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Abstract

We study the problem of uniformity testing for statistical data that consists of
rankings over m items, where the alternative class is restricted to Mallows models.
Testing ranking data is challenging because of the size of the large domain that
is factorial in m, therefore the tester needs to take advantage of some structure of
the alternative class. We show that uniform distribution can be distinguished from
Mallows model with O(m_l/ 2) samples based on simple pairwise statistics, which
allows us to test uniformity using only two samples, if m is large enough. We also
consider uniformity testing with central and local differential privacy (DP) con-
straints. We present a central DP algorithm that requires O(max{1/eg, 1/y/m}),
where ¢ is the privacy budget parameter. Interestingly, our uniformity testing
algorithm is straightforward to apply to the local DP scenario, since it works with
binary statistics that is extracted from the ranking data. We carry out large-scale ex-
periments, including m = 10, 000, to show that our uniformity testing algorithms
scale gracefully with m.

1 Introduction

Testing whether the data conforms with a model is a fundamental problem in data analysis with
large number of applications in machine learning and data science. A special case of testing is the
uniformity testing, i.e. to distinguish between the case that an unknown distribution accessible via
samples is uniform versus e-far from uniform. Uniformity testing of discrete distribution has a long
history with several applications, and it is well-understood [3\ (7} [11} [12} |29} [31]] as well as under
differential privacy constraints [1} 2 |4]].

In this paper, we assume that the statistical data consists of rankings over m items. The testing
problem that we study is to decide whether the data is generated from the uniform distribution over
rankings, i.e. the probability of observing any ranking is 1/m!, or from a distribution that is e-far
from the uniform one in terms of total variation distance. In general, this testing problem cannot
be tackled based on polynomial sample complexity, because the domain size for ranking data is m!.
Therefore, we restrict the alternative hypothesis class to the Mallows model, introduced by [235]],
a.k.a. the exponential family on rankings. The Mallows model is widely used in ranking statistics
and machine learning. The model has two parameters, the central ranking my € S,,, and the spread
parameter ¢ € [0,1]. Based on these, the probability of observing a ranking = € S,,, is proportional
to gbd(”’““), where d is a ranking distance, such as the number of discordant pairs, a.k.a. Kendall’s
tau distance. There are many applications of the Mallows model in Machine Learning, to name a few,
label ranking [24], online learning [9], recommendation systems [30, 23] and clustering [27].
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Testing is a central problem in analysing output of ranking systems where the goal is to decide
whether the output ranking data deviates from some expected behaviour, or is biased towards some
group of object to be ranked or it is indeed fair (|28 25} [32] and see Chapter 3-4 of [26]]). Significant
attention has been attracted to machine learning systems and their ability to discriminate against
minorities, historically disadvantaged populations, and other protected groups when allocating
resources (e.g., loans) or opportunities (e.g., jobs). For example, the Fair Lending Act — a commonly
used fairness requirement introduced in the USA — is explicitly created to impose such unbiasedness on
financial companies. This policy even has to be respected in audience targeting in online advertising.
Uniformity and parameter testing can be applied to practical settings where we want to collect/provide
evidence that our ranking system has no bias towards some group of users.

In this work, we propose two tests to tackle uniformity testing with the Mallows model as alternative
class of ranking distributions: one of these tests works with just two samples when the number of
items m is large enough, and a more general one, with sample complexity O(1/y/m), works for
arbitrary m.

There are several applications where the data to be analyzed contains sensitive information. However,
the data owner is willing to release some results of analysis based on the data, without revealing
information of the individuals. It may thus be of importance to guarantee that working with sensitive
data needed to test a statistical hypothesis protects sensitive information about the individual records
in the dataset. Differential privacy (DP) is one of the most commonly used privacy preserving
framework [[15| [17] which has been adopted by several companies including Google [18], and
Apple [13]. Differential privacy requires that the output of an algorithm has to be statistically close
on two similar datasets D and D’ that differ in the value of one element which a ranking in our
case. We consider the two most common version of DP: central and local DP. In the central model, a
trusted curator stores the database, and she runs the algorithm which has DP guaranty to analyze the
sensitive data and then the output of the analysis, i.e. accept or reject in case of hypothesis testing, is
released to the public [16]]. Several alternatives to the central model have been proposed that relax
the requirement that the users trust the curator to store their private data, for example local DP (LDP).
In the local model, each user adds noise to her own data and responds to the analyst directly [[19].
Interestingly, our uniformity testing algorithms can be easily applied in the LDP setting. We can
summarize our main results as follows:

* We devise a uniformity test which works based on two samples when m is large enough
(Subsection [.1)

* We introduce a uniformity test that works for arbitrary m and has sample complexity
O(m~1/?) (Subsection

* In the central DP setting, one can apply a simple reduction approach which consists of
drawing [1/eg] batches of data, and run a non-DP algorithm on one of the batch selected
uniformly at random. This approach works well when m is large enough, since the uniformity
testing can be solved based on two samples. However, we devise a uniformity test for the
central DP setting which has better sample complexity than the reduction approach with
data batches for small and medium . This result is presented in Section 5}

* We devise a LDP algorithm as an easy extension of our non-private algorithm, in Section [6]

* We demonstrate the versatility of our algorithm running with large m, including m = 10000
on synthetic data, and we show that for large m very small deviation form the uniform can
be detected with high confidence based on two samples in Section|[7}

2 Related Work

Testing uniformity is one of the most fundamental problem in computer science. Goldreich and
Ron [22] considered first uniformity testing problem as a property testing, however with L2 distance.
Paninski [29] came up with a coincidence-based approach that used total variation distance with a
sample complexity O(\/E /€2), where d is the domain size, and it was shown to be optimal by with a
restriction that € € Q(d~1/4). The test statistic used by this optimal test is based on number of bins
into which just one sample has fallen. In principle, this test can be applied to ranking data, since
the test statistic is easy to compute. Nevertheless, the lower bound of this test, which is Q(\/a / 62),
suggests that it is not the proper choice of method even for ranking data with small m, since d = m/!.



The result of Paninski [29] was strengthen further by several authors including [12, [11} 3] so as
the lower bound does work for general € and matching algorithms are also provided. The plug-in
based tests, for example [11]], do estimate the distribution empirically and then it makes a decision by
thresholding the total variation distance between the uniform distribution and the empirical estimate.
Surprisingly, this test is optimal for all ¢, > 0. Batu and Canonne [7] considered generalized
uniformity testing for an arbitrary distribution with unknown domain size and provided a tester with
sample complexity O(d?/3 /¢%). Moreover, Valiant and Valiant [31]] showed how to achieve instance
optimality, when we test arbitrary discrete distributions for uniformity. However, to adapt any of
these tests to our setup is out of question since the size of our domain is m/!, which is huge, and the
test statistic, which is the total variation distance, is already challenging to compute for ranking data.
Therefore, we need to come up with a uniformity test that takes advantage of the structure of the
alternative hypothesis.

Testing with differential privacy has a solid literature as well. Jayadev Acharya and his colleagues

studied uniformity testing with privacy constraint in depth. In [4], the central DP model is analysed
and shown that it can be tackled with G)(E‘Q/E0 + 6*/30 + ﬁifm + ) samples where ¢ is the
privacy budget parameter. Local private uniformity test is analyzed in [1] and had found that it can
be tackled with ©(k /(e - €9)? samples. In a recent work [2], uniformity testing in local differential

private setting was analysed with a special attention to the impact of the public randomness.

3 The Mallows Model, Testing and Differential Privacy

The Mallows Model. The Mallows model or, more specifically, Mallows ¢-distribution is a
parametrized, distance-based probability distribution that belongs to the family of exponential
distributions R = {My » | ¢ € [0,1],7 € S,,} with probability mass function py ., (7) =
pmm0) 7 (4, m0), where ¢ and 7 are the parameters of the model: 7y € S, is the location parame-
ter also called center ranking and ¢ € [0, 1] the spread parameter. Moreover, d(-, -) is a distance metric
on permutations, which for our paper will be the Kendall tau distance, that is, the number of discordant
item pairs dg (7, 7") = 31 ;< j<p L{((0) — 7(j)) (7' (i) — '(j)) < O}. The normalization factor
in the definition of the model is equal to Z(¢, m0) = >, s, Pp (7). When the distance metric d
is the Kendall tau distance we have the identity Z (¢, 7o) = Z(¢) = [[5" im0 @

Testing and Uniformity Testing. We assume a parametric family of ranking distribution R =
{ My |0 € Q} where 2 denotes the set of parameters. The observation consists of n rankings
D,, = {m,...,m,} from a ranking distribution M. The null hypothesis is Hy : M € R, where
Ro C R. As an alternative hypothesis, we consider H; : M € R1(C R) such that Rg N Ry = 0.
Then the test is a function f : S?, — {0, 1}, where 0 corresponds to acceptance, and 1 to rejection.
The input of the fester (or the festing algorithm) is a tolerance parameter € > 0 and a significance
parameter 6 € (0,1). We assume that the tester has sample access of the unknown distribution
M € R. By definition, an (¢, §)-tester outputs a sample size n and a test function f : S?’, — {0,1}
such that, generating D,, from M, we have the following guaranties for f:

1. if the null hypothesis Hy is true, then it outputs reject (f(D,,) = 1) with probability at most
0,ie. E[f(D,)] <9.

2. if M € Ry such that dryv(M, Rg) > e, then it outputs reject (f(D,,) = 1) with probability
at least 1 — §, where dry (M, R;) = inf yper, dryv(M, M').

The testing problem at hand is called uniformity testing, when the null hypothesis is simple and
consists of only the uniform distribution over the domain S,,,. More concretely, in this study, we
assume that the null hypothesis is the uniform model, which is itself a Mallows model with ¢ = 1,
thus Hy : M € Ry = {Mji r,}, with central ranking an arbitrary 7y € S,,,. The alternative
hypothesis class contains those Mallows models that are e-far from the uniform distribution, i.e.
Hi - MeRy={Mgq:drv(Mir, M) > €}, where m € S, is some given central ranking
and ¢ € [0,1).

Differential Privacy. We also consider uniformity testing under a privacy constraint. We work with
two different privacy notions: central and local differential privacy. In case of central differential
privacy (CDP), the data is gathered at a so-called curator, who is trusted. The curator runs the tester,



which is required to output a response that is not too sensitive to small changes in the input. Small
changes can be defined in many different ways for ranking data. We assume that the granularity of
the data is whole rankings. With this in hand, we define the notion of CDP as follows.

Definition 1 (Central DP Property.). A randomized algorithm A with domain S, is (eg,dp)-
differential private if for all S C Range(A) and for all pairs of inputs D = {my,...,7,} and
D’ that differs from D in a single ranking, it holds that

P(A(D) € S) < e“P(A(D') € S) + by
If 6 = 0, the guarantee is called pure differential privacy.

We will also work with a more appealing privacy notion which is often called locally differential
privacy (LDP). LDP is a stronger privacy guaranty than CDP in a sense that the data is required to be
privatized before the tester can observe it. More detailed, the data is assumed to be distributed among
peers and the peers add noise to the data which noise can be modelled as a conditional distribution,
a.k.a. mechanism, W (z|r) for some output space z € Z. The tester only observers the privatized
data (z1,...,2x), so in this case it has no access to the original data as it is to be the case in CDP.
The notion of LDP therefore can be formalized as a condition on W(.|.)

Definition 2 (Locally differentially private.). A mechanism W : S,,, x Z — (0,1] is ey-locally
differentially private if W satisfies
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We assume that each peer has the same mechanism, however there are several setup which assumes
that the mechanism can be different for different peers. If public randomness is used by the tester,
then the LDP guaranty is extended so as the worst-case log likelihood is computed over the domain
of the public random process.

Definition 3 (Locally differentially private with public randomness). A set of mechanisms W,
Sy x Z — (0,1] indexed by U which is the domain of the public random process, is €y-locally
differentially private if it holds that

maxmax max log ————= <
uclU z€Z m,n' €Sy, WU(Z|7TI)

4 Non-Private Uniformity Testing

4.1 Testing Uniformity of Mallows Models with Two Samples

First, we present a simple algorithm that draws two samples 71 and 7o and applies only if ¢, is
bounded away from 1 by Q(1/m). The algorithm computes the Kendall tau distance of 7; and
2. Under the null hypothesis, dg (71, m2) > m(m — 1)/4 — O(y/m?31n(1/4)), with probability
at least 1 — 9, because the distribution is uniform. Under the alternative hypothesis, dy (71, m2) <
20.m/(1 — ¢.) + O(y/m31n(1/9)), with probability at least 1 — J, because the distribution is
concentrated around some central ranking. This algorithm is referred to as 2SAMP and is defined
in Algorithm[I] We show that if ¢ < 1 — Q(1/m), we can distinguish between the two cases by
sufficiently large confidence.

; _ 8 . ;
Theorem 4. Forall § > 0, if . < 1 Y CIRCYr then Algorithm 2SAMP, defined in

Algorithm uses 2 samples and is an (¢, §)-uniformity test of Mallows models.

The proof is deferred to Appendix [A] An alternatlve way of interpreting the guarantee presented
above is that for all m and ¢, with m > ;= — 7, Algorithm 2SAMP is a (¢, §)-test for uniformity

with 51gn1ﬁcance 0 and power under an alternatlve model with spread parameter ¢ at least 1 —
2e */(12m) e should also emphasize that we cannot test uniformity with less than

2 samples, even for very large values of e, since it is impossible to tell whether a single sample is
uniformly distributed or not.

The computational complexity of Algorithm [1]is determined by the time required to compute ¢..
Unfortunately, there is no closed form of ¢, as a function of m and e. However, ¢, can be computed



Algorithm 1 2SAMP: Uniformity Test with Two Samples

1: Imput: significance § > 0, tolerance € > 0
Fix any mo € Sy, and let e = supye(o 1j{drv (M me, Mg,m,) > €}

. _ 8
if ge > 1 m+77\/12 In(2/86)m then

Output L > ¢, too close to 1
Take 2 samples which are denoted by 7y, 72 € Sy,

If dyc(m,m) > ™m=l)  /m?I(L/0) hen Accept Else Reject

AN AN R i

efficiently, using dynamic programming and binary search. We first observe that the total variation
distance of a Mallows model to the uniform distribution can be computed in ©(m?) time, using

Z;f;(om—l)/Z % _ % ) Mah(i, m), where Mah(z, m) denotes the i-th Mahonian numbe | of order

m (i.e., the number of permutations with m items at Kendal tau distance ¢ to the identity permutation).
The Mahonian numbers of order m can be computed in ©(m?) time, using dynamic programming,
while Z(¢) has a closed form [21]]. Furthermore, the total variation distance of a Mallows model to
the uniform distribution decreases as ¢ increases from 0 to 1. Hence, ¢, can be computed efficiently
using binary search and the total variation distance computation above.

4.2 General Uniformity Testing Algorithm

Algorithm 2SAMP works only when ¢, < 1 — Q(1/m), or equivalently, assuming a fixed ¢,
when m is large enough. Hence, we present Algorithm [2| which tests uniformity for arbitrary ¢,
and m. The idea is to consider the relative positions of m/2 disjoint random pairs of items in
_gm/
k=06 (“12\/ ln(lm/é)) samples, where p = LZW /z. Under the alternative hypothesis H; with
any fixed central ranking 7*, for any pair of items ¢ and j, with 7*(j) = 7*(i) > m/8, pis a
lower bound on the bias towards observing ¢ before j in a random ranking from H; (if m is large
enough, a random item pairing results in m; ~ m/8 such item pairs, with high probability). We
define the random variables X f( to be 1, if 7 precedes ¢ + 1 in sample 7y, and —1, otherwise.

i+1)
Yitiy1) = (ﬁ Zif:l X f(i +1)) ’ accounts for the deviation of the pair 7 and ¢ + 1 from uniformity.
Under the null hypothesis, the expectation and the variance of Y;(; ;1) are O(1). Under the alternative
hypothesis, E[Y;(;41)] = Q(kp?) and V[Y;;41)] = O(kp?). Moreover, the random variables
Y12,Y34, -, Yjn—1)m are mutually independent, because they concern the relative positions of
disjoint item pairs in the samples. Therefore, Y = Y12 + Y34 + -+ + Y(;,_1),, should be Oo(m),

under the null hypothesis, and Q(mkpu?), under the alternative hypothesis. The following is proven
in Appendix [B|and shows that we can distinguish between the two cases with adequate confidence.

Algorithm 2 Uniformity Test (UNIF)
1: Input: significance § > 0, tolerance ¢ > 0

2: Let my € Sy, be chosen uniformly at random and renumber the items so that 7o = (1,...,m)

3: Let ¢e = supyepo,1){drv (M zgs Mg ry) > €} > ¢ does not depend on 7
_gm/

4: Let u = Lz;/z andm; = m/8 — \/m1In(2/§)/16.

bd

Take k =1+ [# (%‘52/6) + 104/ "Llfnﬂ)—‘ samples Dy, .
1 1

Let 71, ..., 7 € S, denote the samples
7: Let Xf(iﬂ) =1,ifi =, i + 1, and —1 otherwise.
2
8: Let Yi(i11) = (ﬁ Sh Xf(iﬂ)) for all item pairs (i + 1)
9: LCtY = Y12 —+ Y34 + -+ }/(m—l)m
10: Y <m/2+2y/mlIn(1/6) Then Accept Else Reject

>
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Theorem 5. For all §,¢ > 0, Algorithm[2| with

. @<12 ln(1/6)>
0 m

is an (e, )-finite confidence uniformity test of Mallows models.

1-gm/®

samples, where | = PR

Regarding the dependence of 1 on m and €, we observe that if € = Q(1/y/m), then ¢ > 1 — £ <
_eee/8
unless € is extremely small, i.e., if € = o(1/y/m), 1 is constant in m and the sample complexity of

Algorithmis O(m~1/2).

Algorithm [2| exploits a tradeoff between the bias p towards the right order of 7 and 7 4+ 1 and the
values of ¢ and m. If m is so small that m; = m/8 — \/mIn(2/§)/16 becomes much smaller than
m, the gain in the sample complexity due to raising ¢, to m/8 in 1/u? may be counterbalanced
by the increase in sample complexity due to m/m?3. Then, we can apply the same analysis with
u = ii , essentially regarding all 4(¢ + 1) pairs as consisting of consecutive elements in 7. Then,
under the alternative hypothesis, E[Y] = m(1 + (k — 1)u/?)/2, which gives a sample complexity of

_ (14 ¢c)? [ 481n(1/0) In(1/6)
[ (e )|

for Algorithm 2] More generally, if m is relatively small (so small that m; becomes negligible), a
more careful analysis of Algorithm 2]is possible. Then, in the proof of Theorem[5] we can optimize
the sample complexity by trading off the exponent of ¢, in 1 against the size of m;. As a result, the
sample complexity of Algorithm [2]is upper bounded by a family of functions that have the same form
as (§) in the proof of Theorem[5| Appendix [B] but use different values of m and z, where we can
increase my from m /8 up to m, by subsequently decreasing the exponent of ¢ in y from m /8 to 1.

e~¢/™_ for some constant ¢ > 0. Then, w > which does not depend on m. Hence,

5 Uniformity Test with Central Differential Privacy

The most natural approach to make a testing algorithm differentially private is to add Laplace noise to
the test statistic. The variance of the noise should be proportional to the sensitivity of the test statistic,
which ensures that small change in the input data does not change drastically the output of the tester.
This intuition is formalized in [17, Theorem 3.6]. Accordingly, one can add Laplace noise to the test
statistic Y which is computed in line[9]of Algorithm[2] What remains is to compute the sensitivity
of Y with respect to the input. Assume that we are given two datasets Dy, and D, that consist of k
rankings and differ from each other in one ranking. Then, the sensitivity of the test statistic computed
for Dy and Dy, is |Y (Dy,) — Y (D},)| < 2m. This calculation is presented in Claim[10]in the Appendix.
Therefore, if we add a Laplace noise Z ~ Lap (2m/¢o) to Y in line[9]of Algorithm[2} our algorithm
becomes (e, 0)-differentially private. However, note that V [Lap (2m/eo)] = 8 (m/eo)?, which is
much larger than the variance V [Y] < m of the test statistic of Algorithm 2| Consequently, this
noise results in a large increase of sample complexity. For sake of completeness, this approach is
presented in Algorithm [] in Appendix [C] The only change with respect to (non-private) Algorithm 2]
is that there is an extra Laplace noise added to the test statistic in line[/|and the rejection threshold
has updated accordingly.

The sample complexity of Algorithmis O(1/p?+/In(1/8)/m), whereas the privatized test requires
0 (m\/ln 1/6/ (/.L260)>. This means that the naive approach results in an increase in the sample

complexity by a factor of m3/?/ey. Next, we try to bring this variance down with a truncation
technique applied to Laplace noise.

In Claim[I0] it becomes apparent that the sensitivity of the test statistic Y is proportional to the value
of the following sum of independent Rademacher random variables ’% Z;l/lz Z?Zl X (52 i—1),2i>

which can be up to 2m. To control the variance (and the sample complexity) of the privatized test
statistic, we deal with the case where the value of this sum is Q(y/m/k) separately. This is the



intuition behind Algorithm [3] which is inspired by [10, Algorithm 1], and distinguishes between
different cases. In particular, if the value of the Laplace noise happens to be high, Algorithm 3|

= Q(y/m/k), the algorithm rejects.

. 2
returns a random response, while if ‘ Zm/ Ze 1 (2 i—1),2i

Otherwise, the algorithms performs a randomized version of the uniformity test called UNIF, defined
in Algorithm 2] In this case, we show that the sensitivity of the test statistic (and thus, the sample
complexity) can be upper bounded reasonably well. We refer to the DP algorithm as TRUNC, which
is defined in Algorithm [3]

Algorithm 3 Central DP Uniformity Test (TRUN)
1: Input: significance § > 0, tolerance € > 0, DP parameter €,

2: Sample Z ~ Lap (kgio)

3 i0f |Z] > 56 In % then > True with probability at most ¢
4: Output Accept or Reject with equal probability

5: Let my € S,, be chosen uniformly at random and renumber the items so that 7o = (1,...,m)
6: Let ¢ = Sup¢e[071]{dT\/(M17ﬂ—0,Md;ﬁo) > 6}

m/8

7: Let p = +Z'”/8 and m; =m/8 — /m1In(2/6)/16.

8: Take k samples Dy, = {my,..., 7}, where k is as in Theorem@

9: Let Xl(z+1) =1,if i >, i + 1, and —1 otherwise.
10: 3 | 20 SO S X Z’ >\ /2RB0) | 41y L then
11: Reject
12: else

2
13: Let Y1) = (ﬁ Zle Xf(i+1)) for all item pairs i(i + 1)
14: LetYZ}/l2+}/34+"'+}/(mfl)m
15: B ~ Bernoulli (p) where p = min {1, %}
16: If B=1 Then Accept Else Reject

m/8
% and

1/3
i — 6 max 1 1 1 In"/?(1/6) In(1/6)
53/2\f T UABmMBe2/382/37  Lied

samples is an (g, 0)-differentially private (e, §) -uniformity test of Mallows models.

Theorem 6. For all §,¢,e5 > 0, Algonthmlwzth W=

Theorem [6] has some interesting consequences. First, privacy comes for free in some parameter
regime since the first term of the sample complexity, which is dominant if ¢, is close to 1 and m is not
so large, does not depend on the privacy parameter €y. Second, the sample complexity of TRUNC is
worse than the simple bucketing approach for other parameter regimes. The bucketing approach is a
folklore result to convert non-private algorithms to private ones. It consists of running a non-private
algorithm on [1/eg] number of data batches in parallel, and return one of the outcomes selected
uniformly at random. This approach is (eg, 0)-differentially private and has sample complexity
[1/€o] times that of the non-private algorithm (see e.g., [10, Theorem 2] for the precise reduction
approach). Combining UNIF with the bucketing approach, we obtain a (o, 0)-differentially private

algorithm with sample complexity O ( max{1/(u?€o)+/In(1/6)/m,2/eo}). The bucketing approach
is very efficient in our uniformity testing setup, because the sample complexity is of order m /2
for the non-private algorithm. So, the bucketing approach requires O(1/¢g) samples, if m is large
enough. On the other hand, TRUNC can be superior when ¢, is close to 1 and m is not so large, in
which case the first term of Theorem [6]becomes dominant, as our experimental evidence also justifies.

6 Uniformity Test with Local Differential Privacy (LDP)

Algorithm [2] can easily extended so as it satisfies the LDP constraint, since it extracts a binary
sequence from the rankings in Line [7 of Algorithm[2] Adding randomized response (RR) to this bit



sequence componentwisely results in an simple LDP uniformity testing algorithm. Let us denote
the conditional probability of RR by W (.|.), for which W(—1| — 1) = W(+1|+ 1) = % and
W (=1 +1) = W(+1| = 1) = 7. As a consequence, if all X, ,) are passed through a channel

e 41" i(i+1
W (.|.) with v = 2¢¢/m, then the LDP guarantee is satisfied. To see that, we consider two rankings
7 and 7', for which fr (7) = (-1,...,—1) and f,(7") = (1,...,1) for a fixed 7. Then
2
P((17a1)|ﬂ-) m e’$+1 my
log =7———F~=7log——=— =¢
P((1,.... )x") 2 =T 2

We present our LDP uniformity testing algorithm so as it requires public/shared randomness in the
form of a random ranking that is sent to each peer beforehand. The curator algorithm is defined in
Algorithm[3] and the peer algorithms in Algorithm[6] in Appendix[F] The LDP algorithm is based on
Algorithm [2|and uses the same test statistic. If public randomness is available, we can implement
1-¢m/8 v

1+i§"’/ 5 ﬁ
complexity, if ¢, is close to 1 and m is relatively large. If only private randomness is available, we

implement Algorithm [2{with a fixed item pairing and pj, = ;iﬁ . i:;i (see also the discussion after
Theorem [5]on how the choice of item pairing affects the value of 1 and the sample complexity). The
analysis is essentially identical to the proof of Theorem [5] since the mean value and the variance of

the test statistic are m /2 and at most mn, respectively, under Hy, and are given by the same functions
of p (or (), under Hy. The only essential difference is the decrease of 1 (or py) by a factor of Zzﬁ,
to account for the randomized response. The discussion above is summarized by the following:
Theorem 7. For all 6,¢,ey > 0 and v = 2¢¢/m, Algorithm@and Algorithm @form an (e, 0)-finite
confidence uniformity test and (g, 0)-locally differentially private for Mallows modesls with sample
complexity:

Algorithm [2{ with random item pairing and pg = which leads to an improved sample

1 140 /® e+l
a random ranking is sent by the curator algorithm to each peer.

/ _gm/
e k=0 (12 ln(lm/é)), where g = A | if m-bit public randomness is used and

— 1 /In(1/9) 1 l=¢e =1 ; ;
k=0 (%2 —-t=|. where jij = Tror e il if only private randomness is used.

e’ —1 . 2¢

Since for v = 2¢o/m, & 71 ~ 50, the dependence of the sample complexity of our LDP algorithm

on g is ©(1/€y?) and on m is O (m?3/2).

7 Experiments

We shall present synthetic experiments to assess the performance of the proposed tests. We assess the
power of these tests which is the probability of the rejection for various spread parameter ¢. Every
testing algorithm we presented has a tolerance parameter € and significance 6. We used § = 0.05
in every case. The tolerance parameter ¢ does have impact only on the sample size of the testing
algorithms. Instead of setting € to a certain value, we plotted the power of the algorithms with
various sample size. In this way, we could compare the performance of the testing algorithms based
on the same number of samples as input. Each result we report here are computed based on 1000
repetitions. The central ranking of each model which the random samples are generated from, is
selected uniformly at random in each each run independently.

7.1 Uniformity Testing Based on Two Samples

In the first set of experiments, we compare the uniformity testing algorithm based on two samples,
called 2SAMP which is defined in Algorithm[I]and the more general algorithm, called UNIF which
is defined in Algorithm [2]running with two rankings as input. We assess the power of these tests
which is the probability of the rejection for various spread parameter ¢. The results are plotted in
Figure[I] The 2SAMP algorithm does work already for m = 100 and it consistently outperforms
UNIF based on two rankings. This can explained by the fact that 2S AMP computes pairwise statistic,
which is the Kendall distance, based on each pair of items, whereas UNIF takes into account only
the independent pairs. It is worth to emphasize that these tests can detect very small deviation from



the uniform for large m. More concretely, it is detected with zero error, i.e. power is equal to 1, when
the spread parameter deviates from 1 with a margin of 2 x 10~° in case of m = 10000.

m=100 m =500 m=1000 m=10000

—— UNIF
.—— 2SAMP \

0.0 .0 — 0.0
0.96 0.98 1.00 0.980 0.985 0.990 0.995 1.000 0.9900 0.9925 0.9950 0.9975 1.0000 0.9996 0.9997 0.9998 0.9999 1.0000

Figure 1: Power function of 2SAMP introduced in Subsection[#.T|and UNIF introduced in Subsec-
tion 4.2| with various parameters of the alternative model. The spread parameter of the underlying
Mallows model is shown on the x-axis.

7.2 General Uniformity Testing with Arbitrary m

Testing uniformity was one of the motivation of Mallows when he came up with his model (see
Section 11 in [25]]). Mallows assumed that the central ranking is known and proposed a asymptotic
test based on the normal approximation of the sufficient statistic of his model. Even if there is no
guaranty of how good this normal approximation is, it seems reasonable when the central ranking
is fixed, since the distribution of the sufficient statistics is symmetric due to the fact that Mahonian
numbers are symmetric, i.e. Ny, = Ny, (m—1)/2—1 Where Ny is the kth Mahonian number of order m.
One can compute the mean and variance of sufficient statistic based on [20] as

LN m(m —1)
ET{'NMI,'NO [Tm) (ﬂ-)} = Z Lnjj;l = f
=0

" (2m + 5)(m — 1)
m(2m +5)(m —1
Vﬂ'w/\/{l,ﬂ-o [Tﬂ'o (7T)] = 72 :
This approximate solution is easy to use, since uniformity testing boils down to testing equality of
expectation of normal distributions with known variance. Here we consider a more general testing
problem where we do not assume that the central ranking is known and fixed. We refer to this
approach as Mallows approximate test (MA). In this test, the normal approximation seems not so
accurate as Figure 2| shows. The power of the test converges to 1 very slowly as ¢ is getting far from

zero. Algorithm UNIF achieves a power that is close to one much faster.

m=10 m=100 m=1000 m=10000

-5 VWi
— MA(n=2)

g
S o5{—u_
&

—— MA (n=100)

Power
°o
n

— MA(n=2)
. —— UNIF (n=100) \ — UNIF(n:Z)W —— UNIF (n=2)

—— MA (n =10000)
—— UNIF (n=10000)

0.0 0.0 0.01"
0.96 0.98 1.00 0.980 0.985 0.990 0.995 1.000 0.9900 0.9925 0.9950 0.9975 1.0000 0.99750.99800.99850.99900.99951.0000
[

Figure 2: Power function of MA and UNIF algorithms with various number of items m €
{10, 100, 1000, 10000} and various sample size n € {10000, 100, 2, 2}, respectively.

7.3 Uniformity Testing with Privacy

In this set of experiments, we compare the performance of the presented DP algorithms including
the following three of them: (1) bucketed UNIF which consists of running the UNIF algorithm on
[1/€o] batches of data indpendently and take the output of one of the runs uniformly at random. We
refer to this approach as BUNIF. (2) We run the DP algorithm with truncated Laplace noise that
is defined in Algorithm 3] which we refer to as TRUNC. (3) We run also the locally differentially
private algorithm which is defined in Subsection[6] We set ey = 0.33 thus the BUNIF power curve
corresponds to the UNIF power curve with 1/3 of the sample complexity.

The power curves of the algorithms are shown in Figure [3] Note that the TRUNC does outperforms
BUNIF when ¢ is close to 1, since in that case y is very close to 1 and the first term is the dominating



$m=100 $m=500 $m=1000

0.90 0.92 094 096 0.98 1.00 0.980 0.985 0.990 0.995 1.000 0.980 0.985 0.990 0.995 1.000

Figure 3: Power function of BUNIF, TRUNC and LDP algorithms with various number of items
m € {10,100, 500, 1000} and various sample size. We set the sample size for central DP algorithms,
i.e. BUNIF and TRUNC, to n € {10000, 1000, 1000, 100}, respectively. In case of LDP, the
sample size was set to n = {100k, 200k, 300k, 300k }. The privacy budget €y was set to 1/3.

one in Theorem[6] Nevertheless, the power of BUNIF algorithm converges faster to 1 when the
underlying model getting farther from the uniformity. In general, the DP algorithms requires much
more samples than the non-private algorithms. This difference is much more pronounced in case
of LDP. However, local differential privacy is well known to provide some of the strongest privacy
guarantees as it is impossible for an adversary to know the true ranking from the output of the channel.

8 Conclusion and Future Work

We introduced uniformity testing algorithm with a sample complexity upper bound of order O(1/+/m)
for ranking data when the alternative model class is constituted by the single parameter Mallows
model. The proposed methods can work based on 2 samples, when m is large enough. We also
devised testing algorithms in the central and local differential privacy framework. We demonstrated
the versatility of these testers on synthetic data. We found that they are scalable, since they could
handle large m including m = 10000, and are able to detect non-uniformity with very small error, i.e.
1 — ¢ ~ 10~° difference could be detected with zero error based on two samples when m = 10000.

One open question is to provide lower bounds on the sample complexity of uniformity testing of
Mallows models. It turned out that this is a very challenging problem in the non-private case since,
for example, using information theoretic lower bounding technique based on LeCam’s theorem, one
needs to upper bound KL divergence KL(M, ., M1 r,) = In* ¢, V?1In Z(€) where € € [In ¢, 0).
For doing so, one needs to have an upper bound for the difference of ¢. from 1 in terms of ¢
and m. Note that ¢. depends on the total variation distance, thus it seems unavoidable to get a
bound for Z(¢.) as well, which is a very hard nut to crack. So we leave this lower bound as future
work. Nevertheless, note that with m = 2, the single parameter Mallows class includes the class
of Bernoulli distributions, thus the lower bounds that are devised for private uniformity testing of
Bernoulli distributions also apply to private uniformity testing of Mallows models. More concretely,
[5] showed that testing Bernoulli with parameter in a central DP setting cannot be done using o(1/¢g)
which implies that our central DP algorithm has optimal dependency on the privacy budget parameter.
On the other hand, [[6] showed that in the LDP setting, a lower bound on the sample complexity of
testing is €2(1/€92). Theorem |7/ matches this lower bound when m = 2, since then ¢” — 1 & ¢, and
the sample complexity bound is O(1/€,?) in this case. Lastly, a natural extension of our work is to
consider more fine grained atom in the privacy setting, namely one might want to protect each pair of
the data instead of whole rankings.
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Supplementary material for “Private and Non-private
Uniformity Testing for Ranking Data”

A Proof of Theorem

. . 8 . .
Theorem 8. Forall 6 > 0, if . < 1 PN CIRCY then Algorithm 2S AMP, defined in

Algorithm uses 2 samples and is an (e, §)-uniformity test of Mallows models.

Proof. of TheoremFor each item j, we define V; (o, 7) as the number of discordant item pairs in
rankings o and 7 involving item j, i.e. Vj(o,m) = >, o, ; I{(0s — 0;)(m; — 7;) < 0}. We observe
that d (o, ) = > 7L, Vj(o, 7). We also observe that if ¢ ~ My, x,, then the random variables
V; (o, mo) are independent and follow a truncated geometric distributiorﬂ TG(o,5—1) (seee.g., [8
Section 5]). Under the null hypothesis, the Kendall tau distance dg (71, 72) is the sum of m — 1
independent uniform random variables 7G(1,1),...,7G(1, m — 1). Therefore,

Eldk (71, 72)] = Z_ j/2=m(m—-1)/4

Applying the Hoeffding bound and using that Z;n:_ll j2 =m(m —1)2m — 1)/6 < m3/6, we
obtain that

]P dK(ﬂ'l,’]Tg) S —

mim—1)  [m? ln(1/5)] s
4 12 -

Therefore, the probability that Algorithm [I|rejects under the null hypothesis is at most ¢.

Since the total variation distance of M ~, to M r, is decreasing with ¢, we can assume that the
spread parameter of the alternative hypothesis is ¢.. Under the alternative hypothesis, the Kendall tau
distance dg (o, mg) of any o ~ M_ . to the central ranking 7o is the sum of m — 1 independent
truncated geometric random variables TG (¢, 1), ..., TG(¢, m — 1). Therefore,

m—1
me. (k + 1)kt
]EUNM¢E,7\'O [dK(O—7 7'['0)] = 1 _ ¢ - Z 1 k+1 N
€ k=1 - €

As before, a standard application of the Hoeffding bound implies that for any o ~ Mg_ x,,

m31n(2/0)

Pld;((a, ) = Eldx (o, m0)] + 12

]gd/z.

By the triangle inequality, we obtain that with probability at least 1—6, d (1, m2) < 2E[dk (o, mo)]+
24/ %. Therefore, under the alternative hypothesis, for all ¢, that satisfy

m—1
8 < mee 3 W) + v/ 12m?In(2/6) < m(m —1), (1

1_¢e k=1 1- §+1

with probability at least 1 — §, dg (w1, m2) < m("z_l) — hllél/ 9 and Algorithmrejects. To

. . _ 8 . .
simplify (T, we note that ¢, < 1 (v yeTCY implies (T)).

‘ 2A truncated geometric distribution TG (¢, £) with parameters £ > 1 and ¢ € [0, 1] has probability mass
(1 —¢)/(1 — ¢**1) oneach i € [¢], and 0 everywhere else. E.g., TG (¢, 1) is a Bernoulli distribution with
success probability ¢/(1 + ¢), TG (¢, 00) is a geometric distribution, and 7G(1, £) is a uniform distribution in

{0,...,£}. Itis not hard to verify that Ex 7g(e,0) [ X] = % — L+ 1)1?;%Jrl (see e.g., [8l Lemma 21]).
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B Proof of Theorem/[3

Proof. of Theorem [5|For simplicity, we assume that m is even. We observe that for each item pair 4

and7 + 1,
2

k k
kE[Yiis1)] =V ZXf(iH) +E ZXf(Z.H)] (2)
=1 =1
and
& 4
K VY1) =E (Z Xf(zﬂ)) — B’ &)
=1

We also observe that {Xf(i “)}z " are mutually independent. = The same holds for
€

Y12,Y34, ..+, Y(m—1)m, because for any fixed central ranking 7* and any sample 7, Xf(i+1) is
determined by the independent random variables V; (g, 7*) and V; 11 (7, 7*), see in Lemma 2 of [8].

Under the null hypothesis, E[X f(? _H)] =0and V[X f(i +1)] = 1. In addition, under null hypothesis it
is easy to see that

k 4 k
E <Z Xf(iﬂ)) = zik > (llf) (21 — k)* = k(3k — 2)
=1 £=0

By @) and @3), E[Yj(;4+1)] = 1 and V[Yj(;41)] = 2 — 2 < 2, which implies that E[Y] = m/2 and
V[Y] < m. A standard Chernoff bound implies that under the null hypothesis (see for example
Section 1.7 in [14]), the probability that Algorithm 2]rejects is

PY >m/24 2y/mIn(1/§)] <6

We proceed to analyze the case where the samples are drawn from the alternative hypothesis. Let
7* be the (unknown fixed) central ranking of the alternative hypothesis. We next show that since g
is a random ranking, a constant fraction of item pairs i(i + 1), for which the estimators Y;; 1) are
computed, are at distance at least m/8 in 7* with probability at least 1 — §/2. One way to generate
o is by repeatedly selecting a uniform random item from 7*, without replacement, and put it at the
next available position of . Then, we observe that the following holds for the first 7m/2 items of
7o : for any fixed item 7o (2), with odd 4, the probability that 7o (i 4 1) is at distance at least m/8
in 7* to mo(4) is at least 1/2, due to the fact that my(¢ + 1) is chosen uniformly at random from the
remaining items of 7*, which are no less than m /2. Hence, the expected number of consecutive
item pairs i(¢ + 1) in 7o that are at distance at least m /8 in 7*, is at least m /8. A standard Chernoff

bound shows that with probability at least 1 — 6/2, at least m/8 — /mIn(2/§)/16 pairs i(i + 1)
have items that are at distance at least m /8.

As in the proof of Theorem [5] we assume that the spread parameter of the alternative hypothesis is ¢..
It is not hard to verify that for any ¢ > 1, (i) 1/(1+ ¢?) is the probability that for any item pair ¢ and j,
with 7*(j) — 7*(¢) = ¢ in the central ranking 7*, ¢ precedes j in a sample 7y from M,,_ +; and (i)
1/(1+ ¢2) is a lower bound on the probability that for any item pair ¢ and j, with 7*(j) — 7*(i) > ¢
in %, ¢ precedes j in 7y. Hence, throughout the proof, for simplicity and without loss of generality,
we always consider two extreme cases for item pairs (7 + 1) for which the estimators Yj(; 1 are

computed. Specifically, we assume that there are m; = max{m/8 — /m1In(2/6)/16,0} pairs
_m/8
(7 + 1) that appear at distance m /8 in 7*. For them, we use y = Ld):n/s as a lower bound on the

bias towards observing 7 preceding ¢ 4 1 in a sample 7, from M,_ ~. For convenience, we refer
to these pairs as good and to the remaining pairs as bad. For the remaining my = m/2 — m, bad

pairs i(i + 1), we assume that ¢ and ¢ + 1 appear at consecutive positions in 7* and use po = }:f;

as a lower bound on the bias towards observing ¢ preceding ¢ 4 1 in a sample 7, from Mgy, -.
Doing so and conditioning on the event of the previous paragraph, which happens with probability
atleast 1 — §/2, we essentially assume the distribution of Y that corresponds to the worst case for
Algorithm
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Then, under the alternative hypothesis, E[X f(z. wpy)® = p?and V[X f(l. oyl =1 -4 forall my

good pairs, and E[X{, ,)]* = p3 and V[X[;, )] = 1 — u3, for all m; bad pairs. By () and
@). E[Yi(i+1)) = 1 — p® 4 kp? and V[Y;;41)] < 6kp® + 18, for all my good pairs, E[Y;(;41)] =
1—p3+kp3 and V[Y;(;11)] < 6kp3+18, for all my bad pairs. Therefore, E[Y] > m/2+my (k—1)u?
and V[Y] < 3mku2 + 9m, because po < . Then, a standard Chernoff bound implies that under the
alternative hypothesis,

PlY <E[Y] —2/In(2/8)V[Y]] < /2

Therefore, under the alternative hypothesis, for all £ that satisfy

E[Y] —24/In(2/8)V[Y] > m/2 4+ 24/m1n(1/4), “)

with probability at least 1 — 6/2, Y > m/2 + 24/mIn(1/6) and Algorithmrejects. Under the
worst case assumption that if the number of good pairs is less than m, Algorithm [2]accepts, we get
that for all k that satisfy (@), Algorithm 2|rejects with probability at least 1 — 4.

Using the lower bound on E[Y] and the upper bound on V[Y'] above, one can verify that

12mIn(2 1 In(2
o1y 2mI/8) 10 fming2/o) s
mip H my

implies (). To get the asymptotic bound of the theorem, we use that for most reasonable values of m

and 6, my = ©(m), and my > In(2/6), which implies that |/ 2E/%) > In(2/0) O

ma - mi

C Naive Central DP Approach

Algorithm 4 Central Uniformity CDP test with Laplace noise (LAP)

1: Input: significance § > 0, tolerance € > 0, DP parameter ¢
2: Fix any mg € Sy,
3: Let ¢e = supgepo,1{drv (Mi,zo, Mg o) > €}

4: Take k = Eiﬁegz (481][;(7’1/5) + 164/ ln(:n/é)) samples Dy, .

5: Letmy, ..., € Sy, denote the samples

6: Xf(iﬂ) =1,ifi =, i + 1, and —1 otherwise.

2
. _ 1 k ¢
¥ - (G (5 0)
8: LetY' =Y/, +Y{, +--+Y/ +Lap<2(—’:)

(m—1)m

9: if Y < m/2+2y/m(1+ (8m/ep)?)In(1/5) then

10: Output 0 > ACCEPT
11: else
12: Output 1 > REJECT

Theorem 9. For all 6,¢ > 0, Algorithm[d| with

(4N (48 1 6m [ 1
k—@<(1_¢6)2 mln5+ « ln5
sample is an (e, 9) finite confidence test and (eg, 0) differential private for Hy : M € Rg = {M1 r,}
vs. HH: M e Ry = {M¢,7r : dTV(Ml,ﬂ'othﬁyﬂ') > 6}‘

Proof. We start with computing the sensitivity of the test statistic for two neighbouring data D and
D’ which differs in one single ranking from each other.

Claim 10. For two neighboring datasets D and D' which differs in one single ranking from each
other; it holds that
2m(k — 1
v (o) -y < 2D
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Proof. Proof of Claim[I0]Simple calculation yields that

m/2 ) & 2 & 2
|Y(D)_Y(D/)|: Z <\/EZX(Z21'—1),2¢> _< Z (21 1), )

O

The privacy guaranty does hold because of Theorem 3.6 of [[17/]. Therefore we focus on correctness.
We need to compute the increase in variance that is resulted in by the Laplace noise where Z ~

Lap (26—’0”)
* Under null, we have E[Y’'] = E[Y + Z] = m/2 and

V[Y'] = V[Y] + V[Z] < <1 + f:;)

A standard Chernoff bound implies that under the null hypothesis (see for example Section
1.7 in [14]), the probability that Algorithm 2]rejects is

Y > m/2 + 2\/ (1 + 8) ln(l/é)}

Thus the algorithm accepts under null hypothesis with probability at least 1 — 4.

P

* Under alternative, we have E[Y'] = E[Y + Z] = m(1 — p? + ku?)/2 as in the proof of
Theorem[3land that

m 2
VY] = V[Y] 4 V[Z] < 3mkp® + 9m + 8 (60)

To reject the alternative with probability at least 1 —, k should be chosen so as the following
must hold:

m/2+2 |m- (1+fo> n(1/6) <

<E[Y'] - 2 n(1/8)V[Y]

1— 12+ kp? 1
=t kin) o L Gk 4 sm) + 8 In~
2 5 ©) "3

and equivalently it must hold that

2(
0<W—2\/3mkﬂ21n(1;+83—2\/§. ©)

1 (48 1 6m
k= — (2mz In >
p2< 6 €0 (5)

it yields that (6)) does indeed hold.

By setting,
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D Proof of Theorem

Proof. of Theorem@ First, we adapt [10, Claim 1], which applies to Laplace random variables, in
order to control the variance stemming from Laplace noise. Hence, we get that:

Claim 11. Let Z ~ Lap (%). Then, for all 5 > 0, it holds that

2 1
<7 = — .
IP’<|Z = 01m§> 1-6

Regarding line [I0] of Algorithm[3] we need to show that under the null hypothesis, the condition in
line[T0]is not satisfied with hlgh probability. The following follows from the Hoeffding bound, applied
to mk /2 random variables X, (2i—1),2i of the double sum in llne | and the fact that X (2i—1),2; are

Rademacher random variables under the null hypothesis.

Claim 12. Let us suppose Hy. Then for all § > 0, it holds that

2m/2k

2In(2/6
=N Xfi1yai| < 2RO Sy

mk = mk

Using Claim|12(and the fact that |Z| < 5 ie In % due to the assertion in line , we obtain that under
the null hypothesis, the condition in line [10]succeeds with probability at most ¢ .

In the remaining analysis, we assume that m > 121n(2/d3), so that m; > m/16 under the null
hypothesis, with probability at least 1 — J5 (i.e., a constant fraction of item pairs i(¢ + 1) appear

at a distance at least m/ 8 in the central ranking 7* of the null hypothesis, under H;, with high
1 Z:jz However, we should highlight that essentially the same analysis
can be applied to any m, with appropriately chosen values of p and m;. More specifically, as
explained after the proof of Theorem [3] if m is not large enough, we can tradeoff the exponent of ¢,
in p against the size of m, so that m; = O(m), under the null hypothesis, with probability at least
1 — d3. Moreover, if m is small, we can use p' = ;g , in which case we focus on the worst case
where all m/2 item pairs (¢ 4+ 1) appear at consecutive positions in the central ranking 7* of the null

hypothesis, with certainty.

probability), and use p =

The next claim is useful to distinguish between Hy and H; in line[I6]of Algorithm 3]

Claim 13. Let us denote Y' = 1:31(;?7,:'1/12)). Then, if m > 121n(2/63), we have that

s Under Hy, E[Y'] =0 and V[Y'] < —2%6

—= mut(k—1)2"

* Under Hy, E[Y'] > 1, with probability at least 1 — §3, and VY] < m,};&(j 7+ muff,g‘* LR

Proof. of Claim[13] In the proof of Theorem|[5] we show that under the null hypothes1s E[Y] =m/2,
which implies that E[Y’] = 0, and V[Y] < m, which implies that V[Y”] < ﬂ

Moreover, in the proof of Theorem 5] we show that under the alternative hypothesis, the number of
item pairs i(¢ + 1) appearing at a distance at least m/8 in the central ranking 7* of H; is at least
my = max{m/8 — \/mlIn(2/d03)/16,0}, with probability at least 1 — d3. Then, m > 121n(2/d3)
implies that m; > m/16, w1th probablhty at least 1 — d3. Under the assumption that m; > m/16,
E[Y] > m/2 + mq(k — 1)u2, shown in the proof of Theorem 5] implies that E[Y’] > 1.

18



As for the variance, under the alternative hypothesis, in the proof of Theorem [5| we show that
V[Y] < 3mku? + 9m, which implies that:
s 256 (3mku® + 9m)
VY] < m2pt(k — 1)2

768k 2304
(k=12 " gt (e — 172

1536 2304

= 2k —1) | mpi(k—1)2

assuming that & > 2. O

Applying the one-side Chebyshev’s inequality along with Claim[I3] we obtain that under Hy, for any
t>0,

256
> —
Py =1 < 2mpt(k —1)2° @)

while under Hy, for any ¢ > 0,

1536 2304
PY'<1-t)< 8
(Y=< )= ?mu?(k —1) + t?mu(k —1)2 ®

First, we analyze correctness. Under the null hypothesis H, Algorithm [3|accepts in line [3| with
probability d2 /2. Then, the algorithm gets to line with probability 1 — do, where Hj is rejected
with probability at most §; based on Claim[I2} Finally, the Algorithm gets to line [I6] with probability
atleast (1 — d2)(1 — d1) where, based on (7)), for any fixed ¢ > 0, H gets accepted with probability

at least 056
1-H)(l—- ——++—-—
-0 (1~ =12

Thus the probability of acceptance is lower bounded by

02 256
— 1-90)1-0)0-)(1- —+n——

2 (-8 -0) (1- )
Setting ; = 02 =t = 4/6, we get that forany k > 1+ [Migm], under Hy, Algorithmaccepts
the null hypothesis with probability at least 1 — 6.

Under H;, Algorithm [3|rejects the null hypothesis in line [3| with probability d5 /2. We assume that
under the alternative hypothesis, the probability of rejection in line[I0]is 0. Then, based on (8)), for
any fixed ¢ > 0, we conclude that under the alternative hypothesis, the probability of rejection is at
least:

0o 1536 2304

— 1—-03)(1—=62)(1—¢)(1— —

2 + 3)( 2)( ) < t?mp?(k—1)  Pmpt(k — 1)2>

Setting 6, = d3 = t = §/6, we get that for any k& > 1 + [22L184] 4 [53/25:26ﬁ1, under H;,

83u2m

Algorithm [3|rejects the null hypothesis with probability at least 1 — ¢.

In summary, the sample complexity required for correctness is

B> 14 45 221184 n 576 o 1 1 L 1
max = _ — —_
= 5322 /m | 7| 83 pPm §3/2p2\/m p? \ 832 /m " 63m
We proceed to analyze privacy, by adapting the approach in the proof of [10, Theorem 3]. We first
observe that the minimum probability of any output in Algorithmis 02 /2. This holds because in

line , if |Z;| > %250 In é, which happens with probability o, the algorithm returns either 0 or 1,
with equal probability.

Using that the minimum probability of any output in Algorithm[3]is d/2, we can reduce (0, (d2€0)/2)-
privacy to (eg, 0)-privacy as follows:

P(M(D) =b) < P(M(D') = b) + (d2¢0)/2
< (1+e)P(M(D') =b)
< eP(M(D') = b)
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where b € {0, 1}, and D and D’ differ from each other in a single ranking.

We next show that Algorithm . is (0, (d2€0)/2)-private. When Algorithm . 3| returns in line [3] the
output does not depend on the input. Hence this part of the algorithm is fully private.

Regarding line[10] let us consider two neighboring datasets D and D’. Switching from D and D’ can
change at most m /2 terms in the following sum:

m/2 k

2
mk Z ZX(EZifl),Zi )

i=1 (=1

where corresponding terms that differ from each other differ by 2. Then, the sensitivity of the sum
is 2/k, and by [[17, Theorem 3.6], adding Laplacian noise Z ~ Lap (
part of the algorithm (0, (d2€9)/2)-private.

ﬁ to the sum makes this
2€0

Finally, when the algorithm returns in line[I6] we compute the sensitivity of the test statistics for
neighboring datasets D’ and D’, which differ in one ranking, as follows:

16 |2 k ’ a ’
|Y/(D)—Y/('D/)|—m Z (\fZ (2i—1), ) ( Z (2i—1), 21)

=1 J4

m/2
64
< mpk(k — 1) Z (ZX(2Z 1).2 1)

i=1 \/l=1

m/2
_1 mk_z;(ZXQz 1),2i )

32 2In(2/6,) 4
In —
w2(k—1) < mk * 02keg 52 * >

12(

IN

Using that 6; = d3 = /6, as in the correctness part, each term should be smaller than daep/2 =
deo/12. Therefore,

kzumaXH 6710 /*(12/6) H%\/ln(es/awﬂj% ”
€0

pA3m1/3¢,2/352/3 11600

where the last term can be omitted, since it is dominated by the second term. O
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Proof of Theorem 7|

Proof. When a random variable X € {—1,+1} such that P(X = 1) = p passes through the channel
then for the output X" it holds that

and

thus

1 e’ —1
P(X' =-1)=
( ) 67+1+pe“¥+1
e’ e’ —1
P(X' =-1)= — .
( e s |
e’ —1
EXT1=(2p—1
XT=0r-D 5

That means the bias of the binary value is going to change, otherwise the proof goes analogous to the
proof of Theorem 3] O

F

LDP algorithm

Algorithm 5 Local-DP curator algorithm

Input: significance § > 0, tolerance ¢ > 0

Initialization: Picks a random random ranking 7 uniformly at random and sends it to each peer
Renumber the items so that 7p = (1,...,m)

Let gZ)E = Sup¢e[0,1]{dTV(MLWO7Mtﬁma) > 6}

Set k as in Theoremand gather (X;‘Ez), e ,Xéﬁ%l)m) for ¢ € [k] from peers.
2

Let Yi(it1) = (ﬁ 25:1 Xf(iﬂ))
LetYZY'l2+YVS4+"'+Y(m71)m
ifY <m/2+2,/mln(1/5) then
Output 0 > ACCEPT
else
Output 1 > REJECT

Algorithm 6 Local-DP algorithm at peer ¢

1:

A A S ol

bl

10:

Input: significance > 0, tolerance € > 0, privacy parameter €g
if Public randomness is used then

Receives my € S, from the curator algorithm
else

Set g to the identity ranking

Renumber the items so that mg = (1,...,m)
Let my € S, denote the samples at peer ¢
X'E(i-i-l) = 1,if i =, i+ 1, and —1 otherwise.

7

X;fiﬂ) ~W (.|Xf(i+1)) with parameter v = 27% > Adding RR noise

Send (X;%Q), e 7X(fn_l)m) to the curator algorithm
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