, at))+ + w

(h)
t

(
PtV̊ −

1

mt

mt∑
i=1

Vľt,i(s
′
ľt,i

)

)
+

+ w
(h)
t b′t

(by Eq. (3) and Q̊(s, a) = c(s, a) + Ps,aV̊ )

≤
T∑
t=1

2B?w
(h)
t I{mt = 0}+

T∑
t=1

w
(h)
t

(
1

mt

mt∑
i=1

Pľt,i V̊ −
1

mt

mt∑
i=1

Vľt,i(s
′
ľt,i

)

)
+

+ 2w
(h)
t b′t.

(Eq. (8), Pt = Pľt,i and PtV̊ ≤ B?I{mt = 0}+ 1
mt

∑mt
i=1 Pľt,i V̊ )
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Since e1 = H , we have
∑T
t=1 w

(h)
t I{mt = 0} ≤ SAH

∥∥w(h)
∥∥
∞. Moreover, by Eq. (24) of

Lemma 35 with Xt = V̊ (s′t), we have with probability at least 1 − δ
H : 1

mt

∑mt
i=1 Pľt,i V̊ ≤

1
mt

∑mt
i=1 V̊ (s′

ľt,i
) + Õ

(
B?εt√
mt

)
. Plugging these back to the previous inequality and using the defini-

tion of b′t gives:

T∑
t=1

w
(h)
t (Q̊(st, at)−Qt(st, at))+

≤ 2HSAB?

∥∥∥w(h)
∥∥∥
∞

+

T∑
t=1

w
(h)
t

mt

mt∑
i=1

(
V̊ (s′

ľt,i
)− Vľt,i(s

′
ľt,i

)
)

+
+ Õ

(
B?w

(h)
t εt√
mt

+
w

(h)
t εt
nt

)

≤ 3HSAB?

∥∥∥w(h)
∥∥∥
∞

+ Õ
(
B?

√
HSA

∥∥w(h)
∥∥
∞ ‖w‖1

)
+

T∑
t=1

w
(h+1)
t+1

(
V̊ (s′t)− Vt(s′t)

)
+

(Eq. (6) and Lemma 14)

≤ Õ
(
HSAB?

∥∥∥w(h)
∥∥∥
∞

+B?

√
HSA

∥∥w(h)
∥∥
∞ ‖w‖1

)
+

T∑
t=1

w
(h+1)
t (Q̊(st, at)−Qt(st, at))+,

where in the last inequality we apply:

T∑
t=1

w
(h+1)
t+1

(
V̊ (s′t)− Vt(s′t)

)
+
≤

T∑
t=1

w
(h+1)
t+1 (V̊ (s′t)− Vt+1(s′t))+ + Õ

(∥∥∥w(h)
∥∥∥
∞
SB?

)
(apply Lemma 28 on

∑T
t=1 Vt+1(s′t)− Vt(s′t))

≤
T∑
t=1

w
(h+1)
t (V̊ (st)− Vt(st))+ + Õ

(∥∥∥w(h)
∥∥∥
∞
SB?

)
((V̊ (s′t)− Vt+1(s′t))+ ≤ (V̊ (st+1)− Vt+1(st+1))+ and w(h+1)

T+1 = 0)

≤
T∑
t=1

w
(h+1)
t (Q̊(st, at)−Qt(st, at))+ + Õ

(∥∥∥w(h)
∥∥∥
∞
SB?

)
.

(V̊ (st) ≤ Q̊(st, at) and Vt(st) = Qt(st, at))

By a union bound, the inequality above holds for Q̊ = QH−h, V̊ = QH−h−1 for all h ∈ {0, . . . ,H−
1} with probability at least 1− δ. Applying the inequality above recursively starting from h = 0, and
by Q?0(s, a)−Qt(s, a) ≤ 0, (1 + 1

H )H ≤ 3:

T∑
t=1

wt(Q
?
H(st, at)−Qt(st, at))+ = Õ

(
H2SAB? ‖w‖∞ +B?

√
H3SA ‖w‖∞ ‖w‖1

)
.

Therefore, by Lemma 1,

T∑
t=1

wt(Q
?(st, at)−Qt(st, at)) =

T∑
t=1

wt(Q
?(st, at)−Q?H(st, at) +Q?H(st, at)−Qt(st, at))

≤ B? ‖w‖1 β + Õ
(
H2SAB? ‖w‖∞ +B?

√
H3SA ‖w‖∞ ‖w‖1

)
.

Now by Lemma 6 with wt = I{V ?(st) − Vt(st) ≥ ρ} for some threshold ρ, we can bound the
sample complexity of obtaining a value function with precision ρ (Corollary 6), which is used to
determine the value of θ? (Lemma 8). However, one caveat here is that the bound in Lemma 6 has
logarithmic dependency on T from ιt, which should not appear in the definition of θ? since T is a
random variable. To deal with this, we obtain a loose bound on T in the following lemma.

Lemma 7. With probability at least 1− 13δ, T = Õ(B?K/cmin +B2
?H

3SA/c2min).
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Proof. By Lemma 6 with wt = 1, we have with probability at least 1− 8δ:
T∑
t=1

Q?(st, at)−Qt(st, at) = B?Tβ + Õ
(
H2SAB? +B?

√
H3SAT

)
.

Now by Eq. (2), Lemma 4, Lemma 35, and Lemma 5, with probability at least 1− 5δ,

RK ≤
T∑
t=1

(ct − c(st, at)) +

T∑
t=1

(V ?(s′t)− Pst,atV ?) +

T∑
t=1

(Q?(st, at)− V ?(st))

≤ Õ(
√
B?CK +B?) +

T∑
t=1

(Q?(st, at)−Qt(st, at)) (Vt = Qt(st, at) and Lemma 9)

= B?Tβ + Õ
(
H2SAB? +B?

√
H3SAT

)
. (CK ≤ T )

Further using cminT −KB? ≤ RK , B?β ≤ cmin

2 , and Lemma 25 proves the statement.

Corollary 6. With probability at least 1− 13δ, Algorithm 2 ensures for any ρ ≥ 2B?β:
T∑
t=1

I {V ?(st)− Vt(st) ≥ ρ} = Õ
(
B2
?H

3SA

ρ2

)
, Uρ − 1,

and for any s ∈ S, Nt(s) ≥ Uρ implies 0 ≤ V ?(s)− Vt(s) ≤ ρ.

Proof. We can assume ρ ≤ B? since
∑T
t=1 I{V ?(st) − Vt(st) ≥ ρ} = 0 when ρ > B?. By

Lemma 6 with wt = I{V ?(st) − Vt(st) ≥ ρ}, ρwt ≤ wt(V
?(st) − Vt(st)), ρ ≥ 2B?β, and

V ?(st)− Vt(st) ≤ Q?(st, at)−Qt(st, at), we have with probability at least 1− 8δ:

ρ ‖w‖1 ≤
T∑
t=1

wt(V
?(st)− Vt(st)) ≤

ρ

2
‖w‖1 + Õ

(
H2SAB? +B?

√
H3SA ‖w‖1

)
.

Therefore, by Lemma 25 and Lemma 7, ‖w‖1 = Õ
(
H2SAB?

ρ +
B2
?H

3SA
ρ2

)
, which has no logarithmic

dependency on T . We prove the second statement by contradiction: suppose Nt(s) ≥ Uρ and
V ?(s) − Vt(s) > ρ. Then since Vt is non-decreasing in t, Nt(s) ≤ ‖w‖1. Thus, Uρ ≤ Nt(s) ≤
‖w‖1 < Uρ, a contradiction.

Lemma 8. Define βi = B?
2i , Ñ0 = 0, Ñi = Uβi (defined in Corollary 6) for i ≥ 1 and q? = inf{i :

βi ≤ cmin}. Define V REF = V ref
T+1, θ

? = dÑq?e2, and Bref
t such that:

Bref
t (s) =

q?∑
i=1

βi−1I{dÑi−1e2 ≤ Nt(s) < dÑie2}.

Then with probability at least 1− 13δ, V REF(s)− V ref
t (s) ≤ Bref

t (s), and
T∑
t=1

V REF(st)− V ref
t (st) ≤

T∑
t=1

Bref
t (st) = Õ

(
B2
?H

3S2A

cmin

)
, CREF,

T∑
t=1

(
V REF(st)− V ref

t (st)
)2 ≤ T∑

t=1

Bref
t (st)

2 = Õ
(
B2
?H

3S2A
)
, CREF, 2.

Proof. We condition on Corollary 6, which happens with probability at least 1− 13δ. By Corollary 6
with ρ = βi for each i ∈ [q?], we have V REF(s) − V ref

t (s) ≤ Bref
t (s). Moreover, Bref

t (s)2 =∑q?

i=1 β
2
i−1I{dÑi−1e2 ≤ Nt(s) < dÑie2}. Thus,

T∑
t=1

Bref
t (st) ≤

∑
s

q?∑
i=1

βi−1dÑie2 = Õ

∑
s

q?∑
i=1

B2
?H

3SA

βi

 = Õ
(
B2
?H

3S2A

βq?

)
.

T∑
t=1

Bref
t (st)

2 ≤
∑
s

q?∑
i=1

β2
i−1dÑie2 = Õ

∑
s

q?∑
i=1

B2
?H

3SA

 = Õ
(
B2
?H

3S2A
)
.
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D.2 Proofs of Required Properties

In this section, we prove Property 1 and Property 2 of Algorithm 2.

Lemma 9. With probability at least 1− 7δ, Algorithm 2 ensures Qt(s, a) ≤ Qt+1(s, a) ≤ Q?(s, a)
for any (s, a) ∈ S ×A, t ≥ 1.

Proof. We fix a pair (s, a), and denote nt,mt, lt,i, ľt,i, bt, b
′
t, ιt as shorthands of the corresponding

functions evaluated at (s, a). The first inequality is by the update rule of Qt. Next, we prove
Qt(s, a) ≤ Q?(s, a) by induction on t. It is clearly true when t = 1. For the induction step, the
statement is clearly true when nt = mt = 0. When nt > 0, it suffices to consider two update rules,
that is, the last two terms in the max operator of Eq. (3). For the second update rule, note that,

ĉt(s, a) +
1

nt

nt∑
i=1

V ref
lt,i(s

′
lt,i) +

1

mt

mt∑
i=1

(
Vľt,i(s

′
ľt,i

)− V ref
ľt,i

(s′
ľt,i

)
)
− bt

= ĉt(s, a) +
1

nt

nt∑
i=1

Ps,aV
ref
lt,i +

1

mt

mt∑
i=1

Ps,a

(
Vľt,i − V

ref
ľt,i

)
+

1

nt

nt∑
i=1

(
Is′lt,i − Ps,a

)
V ref
lt,i︸ ︷︷ ︸

χ1

+
1

mt

mt∑
i=1

(
Is′
ľt,i

− Ps,a
)(

Vľt,i − V
ref
ľt,i

)
︸ ︷︷ ︸

χ2

−bt. (9)

Define C ′t = dln(B4
?nt)e

2 ≤ min{4 ln2(B4
?nt), B

8
?n

2
t} (in general, we can set C ′t = dln(B̃4nt)e2

for some B̃ ≥ B?). For χ1, by Eq. (24) of Lemma 35 with b = B2
? and C ≤ C ′t, we have with

probability at least 1− δ
SA :

|χ1| =

∣∣∣∣∣ 1

nt

nt∑
i=1

(
Is′lt,i − Ps,a

)
V ref
lt,i

∣∣∣∣∣ ≤ 4 ln3

(
4SAB8

?n
5
t

δ

)√8
∑nt
i=1 V(Ps,a, V

ref
lt,i

)

n2
t

+
5Bt
nt

 ,

Note that (recall that νref
t represents νref

t (s, a))

1

nt

nt∑
i=1

V(Ps,a, V
ref
lt,i)− ν

ref
t = χ3 + χ4 + χ5, (10)

where

χ3 =
1

nt

nt∑
i=1

(
Ps,a(V ref

lt,i)
2 − V ref

lt,i(s
′
lt,i)

2
)
, χ4 =

(
1

nt

nt∑
i=1

V ref
lt,i(s

′
lt,i)

)2

−

(
1

nt

nt∑
i=1

Ps,aV
ref
lt,i

)2

,

χ5 =

(
1

nt

nt∑
i=1

Ps,aV
ref
lt,i

)2

− 1

nt

nt∑
i=1

(Ps,aV
ref
lt,i)

2.
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By Eq. (24) of Lemma 35 with b = B2
? and C ≤ C ′t, and Lemma 30 with

∥∥∥V ref
lt,i

∥∥∥
∞
≤ Bt, with

probability at least 1− 2δ
SA ,

|χ3| ≤
4 ln3(4SAB8

?n
5
t/δ)

nt

√√√√8

nt∑
i=1

V(Ps,a, (V
ref
lt,i

)2) + 5B2
t


≤ 4 ln3(4SAB8

?n
5
t/δ)

nt

2Bt

√√√√8

nt∑
i=1

V(Ps,a, V
ref
lt,i

) + 5B2
t

 . (11)

|χ4| ≤

∣∣∣∣∣ 1

nt

nt∑
i=1

V ref
lt,i(s

′
lt,i) +

1

nt

nt∑
i=1

Ps,aV
ref
lt,i

∣∣∣∣∣
∣∣∣∣∣ 1

nt

nt∑
i=1

V ref
lt,i(s

′
lt,i)−

1

nt

nt∑
i=1

Ps,aV
ref
lt,i

∣∣∣∣∣
≤ 2Bt ·

4 ln3(4SAB8
?n

5
t/δ)

nt

√√√√8

nt∑
i=1

V(Ps,a, V
ref
lt,i

) + 5Bt

 . (12)

Moreover, χ5 ≤ 0 by Cauchy-Schwarz inequality. Therefore,

1

nt

nt∑
i=1

V(Ps,a, V
ref
lt,i)− ν

ref
t ≤

4Bt ln3(4SAB8
?n

5
t/δ)

nt

4

√√√√8

nt∑
i=1

V(Ps,a, V
ref
lt,i

) + 15Bt

 .

Applying Lemma 25 with x =
∑nt
i=1 V(Ps,a, V

ref
lt,i

), we obtain:

1

nt

nt∑
i=1

V(Ps,a, V
ref
lt,i) ≤ 2νref

t +
4216B2

t ln6 4SAB8
?n

5
t

δ

nt
.

Thus,
∣∣∣ 1
nt

∑nt
i=1

(
Is′lt,i − Ps,a

)
V ref
lt,i

∣∣∣ ≤ √νref
t

nt
ιt + 3Btιt

nt
. By similar arguments, |χ2| ≤

√
νt
mt
ιt +

3Btιt
mt

with probability at least 1− 3δ
SA . Finally, by Eq. (7) and Bt ≥ 1, we have ĉt(s, a)− c(s, a) ≤√

ĉt(s,a)ι
nt

+ Btι
nt

. Therefore,

|ĉt(s, a)− c(s, a)|+ |χ1|+ |χ2| ≤ bt. (13)

Plugging Eq. (13) back to Eq. (9), and by the non-decreasing property of V ref
t and Vľt,i(s) ≤ V

?(s)

for any s ∈ S+:

ĉt(s, a) +
1

nt

nt∑
i=1

V ref
lt,i(s

′
lt,i) +

1

mt

mt∑
i=1

(
Vľt,i(s

′
ľt,i

)− V ref
ľt,i

(s′
ľt,i

)
)
− bt

≤ c(s, a) +
1

nt

nt∑
i=1

Ps,aV
ref
lt,i +

1

mt

mt∑
i=1

Ps,a

(
Vľt,i − V

ref
ľt,i

)
≤ c(s, a) + Ps,aV

? = Q?(s, a).

For the first update rule, by Eq. (24) of Lemma 35 with b = K and C ≤ C ′t, with probability at least

1− δ
SA , 1

mt

∑mt
i=1 Vľt,i(s

′
ľt,i

)− Pľt,iVľt,i ≤ 2
√

B2
t ιt
mt

. Therefore, by Eq. (7):

ĉt(s, a) +
1

mt

mt∑
i=1

Vľt,i(s
′
ľt,i

)− b′t ≤ c(s, a) +
1

mt

mt∑
i=1

Pľt,iVľt,i ≤ c(s, a) + Ps,aV
? = Q?(s, a).

Combining two cases, we have Qt(s, a) ≤ Q?(s, a) for the fixed (s, a). By a union bound over
(s, a) ∈ S ×A, we have Qt(s, a) ≤ Q?(s, a) for any (s, a) ∈ S ×A, t ≥ 1.

Remark 1. Note that the statement of Lemma 9 still holds if we use “compute ι ←
256 ln6(4SAB̃8n5/δ)” in Line 5 of Algorithm 2 for some B̃ ≥ B?. This is useful in deriving
the parameter-free version of Algorithm 2 in Section D.5; see Line 1 of Algorithm 4.
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Proof of Theorem 2. Property 1 is satisfied by Lemma 9. For Property 2, we conditioned on Lemma 9,
Lemma 8, Lemma 10, and Lemma 11, which holds with probability at least 1− 50δ. Then, for any
(Q̊, V̊ ) ∈ VH :

T∑
t=1

(Q̊(st, at)−Qt(st, at))+

≤
T∑
t=1

(
c(st, at)− ĉt(st, at) + PtV̊ −

1

nt

nt∑
i=1

V ref
lt,i(s

′
lt,i)−

1

mt

mt∑
i=1

(
Vľt,i(s

′
ľt,i

)− V ref
ľt,i

(s′
ľt,i

)
)

+ bt

)
+

(by Eq. (3) and Q̊(s, a) = c(s, a) + Ps,aV̊ )

≤
T∑
t=1

2B?I{mt = 0}+

T∑
t=1

(
1

mt

mt∑
i=1

Pľt,i V̊ −
1

nt

nt∑
i=1

Plt,iV
ref
lt,i −

1

mt

mt∑
i=1

Pľt,i

(
Vľt,i − V

ref
ľt,i

))
+

+ 2bt

(PtV̊ ≤ B?I{mt = 0}+ 1
mt

∑mt
i=1 Pľt,i V̊ and Eq. (13))

≤ 2B?HSA+

T∑
t=1

1

nt

nt∑
i=1

Plt,i

(
V REF − V ref

lt,i

)
+

1

mt

mt∑
i=1

Pľt,i(V̊ − Vľt,i)+ + 2bt.

(
∑T
t=1 I{mt = 0} ≤ SAH , Pt = Plt,i = Pľt,i , and V ref

ľt,i
(s) ≤ V REF(s) for any s ∈ S (Lemma 8))

By Lemma 12 and Lemma 10,

T∑
t=1

1

nt

nt∑
i=1

Plt,i

(
V REF − V ref

lt,i

)
= Õ

(
T∑
t=1

Pt(V
REF − V ref

t )

)
= Õ (CREF) .

Moreover, by Lemma 13, with probability at least 1− δ
H+1 ,

1

mt

mt∑
i=1

Pľt,i(V̊ − Vľt,i)+ ≤
(

1 +
1

H

)2 T∑
t=1

(V̊ (st)− Vt(st))+ + Õ (B?(H + S)) .

Plugging these back, and by (1 + 1
H )2 ≤ 1 + 3

H , Lemma 11 and Lemma 8, we get:

T∑
t=1

(Q̊(st, at)−Qt(st, at))+ ≤ Õ (B?HSA+ CREF) +

(
1 +

1

H

)2 T∑
t=1

(V̊ (st)− Vt(st))+ + 2

T∑
t=1

bt

≤
(

1 +
3

H

) T∑
t=1

(V̊ (st)− Vt(st))+ + Õ
(√

B?SACK +
√
SAHcminCK +

B2
?H

3S2A

cmin

)
.

Taking a union bound over (Q̊, V̊ ) ∈ VH and using H = Õ
(
B?
cmin

)
proves the claim.

D.3 Proof of Theorem 3

Proof. By Theorem 1 and Theorem 2, with probability at least 1− 60δ and β = cmin

2B2
?SAK

:

CK −KV ?(sinit) = RK ≤ Õ
(
βCK +

√
B?SACK +

B2
?H

3S2A

cmin

)
.

Then by V ?(sinit) ≤ B?, β ≤ 1
2 and Lemma 25, we have CK = Õ (B?K). Substituting this back

and by β ≤ cmin

B?K
, H = Õ(B?/cmin), we get RK = Õ

(
B?
√
SAK +

B5
?S

2A

c4min

)
.

D.4 Extra Lemmas for Section 4

In this section, we gives proofs of auxiliary lemmas used in Section 4. Lemma 10 quantifies the cost
of using reference value function. Lemma 11 quantifies the cost of using the variance-aware bonus
terms bt. Lemma 12, Lemma 13, and Lemma 14 deal with the bias induced by the sparse update
scheme.
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Lemma 10. With probability at least 1− 9δ,
∑T
t=1 Pt

(
V REF − V ref

t

)
≤
∑T
t=1 PtB

ref
t = Õ (CREF),

where CREF is defined in Lemma 8.

Proof. By Lemma 8, Lemma 36, Lemma 28 and Bref
t+1(s′t) ≤ Bref

t+1(st+1) in each step:

T∑
t=1

Pt
(
V REF − V ref

t

)
≤

T∑
t=1

PtB
ref
t ≤ 2

T∑
t=1

Bref
t (s′t) + Õ (B?)

= Õ

(
T∑
t=1

Bref
t (st) + SB?

)
= Õ (CREF) .

Lemma 11. With probability at least 1− 21δ,

T∑
t=1

bt = Õ
(√

B?SACK +B?H
2S

3
2A+

√
SAHcminCK

)
.

Proof. We condition on Lemma 8, which holds with probability at least 1 − 8δ. By Eq. (14) and
Eq. (15) of Lemma 14,

T∑
t=1

bt ≤
T∑
t=1

√
νref
t εt
nt

ιt +

√
νtεt
mt

ιt +B?
∑
t

(
4εt
nt

+
3εt
mt

)
ιt +

√
ĉtεtιt
nt

= Õ

 T∑
t=1

√
νref
t εt
nt

+

√
νtεt
mt

+B?HSA+

√
ĉtεt
nt

 .

Note that by Eq. (10), Eq. (11) and Eq. (12), when nt > 0, with probability at least 1− 2δ,

νref
t −

1

nt

nt∑
i=1

V(Plt,i , V
ref
lt,i) ≤ |χ3|+ |χ4| − χ5

≤ Õ

Bt
nt

√√√√ nt∑
i=1

V(Plt,i , V
ref
lt,i

) +
B2
t

nt

+
1

nt

nt∑
i=1

(Plt,iV
ref
lt,i)

2 −

(
1

nt

nt∑
i=1

Plt,iV
ref
lt,i

)2

(i)
= Õ

Bt
nt

√√√√ nt∑
i=1

V(Plt,i , V
ref
lt,i

) +
B2
t

nt
+
B?
nt

nt∑
i=1

Plt,iB
ref
lt,i


≤ 1

nt

nt∑
i=1

V(Plt,i , V
ref
lt,i) + Õ

(
B2
t

nt
+
B?
nt

nt∑
i=1

Plt,iB
ref
lt,i

)
, (AM-GM Inequality)

where in (i) we apply:

1

nt

nt∑
i=1

(Plt,iV
ref
lt,i)

2 −

(
1

nt

nt∑
i=1

Plt,iV
ref
lt,i

)2

≤ (PtV
REF)2 −

(
1

nt

nt∑
i=1

Plt,iV
ref
lt,i

)2

(V ref
lt,i

(s) ≤ V REF(s) for any s ∈ S)

≤ 2B?
nt

nt∑
i=1

Plt,i

(
V REF − V ref

lt,i

)
≤ 2B?

nt

nt∑
i=1

Plt,iB
ref
lt,i . (

∥∥V REF
∥∥
∞ ≤ B? and Lemma 8)
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Therefore, νref
t − 2

nt

∑nt
i=1 V(Plt,i , V

ref
lt,i

) = Õ
(
B2
t

nt
+ B?

nt

∑nt
i=1 Plt,iB

ref
lt,i

)
, and

νref
t − 2V(Pt, V

?) = νref
t −

2

nt

nt∑
i=1

V(Plt,i , V
ref
lt,i) +

2

nt

nt∑
i=1

(V(Plt,i , V
ref
lt,i)− V(Plt,i , V

?))

(Pt = Plt,i )

(i)
≤ Õ

(
B2
?

nt
+
B?
nt

nt∑
i=1

Plt,iB
ref
lt,i

)
+

4B?
nt

nt∑
i=1

Plt,i

(
V ? − V ref

lt,i

)
= Õ

(
B2
?

nt
+
B?
nt

nt∑
i=1

Plt,iB
ref
lt,i +B?βq?

)
, (V ?(s)− V ref

lt,i
(s) ≤ Bref

lt,i
(s) + βq? ,∀s)

where in (i) we apply the bound for νref
t − 2

nt

∑nt
i=1 V(Plt,i , V

ref
lt,i

), Bt ≤ B? and

V(Plt,i , V
ref
lt,i)− V(Plt,i , V

?) ≤ (Plt,iV
?)2 − (Plt,iV

ref
lt,i)

2 ≤ 2B?Plt,i(V
? − V ref

lt,i).

Plugging the inequality above back, we have with probability at least 1− 11δ,

T∑
t=1

√
νref
t

nt
= Õ

 T∑
t=1

√
V(Pt, V ?)

nt
+
B?
nt

+
1

nt

√√√√B?

nt∑
i=1

Plt,iB
ref
lt,i

+

√
B?βq?

nt


= Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +B?SA+

√√√√ T∑
t=1

B?
nt

√√√√ T∑
t=1

1

nt

nt∑
i=1

Plt,iB
ref
lt,i

+
√
B?βq?SAT


(Lemma 14 and Cauchy-Schwarz inequality)

= Õ
(√

B?SACK +B?SA+
√
B?SACREF +

√
B?βq?SAT

)
.

(Lemma 5, Lemma 14, Lemma 12 and Lemma 10)

Moreover,

T∑
t=1

√
νt
mt
≤

T∑
t=1

√∑mt
i=1(Vľt,i(s

′
ľt,i

)− V ref
ľt,i

(s′
ľt,i

))2

mt
≤

T∑
t=1

√∑mt
i=1(V ?(s′

ľt,i
)− V ref

ľt,i
(s′
ľt,i

))2

mt

= Õ

 T∑
t=1

√∑mt
i=1B

ref
ľt,i

(s′
ľt,i

)2

mt
+

√∑mt
i=1 β

2
q?

mt


(V ?(s′

ľt,i
)− V ref

ľt,i
(s′
ľt,i

) ≤ Bref
ľt,i

(s′
ľt,i

) + βq? , (a+ b)2 ≤ 2a2 + 2b2, and
√
x+ y ≤

√
x+
√
y)

= Õ


√√√√ T∑

t=1

1

mt

√√√√ T∑
t=1

1

mt

mt∑
i=1

Bref
ľt,i

(s′
ľt,i

)2 +

T∑
t=1

√
β2
q?

mt

 .

(Cauchy-Schwarz inequality)

Note that by Lemma 12, Lemma 28, Bref
t+1(s′t) ≤ Bref

t+1(st+1) and Lemma 8:

T∑
t=1

1

mt

mt∑
i=1

Bref
ľt,i

(s′
ľt,i

)2 ≤
(

1 +
1

H

) T∑
t=1

Bref
t (s′t)

2

= Õ

(
T∑
t=1

Bref
t+1(s′t) + SB2

?

)
= Õ

(
T∑
t=1

Bref
t (st) + SB2

?

)
= Õ (CREF, 2) .

Plugging this back to the last inequality, and by Lemma 14, we have:

T∑
t=1

√
νt
mt

= Õ
(√

SAHCREF, 2 +
√
SAHβ2

q?T
)
.

25



Finally, by Cauchy-Schwarz inequality, Eq. (15), Eq. (7) and Lemma 36:

T∑
t=1

√
ĉtεt
nt

= Õ


√√√√SA

T∑
t=1

ĉtεt

 = Õ


√√√√SA

(
T∑
t=1

c(st, at) +

T∑
t=1

(ĉt − c(st, at))εt

)
= Õ

√SACK +

√√√√SA

T∑
t=1

√
ĉtεt
nt

+ SA

 .

Solving a quadratic equation gives
∑T
t=1

√
ĉtεt
nt

= Õ
(√
SACK + SA

)
. Putting everything together,

and by βq? = O (cmin) , βq?T = O (cminT ) = O (CK):

T∑
t=1

bt = Õ
(√

B?SACK +
√
B?SACREF +

√
SAHCREF, 2 +

√
SAHcminCK +B?HSA

)
= Õ

(√
B?SACK +B?H

2S
3
2A+

√
SAHcminCK

)
.

(H = Ω
(
B?
cmin

)
and definition of CREF, CREF, 2 (Lemma 8))

Lemma 12 (bias of the update scheme). Assuming Xt ≥ 0, we have:
T∑
t=1

1

mt

mt∑
i=1

Xľt,i
≤
(

1 +
1

H

) T∑
t=1

Xt,

T∑
t=1

1

nt

nt∑
i=1

Xlt,i = O

(
ln(T )

T∑
t=1

Xt

)
.

Proof. For the first inequality, denote by jt the stage to which time step t belongs. When t′ = ľt,i,
we have mt = ejt′ . Therefore,

∑T
t=1

∑mt
i=1

1
mt

I{t′ = ľt,i} ≤
ej
t′+1

ej
t′
≤ 1 + 1

H , and

T∑
t=1

1

mt

mt∑
i=1

Xľt,i
=

T∑
t=1

1

mt

mt∑
i=1

T∑
t′=1

Xt′I{t′ = ľt,i} =

T∑
t′=1

Xt′

T∑
t=1

mt∑
i=1

I{t′ = ľt,i}
mt

≤
(

1 +
1

H

) T∑
t′=1

Xt′ .

For the second inequality:
T∑
t=1

1

nt

nt∑
i=1

Xlt,i =

T∑
t=1

1

nt

nt∑
i=1

T∑
t′=1

Xt′I{t′ = lt,i} =

T∑
t′=1

Xt′

T∑
t=1

nt∑
i=1

I{t′ = lt,i}
nt

≤
T∑
t′=1

Xt′

∑
z:t′≤Ez−1≤T

ez
Ez−1

= O

(
ln(T )

T∑
t′=1

Xt′

)
.

Lemma 13. Assuming Xt : S+ → [0, B] is monotonic in t (i.e., Xt(s) is non-increasing or
non-decreasing in t for any s ∈ S+) and Xt(g) = 0, with probability at least 1− δ,

T∑
t=1

1

mt

mt∑
i=1

Pľt,iXľt,i
≤
(

1 +
1

H

)2 T∑
t=1

Xt(st) + Õ (B(H + S)) .

Proof. By Lemma 12, Lemma 36 and Lemma 28, Xt+1(s′t) ≤ Xt+1(st+1) in each step,
T∑
t=1

1

mt

mt∑
i=1

Pľt,iXľt,i
≤
(

1 +
1

H

) T∑
t=1

PtXt ≤
(

1 +
1

H

)2 T∑
t=1

Xt(s
′
t) + Õ (BH)

≤
(

1 +
1

H

)2 T∑
t=1

Xt(st) + Õ (B(H + S)) .

26



Lemma 14. For any non-negative weights {wt}t, and α ∈ (0, 1), we have:

T∑
t=1

wtεt
nαt

= O
(

(‖w‖∞ SA)α ‖w‖1−α1

)
,

T∑
t=1

wtεt
mα
t

= O
(

(‖w‖∞HSA)α ‖w‖1−α1 ln
‖w‖∞
‖w‖1

)
.

Moreover, when wt = v(st, at) for some v,

T∑
t=1

wtεt
nαt

= Õ

∑
(s,a)

v(s, a)NT+1(s, a)1−α

 ,

T∑
t=1

wtεt
mα
t

= Õ

Hα
∑
(s,a)

v(s, a)NT+1(s, a)1−α

 .

In case wt = 1 for all t, it holds that:

T∑
t=1

εt
nαt

= Õ
(
(SA)αT 1−α) , T∑

t=1

εt
mα
t

= Õ
(
(SAH)αT 1−α) , (14)

when 0 < α < 1, and

T∑
t=1

εt
nt

= O (SA lnT ) ,
T∑
t=1

εt
mt

= O (SAH lnT ) , (15)

when α = 1.

Proof. Define n(s, a, j) =
∑
t:(st,at)=(s,a),nt=Ej

wt, n(s, a) =
∑
j≥0 n(s, a, j). Then,∑

(s,a) n(s, a) = ‖w‖1, n(s, a, j) ≤ ‖w‖∞ ej+1 ≤
(
1 + 1

H

)
‖w‖∞ ej . Moreover, by definitions of

ej and Ej , ∑
j≥1

I
{(

1 +
1

H

)
‖w‖∞Ej−1 ≤ n(s, a)

}
= O

(
H ln

‖w‖1
‖w‖∞

)
. (16)

∑
j≥1

ejI
{(

1 +
1

H

)
‖w‖∞Ej−1 ≤ n(s, a)

}
= O(n(s, a)/ ‖w‖∞). (17)

Since 1
Eαj

and 1
eαj

is decreasing, by “moving weights to earlier terms” (from n(s, a, j) to n(s, a, i) for
i < j),

T∑
t=1

wtεt
nαt

=
∑
(s,a)

∑
j≥1

n(s, a, j)

Eαj
≤
∑
(s,a)

∑
j≥1

(
1 +

1

H

)
‖w‖∞

ejI
{(

1 + 1
H

)
‖w‖∞Ej−1 ≤ n(s, a)

}
Eαj

= O

∑
(s,a)

‖w‖∞

(
n(s, a)

‖w‖∞

)1−α
 (

∑J
j=1

ej
Eαj

= O
(
E1−α
J

)
and Eq. (17))

= O
(

(‖w‖∞ SA)α ‖w‖1−α1

)
, (Hölder’s inequality)

T∑
t=1

wtεt
mα
t

=
∑
(s,a)

∑
j≥1

n(s, a, j)

eαj
≤
∑
(s,a)

∑
j≥1

(
1 +

1

H

)
‖w‖∞ e1−α

j I
{(

1 +
1

H

)
‖w‖∞Ej−1 ≤ n(s, a)

}

≤
(

1 +
1

H

)
‖w‖∞

∑
(s,a)

∑
j≥1

I {‖w‖∞Ej−1 ≤ n(s, a)}

α∑
(s,a)

n(s, a)

‖w‖∞

1−α

(Hölder’s inequality and Eq. (17))

= O
(

(‖w‖∞HSA)α ‖w‖1−α1 ln
‖w‖1
‖w‖∞

)
. (Eq. (16))

In case wt = 1 and α ∈ (0, 1), we have ‖w‖∞ = 1, ‖w‖1 = T , and Eq. (14) is proved. When wt =
v(st, at) for some v, n(s, a, j) ≤ v(s, a)ej+1I{j ≤ Js,a}, where Js,a is such that EJs,a = nT (s, a).
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Thus,

T∑
t=1

wtεt
nαt
≤
∑
(s,a)

v(s, a)

Js,a∑
j=1

ej+1

Eαj
= O

∑
(s,a)

v(s, a)

Js,a∑
j=1

ej
Eαj

 = O

∑
(s,a)

v(s, a)NT+1(s, a)1−α

 .

T∑
t=1

wtεt
mα
t

≤
∑
(s,a)

v(s, a)

Js,a∑
j=1

ej+1

eαj
= O

∑
(s,a)

v(s, a)

Js,a∑
j=1

e1−α
j


= Õ

∑
(s,a)

v(s, a)Jαs,a

Js,a∑
j=1

ej

1−α
 = Õ

Hα
∑
(s,a)

v(s, a)NT+1(s, a)1−α

 .

(Hölder’s inequality and Js,a = Õ (H) by how ej grows)

In case α = 1, we have:

T∑
t=1

εt
nt
≤
∑
(s,a)

∑
j:0<Ej−1≤T

ej
Ej−1

= O (SA lnT ) .

T∑
t=1

εt
mt
≤
∑
(s,a)

∑
j:0<Ej−1≤T

(
1 +

1

H

)
= O (SAH lnT ) .

D.5 Parameter free algorithm

In this section, we present a parameter-free model-free algorithm (Algorithm 5) that achieves the same
regret guarantee as Algorithm 2 (up to log factors). The high level idea is to first apply the doubling
trick from Tarbouriech et al. [2021b] to determine an upper bound on B?, then try logarithmically
many different values of H and θ? simultaneously, each leading to a different update rule for Q and
V ref.

D.5.1 An upper bound on B? is available

We first introduce Algorithm 4, which is a sub-algorithm that achieves the desired regret bound when
we have an upper bound B̃ ≥ B?. In this case, we only need to determine the appropriate value of
H and θ?. Define Nβ = dlog2(1/β)e with β = cmin

2B̃2SAK
, Hp = 2p for p ∈ P with P = [Nβ ], and

H = {Hp}p∈P . DefineR = [8Nβ ]. Here,H and {2r}r∈R constitute the search range of H and θ?.

For each p, r, we maintain accumulators µref
p,r, σ

ref
p,r, µp,r, σp,r, vp,mp similar to µref, σref, µ, σ, v,m

in Algorithm 2 (Line 2 and Line 3). For each (s, a) ∈ S × A and p ∈ P , we divide the samples
received into consecutive stages, where the length of the j-th stage is ep,j with ep,1 = Hp, ep,j+1 =
b(1+ 1

Hp
)ep,jc. Also define the indices indicating the end of a stage for a given p asLp = {Ep,j}j∈N+

with Ep,j =
∑j
i=1 ep,i. We update Q(s, a) only when the number of visits to (s, a) falls into Lp for

some p ∈ P (Line 4), and there are two types of update rules similar to Algorithm 2 (Line 5 and
Line 6). We also maintain |R| reference value functions, each with different final precision (Line 7).
We show that the way we combine different update rules enable us to apply analysis of Algorithm 2
w.r.t any choice of (p, r) ∈ P ×R. Notably, we can proceed with (p?, r?) with Hp? = H, 2r

?

= θ?,
which gives us the same regret bound as Algorithm 2 without knowing B?.

Now we introduce some notations only used in this section. When it is clear from the context,
we ignore dependency on p, and define nt(s, a),mt(s, a), lt,i(s, a), ľt,i(s, a), ĉt(s, a) similarly as
before for a given p. Denote by V ref

r,t (s) the value of V ref
r (s) at the beginning of time step t, and by
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Algorithm 4 LCB-ADVANTAGE-SSP with an upper bound on B?
Parameter: initial value function upper bound B̃ ≥ B?, failure probability δ ∈ (0, 1).
Define: Lp = {Ep,j}j∈N+ where Ep,j =

∑j
i=1 ep,i, ep,1 = Hp and ep,j+1 = b(1 + 1/Hp)ep,jc.

Initialize: t← 0, s1 ← sinit, B ← 1, for all (s, a), p ∈ P, N(s, a)← 0,Mp(s, a)← 0.
Initialize: for all (s, a), r ∈ R, Q(s, a)← 0, V (s)← 0, V ref

r (s)← V (s), Ĉ(s, a)← 0.
Initialize: for all (s, a), p ∈ P, r ∈ R, µref

p,r(s, a) ← 0, σref
p,r(s, a) ← 0, µp,r(s, a) ← 0,

σp,r(s, a)← 0, vp(s, a)← 0.
for k = 1, . . . ,K do

repeat
Increment time step t +← 1.
Take action at = argminaQ(st, a), suffer cost ct, transit to and observe s′t.
Update global accumulators: n = N(st, at)

+← 1, Ĉ(st, at)
+← ct.

1 Compute ι← 256 ln6(4SAB̃8n5 · 8N2
β/δ), ĉ← Ĉ(st,at)

n .
for p ∈ P do

for r ∈ R do
2 Update reference value accumulators: µref

p,r(st, at)
+← V ref

r (s′t), σref
p,r(st, at)

+←
V ref
r (s′t)

2, µp,r(st, at)
+← V (s′t)− V ref

r (s′t), σp,r(st, at)
+← (V (s′t)− V ref

r (s′t))
2.

3 Update accumulators: vp(st, at)
+← V (s′t), mp = Mp(st, at)

+← 1.
4 if n ∈ Lp then

for r ∈ R do

bp,r ←
√

σref
p,r(st,at)/n−(µref

p,r(st,at)/n)2

n ι +
√

σp,r(st,at)/mp−(µp,r(st,at)/mp)2

mp
ι +(

4B
n + 3B

mp

)
ι+
√

ĉι
n .

5 Q(st, at)← max
{
ĉ+

µref
p,r(st,at)

n +
µp,r(st,at)

mp
− bp,r, Q(st, at)

}
.

Reset local accumulators: µp,r(st, at)← 0, σp,r(st, at)← 0.

Compute bonus b′p ← 2
√

B2ι
mp

+
√

ĉι
n + ι

n .

6 Q(st, at)← max
{
ĉ+

vp(st,at)
mp

− b′p, Q(st, at)
}

.
Reset local accumulators: vp(st, at)← 0, Mp(st, at)← 0.

V (st)← minaQ(st, a).
if V (st) > B then B ← 2V (st).

7 if
∑
aN(st, a) = 2r for some r ∈ R then V ref

r′ (st)← V (st), ∀r′ ≥ r.
if s′t 6= g then st+1 ← s′t; else st+1 ← sinit, break.

bp,r,t(s, a), b′p,t(s, a) the value of bp,r(s, a), b′p(s, a) in Qt(s, a). Also define:

Qp,r,t(s, a) = ĉt(s, a) +
1

nt

nt∑
i=1

V ref
r,lt,i(s

′
lt,i) +

1

mt

mt∑
i=1

(
Vľt,i(s

′
ľt,i

)− V ref
r,ľt,i

(s′
ľt,i

)
)
− bp,r,t.

Q
′
p,t(s, a) = ĉt(s, a) +

1

mt

mt∑
i=1

Vľt,i(s
′
ľt,i

)− b′p,t.

Note that for any (s, a) ∈ S ×A, t > 1,

Qt(s, a) = max

{
max
p,r

Qp,r,t(s, a),max
p

Q
′
p,t(s, a), Qt−1(s, a)

}
. (18)

Next, we prove the key lemma of Algorithm 4, which shows that Qt is an optimistic estimator of Q?.

Lemma 15. With probability at least 1 − 7δ, Algorithm 4 with input B̃ ≥ B? ensures Qt(s, a) ≤
Qt+1(s, a) ≤ Q?(s, a) for any (s, a) ∈ S ×A.

29



Proof. The first inequality is by the update rule of Qt. Next, we prove Qt(s, a) ≤ Q?(s, a) by
induction on t. It is clearly true when when t = 1. For the induction step, note that for any p, r, the
proof of Lemma 9 still proceeds to conclude that Qp,r,t(s, a) ≤ Q?(s, a) and Q

′
p,t(s, a) ≤ Q?(s, a),

where we substitute bt with bp,r,t, b′t with b′p,t, and V ref
t with V ref

r,t (also note Remark 1). Thus, by
a union bound over 8N2

β update rules, the computation of ι (Line 5), and Eq. (18), the claim is
proved.

Theorem 7. With probability at least 1 − 60δ, Algorithm 4 with input B̃ ≥ B? ensures RK =

Õ
(
B?
√
SAK +

B5
?S

2A

c4min

)
.

Proof. Define V ref = V ref
r? , V

REF = V ref
r?,T+1, bt = bp?,r?,t, b

′
t = b′p?,t, H = Hp? , and nt, mt, lt,i,

ľt,i are defined for p?. We have Lemma 12, Lemma 6, Corollary 6, Lemma 8, Lemma 10, Lemma 11
and Theorem 2 holds for Algorithm 4. Following the steps in the proof of Theorem 3 gives the desired
result.

D.5.2 Without knowledge of B?

Now we introduce our parameter-free algorithm that achieves the desired regret bound without
knowledge of B?. The main idea is to determine an upper bound on B? using a doubling trick from
[Tarbouriech et al., 2021b], and then run Algorithm 4 as a sub-algorithm. We divide the learning
process into epochs indexed by φ. We maintain value function upper bound B̃ and cost accumulator
C recording the total costs suffered in current epoch. In epoch φ, we execute Algorithm 4 with value
function upper bound B̃. Moreover, we start a new epoch whenever:

1. B > B̃,

2. or C > B̃K + x
(
B̃
√
SAK + B̃5S2A

c4min

)
.

Here, x is a large enough constant determined by Theorem 7, so that when B̃ ≥ B?, we have with
probability at least 1− 60δ:

C − V ?(sφinit)− (K − 1)V ?(sinit) ≤ x

(
B̃
√
SAK +

B̃5S2A

c4min

)
,

where sφinit is the initial state of epoch φ (note that Theorem 3 still holds when the initial state is
changing over episodes). Moreover, we double the value of B̃ whenever a new epoch starts. We
summarize ideas above in Algorithm 5.

Theorem 8. With probability at least 1−60δ, Algorithm 5 ensuresRK = Õ
(
B?
√
SAK +

B5
?S

2A

c4min

)
.

Proof. Denote by Bφ the value of B in epoch φ, and by Cφ the value of C at the end of epoch φ.
Define φ? = infφ{Bφ ≥ B?}. Clearly Bφ ≤ max{2B?,K} for φ ≤ φ?. By Theorem 7, with
probability at least 1− 60δ, there is at most φ? epochs since the condition of starting a new epoch
will never be triggered in epoch φ?, and the regret in epoch φ? is properly bounded:

Cφ? − V ?(sφ
?

init)− (K − 1)V ?(sinit) = Õ

(
B̃φ?
√
SAK +

B̃5
φ?S

2A

c4min

)
= Õ

(
B?
√
SAK +

B5
?S

2A

c4min

)
.

Conditioned on the event that there are at most φ? epochs, we partition the regret into two parts: the
total costs suffered before epoch φ?, and the regret starting from epoch φ?. It suffices to bound the
total costs before epoch φ? assuming K ≤ B? (otherwise φ? = 1). By the update scheme of B̃, we
have at most dlog2B?e+ 1 epochs before epoch φ?. Moreover, by the second condition of starting a
new epoch, the accumulated cost in epoch φ < φ? is bounded by:

Cφ ≤ KB̃φ + Õ
(
B̃φ
√
SAK + B̃φS

2A
)

= Õ
(
B5
?S

2A

c4min

)
.
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Algorithm 5 LCB-ADVANTAGE-SSP without knowledge of B?
Parameter: failure probability δ ∈ (0, 1).
Define: Lp = {Ep,j}j∈N+ where Ep,j =

∑j
i=1 ep,i, ep,1 = Hp and ep,j+1 = b(1 + 1/Hp)ep,jc.

Initialize: B̃ ← K, C ← 0.
Initialize: t← 0, s1 ← sinit, B ← 1, for all (s, a), p ∈ P, N(s, a)← 0,Mp(s, a)← 0.
Initialize: for all (s, a), r ∈ R, Q(s, a)← 0, V (s)← 0, V ref

r (s)← V (s), Ĉ(s, a)← 0.
Initialize: for all (s, a), p ∈ P, r ∈ R, µref

p,r(s, a) ← 0, σref
p,r(s, a) ← 0, µp,r(s, a) ← 0,

σp,r(s, a)← 0, vp(s, a)← 0.
for k = 1, . . . ,K do

repeat
Increment time step t +← 1.
Take action at = argminaQ(st, a), suffer cost ct, transit to and observe s′t.
Update global accumulators: n = N(st, at)

+← 1, Ĉ(st, at)
+← ct, C

+← ct.

Compute ι← 256 ln6(4SAB̃8n5 · 8N2
β/δ), ĉ← Ĉ(st,at)

n .
for p ∈ P do

for r ∈ R do
Update reference value accumulators: µref

p,r(st, at)
+← V ref

r (s′t), σref
p,r(st, at)

+←
V ref
r (s′t)

2, µp,r(st, at)
+← V (s′t)− V ref

r (s′t), σp,r(st, at)
+← (V (s′t)− V ref

r (s′t))
2.

Update accumulators: vp(st, at)
+← V (s′t), mp = Mp(st, at)

+← 1.
if n ∈ Lp then

for r ∈ R do

bp,r ←
√

σref
p,r(st,at)/n−(µref

p,r(st,at)/n)2

n ι +
√

σp,r(st,at)/mp−(µp,r(st,at)/mp)2

mp
ι +(

4B
n + 3B

mp

)
ι+
√

ĉι
n .

Q(st, at)← max
{
ĉ+

µref
p,r(st,at)

n +
µp,r(st,at)

mp
− bp,r, Q(st, at)

}
.

Reset local accumulators: µp,r(st, at)← 0, σp,r(st, at)← 0.

Compute bonus b′p ← 2
√

B2ι
mp

+
√

ĉι
n + ι

n .

Q(st, at)← max
{
ĉ+

vp(st,at)
mp

− b′p, Q(st, at)
}

.
Reset local accumulators: vp(st, at)← 0, Mp(st, at)← 0.

V (st)← minaQ(st, a).
if V (st) > B then B ← 2V (st).
if
∑
aN(st, a) = 2r for some r ∈ R then V ref

r′ (st)← V (st), ∀r′ ≥ r.

if B > B̃ or C > B̃K + x
(
B̃
√
SAK + B̃5S2A

c4min

)
then

B̃ ← 2B̃, C ← 0.
B ← 1, for all (s, a), p ∈ P, N(s, a)← 0,Mp(s, a)← 0.
for all (s, a), r ∈ R, Q(s, a)← 0, V (s)← 0, V ref

r (s)← V (s), Ĉ(s, a)← 0.
for all (s, a), p ∈ P, r ∈ R, µref

p,r(s, a) ← 0, σref
p,r(s, a) ← 0, µp,r(s, a) ← 0,

σp,r(s, a)← 0, vp(s, a)← 0.
if s′t 6= g then st+1 ← s′t; else st+1 ← sinit, break.

Combining these two parts, we get:

RK =

φ?−1∑
φ=1

Cφ + (Cφ? − V ?(sφ
?

init)− (K − 1)V ?(sinit)) + (V ?(sφ
?

init)− V
?(sinit))

= Õ
(
B?
√
SAK +

B5
?S

2A

c4min

)
,
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where we assume Cφ? = 0 and sφ
?

init = sinit if there are less than φ? epochs.

E Omitted Details for Section 5

Extra Notations Denote by Qt(s, a), Vt(s) the value of Q(s, a), V (s) at the beginning of time
step t, V0(s) = 0, and bt(s, a), nt(s, a), P̄t,s,a(s′), ιt(s, a), ĉt(s, a) the value of b, n, P̄s,a(s′), ι, ĉ
used in computing Qt(s, a) (note that bt(s, a) = 0 and ĉt(s, a) = 0 if nt(s, a) = 0). Denote
by lt(s, a) the last time step the agent visits (s, a) among those nt(s, a) steps before the current
stage, and lt(s, a) = t if the first visit to (s, a) is at time step t. Also define P̄t = P̄t,st,at and
n+
t (s, a) = max{1, nt(s, a)}. With these notations, we have by the update rule of the algorithm:

Qt(s, a) = max{Qt−1(s, a), ĉt(s, a) + P̄t,s,aVlt − bt}, (19)

where bt represents bt(s, a), and lt represents lt(s, a) for notational convenience.

Before proving Theorem 5 (Section E.3), we first show some basic properties of our proposed update
scheme (Section E.1), and proves the two required properties for Algorithm 3 (Section E.2).

E.1 Properties of Proposed Update Scheme

In this section, we prove that our proposed update scheme has the desired properties, that is, it
suffers constant cost independent of H , while maintaining sparse update in the long run similar to the
update scheme of Algorithm 2 (Lemma 16). We also quantify the bias induced by the sparse update
compared to full-planning (that is, update every state-action pair at every time step) in Lemma 17.

Lemma 16. The proposed update scheme satisfies the following:

1. For {Xt}t≥0 such that Xt ∈ [0, B̊] and t < t′, (st, at) = (st′ , at′) implies Xt ≥ Xt′ , we
have:

∑T
t=1Xlt ≤ B̊SA+ (1 + 1

H )
∑T
t=1Xt.

2. Denote i?h = inf{i ≥ N+ : ei ≥ h} for h ∈ N+. Then i?h = O(H ln(h)).

Proof. For any given n ∈ N+, define yn as the index of the end of last stage, that is, the largest
element in L that is smaller than n (also define y1 = 1). For the first property, we first prove by
induction that for any j ∈ N+, there exist non-negative weights {wn,i}n,i such that:

1. For all n ≤ Ej ,
∑yn
i=1 wn,i = I{n > 1}, and wn,i = 0 for i > yn.

2.
∑Ej
n=1 wn,i ≤ 1 + 1

H for any i ≤ Ej .

3. ẽj+1 +
∑Ej
n=1

∑Ej
n′=1 wn,n′ = (1 + 1/H)Ej .

To give some intuition, we can imagine a continuous process where we process index n at time step n.
Indices are divided into consecutive stages, and there are ej indices in the j-th stage. At index n we
need to consume 1 unit of energy accumulated up to the last stage (that is, up to index yn) and then
contributes (1 + 1

H ) energy to the future stages. We can think of ẽj as the available amount of energy
at the beginning of stage j (accumulated from indices up to Ej−1), and ej as the amount of energy
consumed in stage j (one unit by each index in stage j). The assignment of energy consumption is
represented by {wn,i}, where wn,i is the amount of energy consumed by index n which is contributed
by index i. The result we are going to prove by induction states that the process described above can
proceed indefinitely.

The base case of j = 1 is clearly true by w1,i = 0 for any i ∈ N+ and ẽ2 = 1 + 1
H . For the induction

step, by the third property, there are in total (1 + 1
H )Ej energy contributed by indices up to Ej , where

ẽj+1 is the amount of energy available to use for stages starting from j + 1, and
∑Ej
n=1

∑Ej
n′=1 wn,n′

is the amount of energy consumed by indices up to Ej (we use one of the possible assignments of
{wn,i}n,i for n ≤ Ej from the previous induction step). We can easily distribute ej+1 weights (from
ẽj+1) to indices in stage j+1 so that

∑yn
i=1 wn,i = 1 and wn,i = 0 for i > yn for allEj < n ≤ Ej+1
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(note that yn = Ej in this range), and
∑Ej+1

n=1 wn,i ≤ 1 + 1
H for any i ≤ Ej+1. Moreover,

ẽj+2 +

Ej+1∑
n=1

Ej+1∑
n′=1

wn,n′ = ẽj+1 +
1

H
ej+1 +

Ej∑
n=1

Ej∑
n′=1

wn,n′ + ej+1

=

(
1 +

1

H

)
Ej +

(
1 +

1

H

)
ej+1 =

(
1 +

1

H

)
Ej+1.

Thus, the induction step also holds. We are now ready to prove the first property. Denote by ti(s, a)
the time step of the i-th visit to (s, a), and by N(s, a) the total number of visits to (s, a) in K
episodes. We have

T∑
t=1

Xlt =
∑
(s,a)

N(s,a)∑
n=1

Xtyn (s,a) ≤
∑
(s,a)

Xt1(s,a) +
∑
(s,a)

N(s,a)∑
n=2

yn∑
i=1

wn,iXti(s,a)

(y1 = 1, Xti(s,a) is non-increasing in i, and {wn,i}n,i is from the induction result)

≤ B̊SA+
∑
(s,a)

N(s,a)∑
i=1

Xti(s,a)

N(s,a)∑
n=1

wn,i ≤ B̊SA+

(
1 +

1

H

)∑
(s,a)

N(s,a)∑
i=1

Xti(s,a)

(Xt1(s,a) ≤ B̊ and
∑N(s,a)
n=1 wn,i ≤ 1 + 1

H )

= B̊SA+

(
1 +

1

H

) T∑
t=1

Xt.

For the second property, note that i?h = inf{i ∈ N+ : ẽi ≥ h} since h is an interger. Moreover,

ẽi+1 =

(
1 +

1

H

)
ẽi +

1

H
(ei − ẽi) ≥

(
1 +

1

H

)
ẽi −

1

H
=⇒ ẽi+1 − 1 ≥

(
1 +

1

H

)
(ẽi − 1)

=⇒ ẽi ≥ (ẽi?2 − 1)

(
1 +

1

H

)i−i?2
+ 1 ≥

(
1 +

1

H

)i−i?2
+ 1, ∀i ≥ i?2.

Therefore, i?h ≤ infi{i ≥ i?2 : (1 + 1/H)i−i
?
2 + 1 ≥ h} = i?2 +O(H ln(h)). Also, by inspecting ei

for small i we observe that i?2 = O(H), which implies that i?h = O(H ln(h)).

Remark 2. Lemma 16 implies that there are at most O(min{SAH lnT, ST}) updates in T steps.
Remark 3. Note that the update scheme in [Zhang et al., 2020b] (also used in Algorithm 2) induces a
constant cost of order Õ(B?HSA), which ruins the horizon free regret. This is because their update
scheme collects H samples before the first update. On the contrary, our update scheme updates
frequently at the beginning, but has the same update frequency as that of [Zhang et al., 2020b] in
the long run. This reduces the constant cost to Õ(B?SA) while maintaining the Õ(SAH) time
complexity.

The following lemma quantifies the dominating bias introduced by the sparse update.

Lemma 17 (bias of the update scheme).
∑T
t=1 Pt(Vt − Vlt) ≤ B?SA+ 1

H

∑T
t=1 Pt(V

? − Vt) and∑T
t=1 V(Pt, Vt − Vlt) ≤ Õ

(
B2
?SA

)
+ B?

H

∑T
t=1 Pt(V

? − Vt).

Proof. For the first statement, we apply Lemma 16 and Pt = Plt to obtain
T∑
t=1

Pt(Vt − Vlt) =

T∑
t=1

Plt(V
? − Vlt)−

T∑
t=1

Pt(V
? − Vt) ≤ B?SA+

1

H

T∑
t=1

Pt(V
? − Vt).

Similarly, for the second statement
T∑
t=1

V(Pt, Vt − Vlt) ≤
T∑
t=1

Pt(Vt − Vlt)2 ≤ B?
T∑
t=1

Pt(Vt − Vlt)

≤ B2
?SA+

B?
H

T∑
t=1

Pt(V
? − Vt).
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E.2 Proofs of Required Properties

In this section, we prove Property 1 (Lemma 18) and Property 2 of Algorithm 3, where Lemma 19
proves a preliminary form of Property 2.
Lemma 18. With probability at least 1 − δ, Qt(s, a) ≤ Qt+1(s, a) ≤ Q?(s, a), for any (s, a) ∈
S ×A, t ≥ 1.

Proof. The first inequality is clearly true by the update rule. Next, we prove Qt(s, a) ≤ Q?(s, a).
By Eq. (19), it is clearly true when nt(s, a) = 0. When nt(s, a) > 0, by Lemma 31: (here, lt, ιt is a
shorthand of lt(s, a), ιt(s, a)):

ĉt(s, a) + P̄t,s,aVlt − bt(s, a) = ĉt(s, a) + f(P̄t,s,a, Vlt , nt(s, a), B, ιt)−

√
ĉt(s, a)ιt
nt(s, a)

≤ c(s, a) + f(P̄t,s,a, V
?, nt(s, a), B, ιt) +

ιt
nt(s, a)

(Eq. (20))

= c(s, a) + P̄t,s,aV
? −max

{
7

√
V(P̄t,s,a, V ?)ιt

nt(s, a)
,

49Bιt
nt(s, a)

}
+

ιt
nt(s, a)

≤ Q?(s, a) + (P̄t,s,a − Ps,a)V ? − 3

√
V(P̄t,s,a, V ?)ιt

nt(s, a)
− 24Bιt
nt(s, a)

+
Bιt

nt(s, a)

(B ≥ B? ≥ 1, Q?(s, a) = c(s, a) + Ps,aV
? and max{a, b} ≥ a+b

2 )

≤ Q?(s, a) + (2
√

2− 3)

√
V(P̄t,s,a, V ?)ιt

nt(s, a)
+ (20− 24)

Bιt
nt(s, a)

≤ Q?(s, a). (Lemma 34)

Lemma 19. With probability at least 1− 9δ, for all (Q̊, V̊ ) ∈ VH
T∑
t=1

(Q̊(st, at)−Qt(st, at))+ ≤
(

1 +
1

H

) T∑
t=1

(V̊ (st)− Vt(st))+

+ Õ

√B?SACK +BS2A+

√√√√B?S2A

H

T∑
t=1

V ?(st)− Vt(st)

 .

Proof. We first prove useful properties related to the cost estimator. For a fixed (s, a), by Lemma 34,
with probability at least 1− δ

SA , when nt(s, a) > 0:

|c(s, a)− ĉt(s, a)| ≤ 2

√
2ĉt(s, a)

nt(s, a)
ln

2SA

δ
+

19 ln 2SA
δ

nt(s, a)
≤

√
ĉt(s, a)ιt
nt(s, a)

+
ιt

nt(s, a)
. (20)

Taking a union bound, we have Eq. (20) holds for all (s, a) when nt(s, a) > 0 with probability at
least 1− δ. Then by definition of bt, we have

c(st, at)− ĉt(st, at) ≤ I{nt = 0}+ bt. (21)

Note that with probability at least 1− 2δ, for all (Q̊, V̊ ) ∈ VH ,
T∑
t=1

(Q̊(st, at)−Qt(st, at))+ ≤
T∑
t=1

(c(st, at)− ĉt(st, at) + PtV̊ − P̄tVlt)+ + bt

(Q̊(st, at) = c(st, at) + PtV̊ and Eq. (19))

≤
T∑
t=1

I{nt = 0}+

T∑
t=1

[
(Pt(V̊ − Vlt) + (Pt − P̄t)V ? + (Pt − P̄t)(Vlt − V ?))+ + 2bt

]
≤ SA+

T∑
t=1

[
Pt(V̊ − Vlt)+ + Õ

(√
V(Pt, V ?)

n+
t

+

√
SV(Pt, V ? − Vlt)

n+
t

+
SB?

n+
t

)
+ 2bt

]
.

((x+ y)+ ≤ (x)+ + (y)+, Lemma 34, and Lemma 23)
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Note that:
T∑
t=1

Pt(V̊ − Vlt)+ ≤
(

1 +
1

H

) T∑
t=1

Pt(V̊ − Vt)+ +B?SA (Plt = Pt and Lemma 16)

= B?SA+

(
1 +

1

H

) T∑
t=1

(
(V̊ (s′t)− Vt(s′t))+ + (Pt − Is′t)(V̊ − Vt)+

)
≤ O (B?SA) +

(
1 +

1

H

) T∑
t=1

(
(V̊ (st)− Vt(st))+ + (Pt − Is′t)(V̊ − Vt)+

)
.

(Lemma 28 and (V̊ (s′t)− Vt+1(s′t))+ ≤ (V̊ (st+1)− Vt+1(st+1))+)

Plugging this back to the previous inequality, and by Cauchy-Schwarz inequality and Lemma 24:
T∑
t=1

(Q̊(st, at)−Qt(st, at))+ ≤
(

1 +
1

H

) T∑
t=1

(
(V̊ (st)− Vt(st))+ + (Pt − Is′t)(V̊ − Vt)+ + bt

)

+ Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt) +B?S
2A

 .

Next, we bound the term
∑T
t=1(Pt − Is′t)(V̊ − Vt)+. We condition on Lemma 20, which holds with

probability at least 1− δ. Then, for a given (Q̊, V̊ ) ∈ VH , by Lemma 22 with Xt = (V̊ − Vt)+/B?,
we have with probability 1− δ

H+1 (FT , YT , and ζT are defined in Lemma 22):

B?FT (0) =

T∑
t=1

(Pt − Is′t)(V̊ − Vt)+ ≤ B?(
√

3YT ζT + 4ζT ) = Õ
(√

B2
?YT +B?

)

= Õ


√√√√B2

?

(
S + 1 +

T∑
t=1

(Xt(st)− PtXt)+

)
+B?


= Õ


√√√√B2

?S +B?

T∑
t=1

(V̊ (st)− Vt(st)− Pt(V̊ − Vt))+ +B?

 .

((x)+ − (y)+ ≤ (x− y)+)

(i)
= Õ

 T∑
t=1

bt +B?S
√
A+

√√√√B?
H

T∑
t=1

Pt(V ? − Vt)


+ Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt)

 ,

where in (i) we apply:√√√√B?

T∑
t=1

(V̊ (st)− Vt(st)− Pt(V̊ − Vt))+ ≤

√√√√B?

(
T∑
t=1

2bt +
Pt(V ? − Vt)

H

)

+ Õ


√√√√√B?


√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt)

+B?S
√
A


(Lemma 20 and

√
x+ y ≤

√
x+
√
y)

≤ 2

T∑
t=1

bt +

√√√√B?
H

T∑
t=1

Pt(V ? − Vt) + Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt) +B?S
√
A

 .

(AM-GM inequality and
√
x+ y ≤

√
x+
√
y)
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Hence, by a union bound, the bound above for
∑T
t=1(Pt− Is′t)(V̊ − Vt)+ holds for all (Q̊, V̊ ) ∈ VH

with probability at least 1− δ, and with probability at least 1− 4δ, for all (Q̊, V̊ ) ∈ VH ,

T∑
t=1

(Q̊(st, at)−Qt(st, at))+ ≤
(

1 +
1

H

) T∑
t=1

(V̊ (st)− Vt(st))+ + Õ

(
B?S

2A+

T∑
t=1

bt

)

+ Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt) +

√√√√B?
H

T∑
t=1

Pt(V ? − Vt)


≤
(

1 +
1

H

) T∑
t=1

(V̊ (st)− Vt(st))+ + Õ

BS2A+

√√√√SA

T∑
t=1

V(Pt, V ?)


+ Õ


√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt) +

√√√√B?SA

H

T∑
t=1

Pt(V ? − Vt) +
√
SACK

 .

(Lemma 21)

Note that:√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt)

= Õ


√√√√√B?S2A

√√√√SA

T∑
t=1

V(Pt, V ?) +B2S4A2 +
B?S2A

H

T∑
t=1

Pt(V ? − Vt) +B?S2A
√
SACK


(Lemma 21)

= Õ


√√√√√B?S2A

√√√√SA

T∑
t=1

V(Pt, V ?) +BS2A+

√√√√B?S2A

H

T∑
t=1

Pt(V ? − Vt) +
√
SACK


(
√
x+ y ≤

√
x+
√
y and AM-GM inequality)

= Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +BS2A+

√√√√B?S2A

H

T∑
t=1

Pt(V ? − Vt) +
√
SACK

 .

(AM-GM inequality)

Plug this back to the previous inequality, and then by Lemma 5
T∑
t=1

(Q̊(st, at)−Qt(st, at))+ ≤
(

1 +
1

H

) T∑
t=1

(V̊ (st)− Vt(st))+

+ Õ

√B?SACK +BS2A+

√√√√B?S2A

H

T∑
t=1

Pt(V ? − Vt)

 .

Finally, applying Lemma 36, Lemma 28 and (V ? − Vt+1)(s′t) ≤ (V ? − Vt+1)(st+1), the claim is
proved by

T∑
t=1

Pt(V
? − Vt) ≤ Õ (B?) + 2

T∑
t=1

(V ?(s′t)− Vt(s′t)) ≤ Õ (SB?) + 2

T∑
t=1

(V ?(st)− Vt(st)).

Proof of Theorem 4. Property 1 is proved in Lemma 18. For Property 2, by Lemma 19, it suffices to
bound

∑T
t=1 V

?(st)− Vt(st). By Lemma 19, V ?h−1(st) ≤ Q?h(st, at), and Vt(st) = Qt(st, at), we
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have with probability at least 1− 9δ, for all Q̊ = Q?h, V̊ = V ?h−1, h ∈ [H]:

T∑
t=1

(Q?h(st, at)−Qt(st, at))+ ≤
(

1 +
1

H

) T∑
t=1

(Q?h−1(st, at)−Qt(st, at))+

+ Õ

√B?SACK +BS2A+

√√√√B?S2A

H

T∑
t=1

V ?(st)− Vt(st)

 , ∀h ∈ [H].

Applying the inequality above recursively starting from h = H and by Q?0(s, a) = 0, (1 + 1
H )H ≤ 3

we have:

T∑
t=1

(Q?H(st, at)−Qt(st, at))+ = Õ

H (√B?SACK +BS2A
)

+

√√√√B?HS2A

T∑
t=1

V ?(st)− Vt(st)

 .

Then by Lemma 1 with H = d 4B
cmin

ln( 2
β ) + 1e2:

T∑
t=1

V ?(st)− Vt(st) ≤
T∑
t=1

(Q?(st, at)−Q?H(st, at)) +

T∑
t=1

(Q?H(st, at)−Qt(st, at))

≤ B?βT + Õ

H (√B?SACK +BS2A
)

+

√√√√BHS2A

T∑
t=1

V ?(st)− Vt(st)

 .

Solving a quadratic equation w.r.t
∑T
t=1 V

?(st)− Vt(st) (Lemma 25), we have:

T∑
t=1

V ?(st)− Vt(st) ≤ B?βT + Õ
(
H
(√

B?SACK +BS2A
))

.

Plug this back to the bound of Lemma 19 and by AM-GM inequality, we have for all (Q̊, V̊ ) ∈ VH :

T∑
t=1

(Q̊(st, at)−Qt(st, at))+

≤
(

1 +
1

H

) T∑
t=1

(V̊ (st)− Vt(st))+ +
B?βT

H
+ Õ

(√
B?SACK +BS2A

)
.

Moreover, by H ≥ B?
cmin

, we have B?βT
H ≤ βcminT ≤ βCK . Hence, Property 2 is satisfied with

d = 1, ξH = βCK + Õ(
√
B?SACK +BS2A) with probability at least 1− 9δ.

E.3 Proof of Theorem 5

Proof. By Theorem 1 and Theorem 4, with probability at least 1− 12δ:

CK −KV ?(sinit) = RK ≤ βCK + Õ
(√

B?SACK +BS2A
)
.

Then by V ?(sinit) ≤ B?, β ≤ 1
2 and Lemma 25, we have CK = Õ (B?K). Substituting this back

and by β ≤ cmin

B?K
, H = Õ(B?/cmin), we get RK = Õ

(
B?
√
SAK +BS2A

)
.

E.4 Extra Lemmas for Section 5

In this section, we give full proofs of auxiliary lemmas used in Section 5. Notably, Lemma 20 and
Lemma 21 bound the additional terms appears in the recursion in Lemma 19. Lemma 22 gives
recursion-based analysis on bounding the sum of martingale difference sequence, which is the key in
obtaining horizon-free regret.
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Lemma 20. With probability at least 1− δ, we have for all (Q̊, V̊ ) ∈ VH ,

T∑
t=1

((Ist − Pt)(V̊ − Vt))+ ≤
T∑
t=1

2bt +
Pt(V

? − Vt)
H

+ Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt) +B?S
2A

 .

Proof. With probability at least 1− δ, for all (Q̊, V̊ ) ∈ VH ,

T∑
t=1

(V̊ (st)− Vt(st)− Pt(V̊ − Vt))+ ≤
T∑
t=1

(Q̊(st, at)− PtV̊ + PtVt − Vt(st))+

≤
T∑
t=1

(c(st, at) + PtVlt − Vt(st))+ + Pt(Vt − Vlt)

(Q̊(st, at) = c(st, at) + PtV̊ , (x+ y)+ ≤ (x)+ + (y)+, and Vt is increasing in t)

≤ B?SA+

T∑
t=1

(c(st, at)− ĉt(st, at))+ + ((Pt − P̄t)Vlt)+ + bt +
1

H
Pt(V

? − Vt)

(Vt(st) = Qt(st, at), Eq. (19), and Lemma 17)

≤ 2B?SA+

T∑
t=1

((Pt − P̄t)V ? + (Pt − P̄t)(Vlt − V ?))+ + 2bt +
1

H
Pt(V

? − Vt). (Eq. (21))

Now by Lemma 34 and Lemma 23, we have with probability at least 1 − δ: (Pt − P̄t)V
? =

O
(√

V(Pt,V ?)

n+
t

+ B?
n+
t

)
and (Pt − P̄t)(Vlt − V ?) = Õ

(√
SV(Pt,V ?−Vlt )

n+
t

+ SB?
n+
t

)
. Plugging these

back to the previous inequality, we have for all (Q̊, V̊ ) ∈ VH :

T∑
t=1

(V̊ (st)− Vt(st)− Pt(V̊ − Vt))+

≤ 2B?SA+

T∑
t=1

Õ

(√
V(Pt, V ?)

n+
t

+

√
SV(Pt, V ? − Vlt)

n+
t

+
SB?

n+
t

)
+ 2bt +

1

H
Pt(V

? − Vt)

≤ Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A
T∑
t=1

V(Pt, V ? − Vlt) +B?S
2A

+

T∑
t=1

2bt +
Pt(V

? − Vt)
H

.

(Cauchy-Schwarz inequality and Lemma 24)

This completes the proof.

Lemma 21. With probability at least 1− 3δ,

T∑
t=1

bt = Õ

BS3/2A+

√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√B?SA

H

T∑
t=1

Pt(V ? − Vt) +
√
SACK

 ,

T∑
t=1

V(Pt, V
? − Vlt) = Õ

B?
√√√√SA

T∑
t=1

V(Pt, V ?) +B2S2A+
B?
H

T∑
t=1

Pt(V
? − Vt) +B?

√
SACK

 .

Proof. First note that:

T∑
t=1

bt
(i)
= Õ

(
BSA+

T∑
t=1

√
V(P̄t, Vlt)

n+
t

+

√
ĉt

n+
t

)
(ii)
= Õ

(
BSA+

T∑
t=1

√
V(Pt, Vlt)

n+
t

+
B?
√
S

n+
t

+

√
ĉt

n+
t

)
.
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where in (i) we apply max{a, b} ≤ a+ b and Lemma 24, and in (ii) we have with probability at least
1− δ,

V(P̄t, Vlt) = P̄t(Vlt − P̄tVlt)2 ≤ P̄t(Vlt − PtVlt)2 (
∑
i pixi∑
i pi

= argminz
∑
i pi(xi − z)2)

= V(Pt, Vlt) + (Pt − P̄t)(Vlt − PtVlt)2

≤ V(Pt, Vlt) + Õ

(∑
s′

(√
Pt(s′)

n+
t

+
1

n+
t

)
(Vlt(s

′)− PtVlt)2

)
(Lemma 34)

≤ V(Pt, Vlt) + Õ

(
B?

√
SV(Pt, Vlt)

n+
t

+
SB2

?

n+
t

)
= Õ

(
V(Pt, Vlt) +

SB2
?

n+
t

)
.

(Cauchy-Schwarz inequality and AM-GM inequality)

Thus, by Lemma 29, Cauchy-Schwarz inequality, and Lemma 24, we have:
T∑
t=1

bt = Õ

(
BS3/2A+

T∑
t=1

√
V(Pt, V ?)

n+
t

+

T∑
t=1

√
V(Pt, V ? − Vlt)

n+
t

+

√
ĉt

n+
t

)

= Õ

BS3/2A+

√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√SA

T∑
t=1

V(Pt, V ? − Vlt) +
√
SACK

 ,

(22)

where in the last inequality we apply:

T∑
t=1

√
ĉt

n+
t

≤

√√√√SA

(
T∑
t=1

c(st, at) +

T∑
t=1

(c(st, at)− ĉt)

)
(Cauchy-Schwarz inequality and Lemma 24)

≤

√√√√SA

(
2CK + Õ (1) +

T∑
t=1

√
ĉtιt

n+
t

+
ιt

n+
t

)
= Õ

√SACK +

√√√√SA

T∑
t=1

√
ĉt

n+
t

+ SA

 ,

(Lemma 36 and Eq. (20))

and by Lemma 25 we obtain:
∑T
t=1

√
ĉt
n+
t

= Õ(
√
SACK + SA). Applying Lemma 22 with

Xt(s) = (V ?(s)− Vt(s))/B?, we have with probability at least 1− δ (GT , YT , and ζT are defined
in Lemma 22),
T∑
t=1

V(Pt, V
? − Vt) = B2

?GT (0) ≤ 3B2
?YT + 9B2

?ζT ≤ 3B?

T∑
t=1

((Ist − Pt)(V ? − Vt))+ + Õ
(
SB2

?

)
.

By Lemma 20 and Eq. (22), with probability at least 1− δ,
T∑
t=1

((Ist − Pt)(V ? − Vt))+ ≤
T∑
t=1

2bt +
1

H
Pt(V

? − Vt)

+ Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt) +B?S
2A

 .

= Õ

BS2A+

√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt) +
1

H

T∑
t=1

Pt(V
? − Vt) +

√
SACK


(i)
= Õ

BS2A+

√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√S2A

T∑
t=1

V(Pt, V ? − Vt) +
1

H

T∑
t=1

Pt(V
? − Vt) +

√
SACK

 ,
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where in (i) we apply√√√√S2A

T∑
t=1

V(Pt, V ? − Vlt) = Õ


√√√√S2A

T∑
t=1

V(Pt, V ? − Vt) +

√√√√S2A

T∑
t=1

V(Pt, Vt − Vlt)


(VAR[X + Y ] ≤ 2VAR[X] + 2VAR[Y ] and

√
x+ y ≤

√
x+
√
y)

= Õ


√√√√S2A

T∑
t=1

V(Pt, V ? − Vt) +

√√√√S2A

(
B2
?SA+

B?
H

T∑
t=1

Pt(V ? − Vt)

) (Lemma 17)

= Õ


√√√√S2A

T∑
t=1

V(Pt, V ? − Vt) +B?S
2A+

1

H

T∑
t=1

Pt(V
? − Vt)

 .

(
√
x+ y ≤

√
x+
√
y and AM-GM Inequality)

Plugging the bound on
∑T
t=1((Ist − Pt)(V ? − Vt))+ back, we have

T∑
t=1

V(Pt, V
? − Vt) = Õ

B2S2A+B?

√√√√SA

T∑
t=1

V(Pt, V ?) +B?

√√√√S2A

T∑
t=1

V(Pt, V ? − Vt)


+ Õ

(
B?
H

T∑
t=1

Pt(V
? − Vt) +B?

√
SACK

)
.

Solving a quadratic inequality w.r.t
∑T
t=1 V(Pt, V

? − Vt) (Lemma 25), we obtain

T∑
t=1

V(Pt, V
?−Vt) = Õ

B2S2A+B?

√√√√SA

T∑
t=1

V(Pt, V ?) +
B?
H

T∑
t=1

Pt(V
? − Vt) +B?

√
SACK

 ,

and by VAR[X + Y ] ≤ 2VAR[X] + 2VAR[Y ] and Lemma 17,
T∑
t=1

V(Pt, V
? − Vlt) = Õ

(
T∑
t=1

V(Pt, V
? − Vt) + V(Pt, Vt − Vlt)

)

= Õ

B?
√√√√SA

T∑
t=1

V(Pt, V ?) +B2S2A+
B?
H

T∑
t=1

Pt(V
? − Vt) +B?

√
SACK

 .

Moreover, by
√
x+ y ≤

√
x+
√
y and AM-GM inequality:√√√√SA

T∑
t=1

V(Pt, V ? − Vlt)

= Õ


√√√√√B?SA

√√√√SA

T∑
t=1

V(Pt, V ?) +BS3/2A+

√√√√B?SA

H

T∑
t=1

Pt(V ? − Vt) +

√
B?SA

√
SACK


= Õ


√√√√SA

T∑
t=1

V(Pt, V ?) +BS3/2A+

√√√√B?SA

H

T∑
t=1

Pt(V ? − Vt) +
√
SACK

 .

Plug this back to Eq. (22):

T∑
t=1

bt = Õ

BS3/2A+

√√√√SA

T∑
t=1

V(Pt, V ?) +

√√√√B?SA

H

T∑
t=1

Pt(V ? − Vt) +
√
SACK

 .
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Lemma 22. Suppose Xt : S+ → [0, 1] is monotonic in t (that is, Xt(s) is non-decreasing or
non-increasing in t for all s ∈ S+), and Xt(g) = 0. Define:

Fn(d) =

n∑
t=1

PtX
2d

t − (Xt(s
′
t))

2d , Gn(d) =

n∑
t=1

V(Pt, X
2d

t ).

Then with probability at least 1− δ, for all n ∈ N+ simultaneously, Gn(0) ≤ 3Yn + 9ζn, Fn(0) ≤√
3Ynζn + 4ζn, where Yn = S + 1 +

∑n
t=1(Xt(st)− PtXt)+, ζn = 32 ln3 4n4

δ .

Proof. Note that:

Gn(d) =

n∑
t=1

PtX
2d+1

t − (PtX
2d

t )2 ≤
n∑
t=1

PtX
2d+1

t − (PtXt)
2d+1

(xp is convex for p > 1)

=

n∑
t=1

PtX
2d+1

t −Xt(s
′
t)

2d+1

+

n∑
t=1

Xt(s
′
t)

2d+1

−Xt(st)
2d+1

+

n∑
t=1

Xt(st)
2d+1

− (PtXt)
2d+1

(i)
≤ Fn(d+ 1) + S + 1 + 2d+1(Xt(st)− PtXt)+ ≤ F (d+ 1) + 2d+1Yn,

where in (i) we apply Lemma 26 and,
n∑
t=1

Xt(s
′
t)

2d+1

−Xt(st)
2d+1

=

n∑
t=1

Xt(s
′
t)

2d+1

−Xt+1(s′t)
2d+1

+

n∑
t=1

Xt+1(s′t)
2d+1

−Xt(st)
2d+1

≤ S +

n∑
t=1

Xt+1(st+1)2d+1

−Xt(st)
2d+1

= S +Xn+1(sn+1)2d+1

−X1(s1)2d+1

≤ S + 1.

(Lemma 28 and Xt+1(s′t) ≤ Xt+1(st+1))

For a fixed d, n, by Eq. (23) of Lemma 35, with probability 1− δ
2n2dlog2 n+1e ,

Fn(d) ≤
√
Gn(d)ζn + ζn ≤

√
(Fn(d+ 1) + 2d+1Yn)ζn + ζn.

Taking a union bound on d = 0, . . . , dlog2 ne, and by Lemma 27 with λ1 = n, λ2 =
√
ζn, λ3 =

Yn, λ4 = ζn, we have:

Fn(1) ≤ max{(
√
ζn +

√
2ζn)2,

√
8Ynζn + ζn} ≤ max{6ζn,

√
8Ynζn + ζn}.

Therefore, Gn(0) ≤ Fn(1) + 2Yn ≤ max{6ζn, Yn + 9ζn} + 2Yn ≤ 3Yn + 9ζn, and Fn(0) ≤√
Gn(0)ζn + ζn ≤

√
3Ynζn + 4ζn. Taking a union bound over n ∈ N+ proves the claim.

Lemma 23. Given Xt : S+ → R with ‖Xt‖∞ ≤ B, with probability at least 1− δ, it holds that for

all t ≥ 1 simultaneously: (Pt − P̄t)Xt = Õ
(√

SV(Pt,Xt)

n+
t

+ SB
n+
t

)
.

Proof. For a fixed (s, a) ∈ S ×A, by Lemma 34, with probability 1− δ
SA , for any t ≥ 1 such that

(st, at) = (s, a):

(Pt − P̄t)Xt =
∑
s′

(Pt(s
′)− P̄t(s′))(Xt(s

′)− PtXt) (
∑
s′ Pt(s

′)− P̄t(s′) = 0)

= Õ

(∑
s′

(√
Pt(s′)

n+
t

+
1

n+
t

)
|Xt(s

′)− PtXt|

)
= Õ

(√
SV(Pt, Xt)

n+
t

+
SB

n+
t

)
.

Taking a union bound over (s, a) ∈ S ×A, the statement is proved.

Lemma 24.
∑T
t=1

1
n+
t

= O(SA lnT ).

Proof. Define Js,a such that EJs,a = nT (s, a). It is easy to see that ej+1/ej ≤ 2. Then,
T∑
t=1

1

n+
t

≤ SA+
∑
(s,a)

Js,a∑
j=1

ej+1

Ej
≤ SA+ 2

∑
(s,a)

Js,a∑
j=1

ej
Ej

= O (SA lnT ) .
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Algorithm 6 SVI-SSP without knowledge of B?
Parameters: failure probability δ ∈ (0, 1).
Define: L = {Ej}j∈N+ , where Ej =

∑j
i=1 ei, ej = bẽjc, and ẽ1 = 1, ẽj+1 = ẽj + 1

H ej .
Initialize: B ←

√
K

S3/2A1/2 , H ← d 4B
cmin

ln 4B2SAK
cmin

e2, C ← 0, t← 0, s1 ← sinit.

Initialize: for all (s, a, s′), n(s, a, s′)← 0, n(s, a)← 0, Q(s, a)← 0, V (s)← 0, Ĉ(s, a)← 0.
for k = 1, . . . ,K do

repeat
Increment time step t +← 1.
Take action at = argminaQ(st, a), suffer cost ct, transit to and observe s′t.
Update visitation counters: n = n(st, at)

+← 1, n(st, at, s
′
t)

+← 1.
Update cost accumulator C +← ct, Ĉ(s, a)← ct.
if n ∈ L then

Update empirical transition: P̄st,at(s
′)← n(st,at,s

′)
n for all s′.

Compute ι← ln 2SAn
δ , ĉ← Ĉ(st,at)

n , and bonus b← max
{

7

√
V(P̄st,at ,V )ι

n , 49Bι
n

}
.

Q(st, at)← max{ĉ+ P̄st,atV − b,Q(st, at)}.
V (st)← argminaQ(st, a).

if ‖V ‖∞ > B or C > KB + x(B
√
SAK +BS2A) then

B ← 2B,H ← d 4B
cmin

ln 4B2SAK
cmin

e2, C ← 0, and update x.

n(s, a, s′)← 0, n(s, a)← 0, Q(s, a)← 0, V (s)← 0, Ĉ(s, a)← 0 for all (s, a, s′).
if s′t 6= g then st+1 ← s′t; else st+1 ← sinit, break.

E.5 Parameter-free Algorithm

Following [Tarbouriech et al., 2021b], we divide the learning process into epochs indexed by φ. We
maintain value function upper bound B initialized with

√
K

S3/2A1/2 and cost accumulator C recording
the total costs suffered in the current epoch. In epoch φ, we execute an instance of Algorithm 3 with
value function upper bound B. Moreover, we start a new epoch whenever:

1. ‖V ‖∞ > B,

2. or C > KB + x(B
√
SAK +BS2A).

Here, x is a large enough constant determined by Theorem 5, so that when B ≥ B?, we have with
probability at least 1− 12δ:

C − V ?(sφinit)− (K − 1)V ?(sinit) ≤ x(B?
√
SAK +BS2A),

where sφinit is the initial state of epoch φ (note that Theorem 5 still holds when the initial state is
changing over episodes). Moreover, we double the value of B whenever a new epoch starts. We
summarize ideas above in Algorithm 6.

Theorem 9. With probability at least 1− 12δ, Algorithm 6 ensures RK = Õ(B?
√
SAK+B3

?S
3A).

Proof. Denote by Bφ the value of B in epoch φ, and by Cφ the value of C at the end of epoch
φ. Define φ? = infφ{Bφ ≥ B?}. Clearly Bφ ≤ max{2B?,

√
K/S3/2A1/2} for φ ≤ φ?. By

Theorem 5, with probability at least 1− 12δ, there is at most φ? epochs since the condition of starting
a new epoch will never be triggered in epoch φ?, and the regret in epoch φ? is properly bounded:

Cφ? − V ?(sφ
?

init)− (K − 1)V ?(sinit) = Õ
(
B?
√
SAK +Bφ?S

2A
)

= Õ
(
B?
√
SAK +B?S

2A
)
.

Conditioned on the event that there are at most φ? epochs, we partition the regret into two parts: the
total costs suffered before epoch φ?, and the regret starting from epoch φ?. It suffices to bound the
total costs before epoch φ? assuming K ≤ B2

?S
3A (otherwise φ? = 1). By the update scheme of
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B, we have at most dlog2B?e+ 1 epochs before epoch φ?. Moreover, by the second condition of
starting a new epoch, the accumulated cost in epoch φ < φ? is bounded by:

Cφ ≤ KBφ + Õ
(
Bφ
√
SAK +BφS

2A
)

= Õ
(
B3
?S

3A
)
.

Combining these two parts, we get:

RK =

φ?−1∑
φ=1

Cφ + (Cφ? − V ?(sφ
?

init)− (K − 1)V ?(sinit)) + (V ?(sφ
?

init)− V
?(sinit))

= Õ
(
B?
√
SAK +B3

?S
3A
)
,

where we assume Cφ? = 0 and sφ
?

init = sinit if there are less than φ? epochs.

F Auxiliary Lemmas

Lemma 25. If x ≤ (a
√
x + b) lnp(cx) for some a, b, c > 0 and absolute constant p ≥ 0, then

x = Õ(a2 + b). Specifically, x ≤ a
√
x+ b implies x ≤ (a+

√
b)2 ≤ 2a2 + 2b.

Lemma 26. For any a, b ∈ [0, 1] and k ∈ N+, we have: ak − bk ≤ k(a− b)+.

Proof. ak − bk = (a− b)(
∑k
i=1 a

i−1bk−i) ≤ (a− b)+ ·
∑k
i=1 1 = k(a− b)+.

Lemma 27. ([Zhang et al., 2020a, Lemma 11]) Let λ1, λ2, λ4 ≥ 0, λ3 ≥ 1 and i′ = log2(λ1). Let
a1, a2, . . . , ai′ be non-negative reals such that ai ≤ λ1 and ai ≤ λ2

√
ai+1 + 2i+1λ3 + λ4 for any

1 ≤ i ≤ i′. Then, a1 ≤ max{(λ2 +
√
λ2

2 + λ4)2, λ2

√
8λ3 + λ4}.

Lemma 28. Assume vt : S+ → [0, B] is monotonic in t (i.e., vt(s) is non-increasing or non-
decreasing in t for any s ∈ S+). Then, for any state sequence {st}nt=1, n ∈ N+, we have:
|
∑n
t=1 vt+1(st)− vt(st)| ≤ SB.

Proof.∣∣∣∣∣
n∑
t=1

vt+1(st)− vt(st)

∣∣∣∣∣ ≤ ∑
s∈S+

∣∣∣∣∣
n∑
t=1

(vt+1(s)− vt(s))I{st = s}

∣∣∣∣∣
≤
∑
s∈S+

∣∣∣∣∣
n∑
t=1

vt+1(s)− vt(s)

∣∣∣∣∣ ≤ ∑
s∈S+

|vn+1(s)− v1(s)| ≤ SB. (vt(s) is monotonic in t)

Lemma 29. ([Cohen et al., 2021, Lemma C.3]) For any two random variables X,Y with VAR[X] <

∞,VAR[Y ] <∞. We have:
√

VAR[X]−
√

VAR[Y ] ≤
√

VAR[X − Y ].
Lemma 30. For any two random variables X,Y , we have:

VAR[XY ] ≤ 2VAR[X] ‖Y ‖2∞ + 2(E[X])2VAR[Y ].

Consequently, ‖X‖∞ ≤ C implies VAR[X2] ≤ 4C2VAR[X].

Proof. First note that for any two random variables U, V , we have VAR[U + V ] ≤ 2VAR[U ] +
2VAR[V ]. Now let U = (X − E[X])Y and V = E[X]Y , we have:

VAR[XY ] ≤ 2VAR[(X − E[X])Y ] + 2VAR[E[X]Y ] ≤ 2E[(X − E[X])2Y 2] + 2(E[X])2VAR[Y ]

≤ 2VAR[X] ‖Y ‖2∞ + 2(E[X])2VAR[Y ].

Lemma 31. ([Tarbouriech et al., 2021b, Lemma 14]) Define Υ = {v ∈ [0, B]S
+

: v(g) = 0}. Let

f : ∆S+ ×Υ×R+×R+×R+ → R+ with f(p, v, n,B, ι) = pv−max
{
c1

√
V(p,v)ι
n , c2

Bι
n

}
, with

c1 = 7 and c2 = 49. Then f satisfies for all p ∈ ∆S+ , v ∈ Υ and n, ι > 0,
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1. f(p, v, n,B, ι) is non-decreasing in v(s), that is,

∀v, v′ ∈ Υ, v(s) ≤ v′(s),∀s ∈ S+ =⇒ f(p, v, n,B, ι) ≤ f(p, v′, n,B, ι);

2. f(p, v, n,B, ι) ≤ pv − c1
2

√
V(p,v)ι
n − c2

2
Bι
n ≤ pv − 3

√
V(p,v)ι
n − 24Bιn .

Lemma 32. ([Jaksch et al., 2010, Lemma 19], [Cohen et al., 2020, Lemma B.18]) For any sequence
of numbers z1, . . . , zn with 0 ≤ zt ≤ Zt−1 = max{1,

∑t−1
i=1 zi}:

n∑
t=1

zt
Zt−1

≤ 2 lnZn,

n∑
t=1

zt√
Zt−1

≤ 3
√
Zn.

G Concentration Inequalities

Lemma 33. ([Cohen et al., 2020, Theorem D.1]) Let {Xt}t be a martingale difference sequence
such that |Xt| ≤ B. Then with probability at least 1− δ,∣∣∣∣∣

n∑
t=1

Xt

∣∣∣∣∣ ≤ B
√
n ln

2n

δ
, ∀n ≥ 1.

Lemma 34. Let {Xt}t be a sequence of i.i.d random variables with mean µ, variance σ2, and
0 ≤ Xt ≤ B. Then with probability at least 1− δ, the following holds for all n ≥ 1 simultaneously:∣∣∣∣∣

n∑
t=1

(Xt − µ)

∣∣∣∣∣ ≤ 2

√
2σ2n ln

2n

δ
+ 2B ln

2n

δ
.∣∣∣∣∣

n∑
t=1

(Xt − µ)

∣∣∣∣∣ ≤ 2

√
2σ̂2

nn ln
2n

δ
+ 19B ln

2n

δ
.

where σ̂2
n = 1

n

∑n
t=1X

2
t − ( 1

n

∑n
t=1Xt)

2.

Proof. For a fixed n, the first inequality holds with probability at least 1 − δ
4n2 by Freedman’s

inequality. Then by [Efroni et al., 2021, Lemma 19], with probability at least 1− δ
4n2 , |σ − σ̂n| ≤√

36B2 ln(2n/δ)
n+ . Therefore,

√
nσ =

√
nσ̂n +

√
n(σ − σ̂n) ≤

√
nσ̂n + 6B

√
ln(2n/δ). Plugging

this back to the first inequality gives the second inequality.

Lemma 35. (Strengthened Freedman’s inequality) Let X1:∞ be a martingale difference sequence
with respect to a filtration {Ft}t such that E[Xt|Ft−1] = 0. Suppose Bt ∈ [1, b] for a fixed constant
b, Bt ∈ Ft−1 and Xt ≤ Bt almost surely. Then for a given n, with probability at least 1− δ:∣∣∣∣∣

n∑
t=1

Xt

∣∣∣∣∣ ≤ C(√8V1,n ln (2C/δ) + 5B1,n ln (2C/δ)
)
, (23)

and with probability at least 1− δ we have for all 1 ≤ l ≤ n simultaneously∣∣∣∣∣
l+n−1∑
t=l

Xt

∣∣∣∣∣ ≤ C(√8Vl,n ln (4Cn3/δ) + 5Bl,n ln
(
4Cn3/δ

) )
≤ 8CBl,n

√
n ln(4Cn3/δ), (24)

where Vl,n =
∑l+n−1
t=l E[X2

t |Ft−1], Bl,n = maxl≤t<l+nBt, and C = dln(b)edln(nb2)e.

Proof. Eq. (23) is simply from applying [Lee et al., 2020, Theorem 2.2] to {Xt}t and {−Xt}t. Fix
some l, n ≥ 1. Eq. (24) holds with probability at least 1− δ

2n3 by Eq. (23). By a union bound (first
sum over l, then sum over n), the statement is proved.

Lemma 36. Given α ≥ 1 and a martingale sequence {Xt}t such that Xt ∈ Ft, 0 ≤ Xt ≤ B, with
probability at least 1− δ:

n∑
t=1

E[Xt|Ft−1] ≤
(

1 +
1

α

) n∑
t=1

Xt + 8Bα ln
2n

δ
, ∀n ≥ 1.
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Proof. Define Yt = E[Xt|Ft−1]−Xt. For a given n, by Freedman’s inequality, with probability at
least 1− δ

2n2 :

n∑
t=1

Yt ≤ η
n∑
t=1

E[(Xt − E[Xt|Ft−1])2|Ft−1] +
2 ln(2n/δ)

η
≤ BηE[Xt|Ft−1] +

2 ln(2n/δ)

η
,

for some η < 1
B . Reorganizng terms, we get when η = 1

2Bα <
1
B (note that Bη ≤ 1

2 ):

n∑
t=1

E[Xt|Ft−1] ≤ 1

1−Bη

(
n∑
t=1

Xt +
2 ln(2n/δ)

η

)
≤ (1 + 2Bη)

n∑
t=1

Xt +
4 ln(2n/δ)

η

≤
(

1 +
1

α

) n∑
t=1

Xt + 8Bα ln
2n

δ
. ( 1

1−x ≤ 1 + 2x when x ∈ [0, 1
2 ])

By a union bound over n, we obtain the desired bound.

H Experiments

In this section, we benchmark known SSP algorithms empirically. We consider two environments,
RandomMDP and GridWorld. In RandomMDP, there are 5 states and 2 actions, and both transition
and cost function are chosen uniformly at random. In GridWorld, there are 12 states (including the
goal state) and 4 actions (LEFT, RIGHT, UP, DOWN) forming a 3× 4 grid. The agent starts at the
upper left corner of the grid, and the goal state is at the lower right corner of the grid. Taking each
action initiates an attempt to moves one step towards the indicated direction with probability 0.85,
and moves randomly towards the other three directions with probability 0.15. The movement attempt
fails if the agent tries to move out of the grid, and in this case the agent stays at the same position. The
cost is 1 for each state-action pair. In our experiments, B? ≈ 1.5 and cmin ≈ 0.04 in RandomMDP,
and B? ≈ 6 and cmin = 1 in GridWorld.

We implement two model-free algorithms: Q-learning with ε-greedy exploration [Yu and Bertsekas,
2013] and LCB-ADVANTAGE-SSP, and five model-based algorithms: UC-SSP [Tarbouriech et al.,
2020a]6, Bernstein-SSP [Cohen et al., 2020], ULCVI [Cohen et al., 2021], EB-SSP [Tarbouriech
et al., 2021b], and SVI-SSP. For each algorithm, we optimize hyper-parameters for the best possible
results. Moreover, instead of incorporating the logarithmic terms from confidence intervals suggested
by the theory, we treat it as a hyper-parameter ι and search its best value. The hyper-parameters used
in the experiments are shown in Table 4. All experiments are performed in Google Cloud Platform
on a compute engine with machine type “e2-medium”.

The plot of accumulated regret is shown in Figure 1. Q-learning with ε-greedy exploration suffers
linear regret, indicating that naive ε-greedy exploration is inefficient. UC-SSP and SVI-SSP show
competitive results in both environments. SVI-SSP also consistently outperforms EB-SSP, both of
which are minimax-optimal and horizon-free.

In Table 3, we also show the time spent in updates (policy, accumulators, etc) in the whole learning
process for each algorithm. Our model-based algorithm SVI-SSP spends least time in updates
among all algorithms, confirming our theoretical arguments. ULCVI and UC-SSP spend most time
in updates, which is reasonable since these two algorithms computes a new policy in each episode,
instead of exponentially sparse updates.

6we implement a variant of UC-SSP with a fixed pivot horizon for a much better empirical performance,
where γk,j = 10−6 always (see their Algorithm 2 for the definition of γk,j)
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Figure 1: Accumulated regret of each algorithm on RandomMDP (left) and GridWorld (right) in 3000
episodes. Each plot is an average of 500 repeated runs, and the shaded area is 95% confidence interval.
Dotted lines represent model-free algorithms and solid lines represent model-based algorithms.

Table 3: Average time (in seconds) spent in updates in 3000 episodes for each algorithm. Our model-based
algorithm SVI-SSP is the most efficient algorithm.

RandomMDP GridWorld

Q-learning with ε-greedy 0.3385 0.3773

LCB-ADVANTAGE-SSP 0.3517 0.3982

UC-SSP 14.4472 8.6886

Bernstein-SSP 0.2918 0.4656

ULCVI 15.7128 22.8062

EB-SSP 0.2319 0.4619

SVI-SSP 0.1207 0.1419

Table 4: Hyper-parameters used in the experiments. We search the best parameters for each algorithm.

Algorithm Parameters

RandomMDP

Q-learning with ε-greedy ε = 0.05

LCB-ADVANTAGE-SSP H = 5, ι = 0.05, θ? = 4096

UC-SSP ι = 1.0

Bernstein-SSP ι = 2.0

ULCVI H = 80, ι = 2.0

EB-SSP ι = 0.05

SVI-SSP H = 15, ι = 0.05

GridWorld

Q-learning with ε-greedy ε = 0.05

LCB-ADVANTAGE-SSP H = 5, ι = 0.1, θ? = 4096

UC-SSP ι = 0.5

Bernstein-SSP ι = 0.5

ULCVI H = 100, ι = 1.0

EB-SSP ι = 0.01

SVI-SSP H = 10, ι = 0.01
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