A Notation Glossary

Notation Definition
[n] {1,...,n}
II-1l5 Euclidean vector norm
(RS Frobenius matrix norm
() Euclidean inner product OR Frobenius inner product
oi(A) i largest singular value of A
Ai(A) i™ largest eigenvalue of A
Amax (4) Largest eigenvalue of A
Amin (A) Smallest eigenvalue of A
Al/? Principal square root of PSD A
Col A Column span of A
Py Projection onto Col A
Py Projection onto (Col A)+
14 Loss function
Loo(9,9%) Population risk of g when the true predictor is g*

L(g,g*) | Empirical risk of g when the true predictor is g* (samples suppressed)

LZE(g,9%) Excess population risk of g when the true predictor is g*.
Ac(6) Predictors whose parameters lie in 6 4 C
For {1, er) = (fi(@y), . fr(@n)) [ fr, - fr € F)
Rn(H) Rademacher complexity of function class H on n samples

B Proof of Theorem 3.1

In this section, we will prove the performance guarantee in the linear representation setting presented
in Theorem 3.1. We first compute a bound on the difference in the spans of the true underlying
representation B* and the representation B obtained from training on the source tasks. Having
done so, we then analyze the performance of the best predictor found by projected gradient descent.

For clarity of presentation, we will write 87 = Bjfw; + 6} and 6, = (B + A;)w, throughout this
section. Furthermore, let 6 = A;w;. Finally, we will be making use of the following covariance

concentration results throughout this section, allowing us to connect empirical averages to popula-
tion averages and vice versa:

Lemma B.1 (Source covariance concentration, Du et al. (2020), Claim A.1). If ng > p* [d +
log(T'/9)], then with probability at least 1 — /9 over the random draw of ngT source inputs,

1
0.9Y < — X, X; < 1.1%
ns

foranyt € [T).

Lemma B.2 (Target covariance concentration). If nt > p*[d + log(T/d)], then with probability at
least 1 — &/9 over the random draw of nr target inputs,

1
09, < —XTX <1.1%

nr
Sforany t € [T).
Proof. The proof is similar to that of Lemma|[B.] and is omitted for brevity. O
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B.1 Source Guarantees for the Linear Setting

We proceed to analyze the representation By obtained from the source training procedure outlined
in (4). Key to the analysis is a bound on the average population loss over the source tasks that the
global minimizer of (4) can achieve as a function of ng:

Lemma B.3 (Source training bound). Let By be a minimizer of (4), and {(A, wt)}tem be mini-

mizers for the inner optimization problem given By. If the regularizer coefficients are chosen such
that

1/2
N
T50 \/?”LS

and vy = 62\, then with probability at least 1 — §/3,

1 . A
T Z Hzl/z(et — 0¢)
te([T]

I<;T—|—kdlog/<ms+log —1-7 trE 1+10g6>]

2
< U— (kT + kdlog kng + log

4+ % \/trE 1—|—10g 6)

Proof. Throughout this proof, we instantiate the high-probability event in Lemma([B.1] which occurs
with probability at least 1 — §/9.

1
kT + kdlog kng + log -

1> ado ||y
R 5

1) \/ng

Note that we can express 07 as [07 (w}) T/ ||w} Hg]wz‘ = Ajwj. Thus, via the optimality of By and
{(A¢,wi)},e(r)> We can form the basic inequality

2 A 2 7 2
Z — X0, 2+§‘|At‘|p+§”wtu2
te[T]
1 2 A 112 Y %12
< Z m ll2¢]l5 + 9 IAF 7 + D) llwi 3
te[T]
1 2 A [ExllB e
<> = lula+5 D] > llwi il
te[T] 2nsT 2 te[T] Hwt ”2 2 te[T]
1 9 AGE +
< — T
<Y o lali+ (25
te[T]
20 il

1 0'(50 T
T 1 log = + — (14 log—
ST T \/k: —l—kdogfins—l—ogé-i-\/ﬁ\/tr (+Og6>

::Cns,T

1 2
£ gl

te[T]

Note that the simplification of the regularizer on the optimum holds since [|w; ||, = ©(1) by As-
sumption 3.2. Equivalently, by rearranging,

! « ol 2 2 7 2
Z 2”ST ‘Xt(et - et) 5 + 5 ”At”F =+ 5 HthQ
te[T]

<

< D 5naT
te[T]

Finally, by Proposition the regularizer on A; and w; can be rewritten as a regularizer on b1, ie.

1 PN R 1 A
t;"] QTLST ’Xt(et - et) 9 + m 6t 5 S tz[] 2’]’), T <Zt7Xt(9 0t)> + Cns,T' (8)

<Zt,Xt(0Z - ét)> + Cpo .
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To proceed, define the set S as

{[Oét + Bileen

rank o] < 2k, || Be]ly < 0o + H&HQ X + B, < HXt(aik - ét)Hz} )

and observe that [0} — ét]te[T] € S, by letting oy, = B*w} — Bow; and f; = 67 — 6,. We bound
the right-hand side of (8]) via bounding the supremum of the inner product over S, i.e.

Z <Zt7Xt(0Z *ét)> < sup Z (zt, Xe(ag + Bt)) -

te(T] e +Be€S ey

Now, we decompose the Gaussian width as

sup > (2, Xelag + B1)) < sup Y (2, Xyan)+ sup Y (20, XufBy),
[ac+Bi]€eS te[T) lat]es te[T] [Bt]€S2 te[T)

O (I

where Sy = {[/Bt]tem ‘ Bl < 60 + HStH } Note the abuse of notation in (I), where we say
2

[ov]err) € S if there exists [B;]c[r so that [y 4 Biliepr) € S. This decomposes the Gaussian
width into the sum of the Gaussian widths of a low-rank set (I) and a small norm set (II). We proceed
to bound both terms accordingly to these two properties.

Bounding the Gaussian width of the low-rank set (I).

To bound the Gaussian width, we first enlarge .S to remove [; from the definition of the feasible set.
Fix any (o, ft) pair satisfying the conditions in .S, and note that
2) '

1Bl S Vs 1113 (J + |30

Therefore, by the reverse triangle inequality,

1 Xearlly = 1 XeBello] < 1 Xe(ae + Bo)ll,
— [ Xeaull, < | Xu(0; = 00) |+ v/s 113 (d0 +

=Pt

0t

)

Consequently, we can enlarge the feasible set to
Sl — {[O[t] | rank [Oét] S 2]11, ||XtOét||2 S Pt} .

Having relaxed the constraints, we now proceed to the main argument.

Since rank [a;] < 2k, there exists an orthogonal matrix V' € Rdx2k (dependent on a;) and vectors
ry € R?F such that oy = Vr;. Therefore, the inner product in the Gaussian width would be
unchanged if we project z; onto XV, i.e.

sup Z <Zt7Xt04t> = Ssup Z <PXtVZtaXtVTt>-
[ae]€51 [ [ae] €51 [

The key idea we will leverage is that if V' were chosen independently of z;, then Px, v z; is Gaussian
in a 2k-dimensional space, and thus norm bounded by O(\/ﬁ) with high probability. However, due
to the supremum over o, this independence assumption is not satisfied. Nevertheless, we can obtain
a fixed finite covering of the set of all rank-2k matrices, and ensure that the aforementioned norm
bound on P,y 2; holds for every V' in the covering via a union-bound. By choosing the discretiza-
tion level of the covering appropriately, we can control the error resulting from approximating the
supremum by some element of the covering.

Formally, let O?%2¥ be the set of orthogonal matrices in R%*2*_ By Proposition [I.1} there exists
an e-covering of O?*2¥ in the Frobenius norm with at most (6v/2k/¢)?*? elements. Let V be an
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element of the covering such that HV - \_/H 5 < e Then,

(z¢, Xpou) = <zt,XtV7“t> + <zt,Xt(V - V)rt>
< [|Px,v ey [ X Ve, + lllly [|Xe(V = Vel
< || Px,vr ey 1XeVrelly + (|| P, 2], + zelly) | Xe(V = Ve
< HPXtVthQ ||XtV7"tH2 + (HPXtVZtH2 + ||ZtH2) HXt(V - V)HHQ
S Px vzl 1 Xeally + llzelly | Xe(V = Vre ],

and thus

Z <Zt7XtVrt> S Z ||PXtVZtH2 Z ||Xfoéf||2

te[T] te[T)] te[T]

(A)

D Mzl | DD XV =V,

te[T] te[T]

(B) (©)
We will bound (A), (B), and (C) individually.

(A) For afixed V, (A) is a chi-squared random variable with k7" degrees of freedom scaled by
o2. However, since V depends on V, we need to have a high probability bound for any
element of the covering. By using known concentration bounds for chi-squared random
variables together with the union-bound, we find that uniformly over the covering,

2kd
1 vV 2k
(A) < (k:T+ log 5/> wp.>1-¢ <6€>

(B) Note that (B) is a chi-squared random variable with ngT degrees of freedom scaled by o2,
and thus

1 0
B) < o” (nsT +log - >1——
®) S o* (nsT+1053)  wpz1- 1
(C) Since (1/ng)X " X is concentrated about ¥ via Lemma

_ 2 2
1X:(V = V)relly S ms 2l e MIrellz = ns (Sl € [Vrell; S we® 1Xe V-

Putting these bounds together, and setting ¢ = /k/xkng and &' = §/[18(6v/2k/)?*?], we obtain

1 1
Z (ze, Xpoy) < ( \/kT+10g6 +€J\//~mST+log 5) Z ||XtVrtH2

te(T] te[T]

1
< <awkT + log 5/) Z XVl (k < ng,d <9)

te[T)

1
< a\/kT—i— kdlog ns +log = > 1Kl
te[T)
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Taking the supremum over S7, we thus obtain the following bound on the Gaussian width:

a3 (o Xea)

(o] €St ey

01

VIl nsT (50 +

Note that the events for this sub-argument occur with probability at least 1 — §/9.

< a\/kT+ kdlog kns —Hog% 3 HXt(Q;‘ —4)
te[T)

y

Bounding the Gaussian width of the low-norm set (II).

Recall that we want to bound

sup Y (= Xefh), Sa = {[8)]

[Be]€S2 te[T]

i

1Belly < do +

)

For any ¢ € [T],
(2t, XiBr) = <Xt—r2t;6t> < (50 + H@HQ) HXthtHQ.
Furthermore, by the Hanson-Wright inequality, we have that with probability at least 1 — § /97T,

T
HXtTZtHQ < J\/ns try (1 + log 5).

Putting everything together, we thus find that with probability at least 1 — 6/9,

. T
sup Z (20, X1Be) < o | Top + Z Oy , \/nstrE <1+10g5).
[Bi]€S2 ey te(T)

Combining the bounds and concluding.

Having bounded both Gaussian widths, we can thus bound the right-hand side of (§) as

1 ~ 12 1 N
—— || X (07 — 0 Ay ——C, 1)
Z2nSTH (0% t)2+( 7T ST S’T> I
te[T]
1/2
<U\/kT+kdlo ks + log = 3 ! HX(@*-@)2 +C
~ T g KNS g5 P InsT t\U t], ng, T+
Therefore, as long as /Ay > (1/60T)Chg 1,
1 2
X.(07 =0
Z 2ngT ‘ (00 = 02) 2
te[T]
1/2
< % kT + kdlog kns + log - 3 ! ‘X(e*—é) 1 se
~ ngT &S &5 2ngT I 7, ns T

te[T]

Finally, by solving the quadratic inequality using Proposition[[.2] we find that

L x.6 - )
Z 2nsT ‘ t( t t) 2
te[T]
o2 1\ oo |25/ 1
S — [ KT + kd1 log — 2 kT + kdl log —
anT< + og kNng + 0g6>+ m + og Kng + og(s

0'60

T
——jtrX ( 1+ log —
+TLS r(+0g6),
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from which the desired performance bound follows due to the concentration of the empirical covari-
ance from Lemma [B.l Since the concentration of the source covariance matrices and each of the
sub-arguments all hold with probability at least 1 — §/9, it follows that the main claim holds with
probability at least 1 — 6/3. O

The prior bound is central to the analysis, as the performance of the learner can be tied to how
well By spans the correct space. To see why this is the case, note that for large ng, the effect of
the noise on the optimization in (4) is negligible. In this regime, no matter which representation

By the learner has chosen, the optimal predictor would satisfy Px, BOXtét ~ Px,p,X:0; and

P)%t Bo Xt 6, ~ P)%t B, Xt0; . Consequently, the performance of the predictors chosen by the learner
can be tied to the chosen representation By. We formalize this intuition in the following result:

Lemma B.4 (Transfer Lemma). Under Assumption 3.2, we have that

2

* 1 * 2 2
nsnl 1[5 [ -af]
te[T]

Proof. Throughout this proof, we will writt P := Ps1/2p and P+ = P& , . for readabil-
. . .. 0 Z / BO

ity. To proceed, note that we intuitively expect that for a learner that has learned the correct
spaces, PX.1/20; ~ X1/2 B*w} as it is the low-rank component of the estimator, and consequently,

PLx1/24, ~ w1/ 257, Then, decomposing into the corresponding errors, we have that for any
t e [T,
~ 12 ~ 112 ~ 112
=720 - 80| 2 [£/2Brwr - PV20l|| + ||z 20 - PE212
2 2 2
42 <21/23*w;; _ PR/, x5 — Plzl/Qét>

2 ~ 112
2 HPLEI/QB*UJ;: , + HEl/Q(S: _PLxl/QetHQ

_9 ‘<zl/23*w;‘ _ PxY24, w25 — PLzl/QétM .
We proceed to bound the inner product above. We do so by observing that if we were to replace 0,
by 65, then
(SV2B w) - PX'20;, 21/%5; - Py
— <Pi21/23*w: _ pyl2§r piyl/2sr - PEl/QB*w;‘>
= (w;)"(B*) " 2é;
=0.

To translate this result into a bound on the original inner product, we note that as ng — o0, and the

impact of the noise and the regularizer on the optimization is diminished, we expect 0, to learn the
projections of X0} onto X B and its complement. With these two insights in mind, we decompose
the inner product as

(2B wp - PR, 5125; - PH3Y/2, )
< ’<21/23*w; _ PxY2gr pyl/(gr - ét)>]

+ (P20 - 8), 51267 — PsV2,)|

+ |[(SV2Brw; - PYVR0;, 5125 — PAg; )|

=0
- ‘<PL21/2B*wZ‘, PEV2(g; — 9})>‘ + ’<P21/2(0f — ), 84257 — P¢21/2ét>‘ .
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Putting everything together, we find that

1 L51/2 o, % 1 1/2 g% 1s1/2p 2
oy A Y S

<= 3 | -
te[T)

21 1/2 e, 125 s1/25¢  plsl/24
2+Tf€§[;‘<z B w! — P2, $V25 — pty at>‘

< % Z Hzl/Q(et* — 0y +% 3 ‘<PL21/QB*w;,PL21/2(6;‘ _ ét)>’
te|
]' 1/2 ) 1/2 g% 1$1/2)
+ 7 KPE/(@ —8,), sV — P 2/0t>‘
te[T]
1 BT .
< Ttez[;“] |22 —90“24— Z |Prsirao; — ) H Z |PL51/2 B |2

1 ~ 12
_ E Hzl/z(gzﬁ _ pJ_El/zgt
2

1 .2
7> HPZl/Z(aj—Ht) 2
te[T]

This is a quadratic inequality in the two terms on the left-hand side, and so by applying Proposition
~ 21 .12
Z 1y1/2 2 Z 1/2(p% _
s T HP =0 - t)HQ + T ol HPZ (62 et)HQ

- Z HPLzl/QB*
“ 2
N LR}
te(T]

1 T
S T Z HEI/Q(Q:& — 0¢)

2 k)
te[T)

where the last line follows by orthogonality. Finally, by Proposition [[.3]
1 . % ok ( W*
=3 HPlZl/QB w!
te(T)

which together with the diversity assumption in Assumption 3.2 yields the final bound

El/QB* 2
F

>

)

_ l lezl/QB*W* 2
T F

1/2
2 HZ/B

2

1 R
LSk Y [meer -6y
te(T)

B.2 Target Guarantees for the Linear Setting

Having established a connection between the performance on the source tasks and the difference in
the spans of B* and By, we can now analyze the performance of the target training procedure. First,
we bound the performance of nearly optimal points in Cg for several possible choices of ¢y, cs.

Lemma B.5 (Statistical Rates for Lg). Assume that (A, w) is {-suboptimal for Lz with the con-
straint set Cg = {(A,w) | |Allp < e1/B, [lw]ly < c2/B}, ie.

A A w') + C.
Ls(A,w) < (A,mglecﬁﬁﬁ( s w') +¢

We write 0 for the predictor corresponding to (A, w), i.e. 0 = B(Ap, + A)(wo + w). Now, let
(BoX "X By)'Bf X T X6*

0* — Bow

(By X" XBy)'By X" XB*w

(1]
Il
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Note that X Bow = Pxp,X0", X6 = P)%BOXG*, and X B = Pxp,XB*w*. Then, assuming
B > max(||wlly, [[@],).

H 5i/25, 5 2B w
o? 1
+ E (k+10g 5) c1 = dp,Cco = ||“~]H2
odo ( 1)
trX | 14log—
Lllxe—a < . 5
—|x@E =0 <c+{ 2
T H ( )H2 ¢ o ]4;4—1og1
nT d 5 0
o 5], — 1 = [3],e2 = ol
W tr3 (1+10g 5)
o2 1 *
Z (a+1083) 1= 18" 2 =0

with probability at least 1 — §/3.
Proof. We proceed by proving the three cases separately. Throughout the proof, we instantiate the
high-probability event in Lemma[B.2] which guarantees that
1
09 < —XTX < 1.1%.

nrt
Recall that this event occurs with probability at least 1 — 6/9.

C1 = 50562 = ||ILD||2

Due to the choice of ¢; and ¢z, there exists a parameter in Cg corresponding to the prediction vector

Px p, X0* + X §*. Writing the corresponding basic inequality, we thus have that

1 1 2
<Z PXBOXB* *> + 2nr 121l

12 1 .
g Hy*X‘gHz (< g IPks, XB |, +

* 1 * *
= g HX —a)H <<+—||PXBOXBw 2+ o (2 P, X B
1
— {2 x 9*—9>.
(=X )
Simplifying further,
1 1 .
= (2, Pty XB w0 ——< Xo*—9>
i <z, X B w> e z, X( )

1 N * 1 *
- = <z Pxp,X(6—0 )> — — {2, Py, X (6" — BA(wo +w))) .
nr nr
Now, by the Hanson-Wright inequality, we can bound the last term as

1
S <XTPXB z,6" — BA(wo + w)) < - HXTP)J(‘BO,ZHz 16" + BA(wo + w)]|,

nr
0'6() 1
< 141
— ( + log 5)

with probability at least 1 — /9. Therefore, we can rewrite the prior basic inequality as
2 0‘50 1

——/trX | 141log—

+ TT\/r <+og5>+4

=C

n é <z,PXBOX(<9* - é)> .

ool <

1 * *
2 S oo | Px 5, X B*w

27’LT
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Now, note that we can form the quadratic inequality
1 . A
L pemx @ -6 < - HPXBOZHQ |Pxs,x - 8) +c,
T

and thus by applying Proposition [[.2|to solve the inequality and noting that Px g,z /o is distributed
as a chi-squared random variable with k degrees of freedom,

~ 112
+wWmew@%WWw

2

o k+1 % tr3 (141 1
og \ﬁ r g

with probability at least 1 — 6/9, which is the bound that we wanted to show.

1= 2702 = H’LDHQ

Due to the choice of ¢; and cg, there exists a parameter in Cg corresponding to a predictor that agrees
with 6* on the target samples. Therefore,

o HX <~ f) H <c+—|\ [

e e <o L (s ) L (et )
9

We proceed with an argument similar to that used in the source guarantee, albeit simpler since the
representation By is fixed (and thus no covering argument is required). Along these lines, we bound
the first term using the low-rank of By. Via projections,

il o]

SC+— ||PXBOZH2 HPXBO (* — 6) H <z Py X (0" — é)>.

Therefore, by applying Proposmon [[L2]to solve the quadratic mequality, we have that with probabil-
ity at least 1 — 5/9
o2

= xer-0) < o4 = (kttong) + o (s Phs X6 - 0).

To bound the second term, we simply make use of the norm constraints defining the feasible set Cg,
which we note is analogous to the low-norm sub-argument of the source guarantee. Formally, the
Hanson-Wright inequality implies that with probability at least 1 — 6/9,

1 A 1 1
—~ (2 Pt X0*79>:— — XTPL, 2
— (= Peu X0 = 0)) = — | =X TP,

< ollol, L
S mr tr2(1+10g5>

Putting everything together, we thus have that
; Al 1
X0 — 0 H < k+ log oLl firs: (4 log
2nr H ) ¢ Jr < * ) + VT + &5

c1 = [|0"]ly,c2 =0

QTLT

HS + BAwgy + BAU}HQ

Due to the choice of ¢; and ¢, there exists a parameter in Cg corresponding to a predictor that agrees
with 6* on the target samples. Therefore, we can write the basic inequality

w < g I3 = oo - i, <c+ (X0 0).
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Now, noting that Px z /o is a chi-squared random variable with d degrees of freedom, we have that
with probability at least 1 — 2§/9,

% (X" =0)) < - € — l1Pxz]l |x@ -0, < —\/d-i-log HX

Therefore, by solving the resultlng quadratic 1nequahty via Proposition[[.2] we obtain the bound

— L |xr —é)H2 <C+ Zi <d+log5) :

Observe that all relevant high-probability events for each case occur simultaneously with probability
atleast 1 — §/3, as desired. O

B.3 Optimization Landscape during Target Time Training

Having derived statistical rates on nearly-optimal points for several choices of Cg in the prior section,
all that remains to be shown is that projected gradient descent can indeed find such points. In
particular, we will demonstrate that for large enough /3, the optimization landscape induced by L3
is approximately convex. We do so by demonstrating that the objective satisfies the assumptions
outlined in Section[H] and thus the accompanying guarantees for projected gradient descent hold.

Lemma B.6 (Approximate linearity of function class). Let go(z) = Bz (Ap, + A)(wo + w) for
0 = (A, w) € Cg, where Cg is considered as a subset of Rk Then, assuming the high-probability
event in Lemmal|B.2| holds, then

1
sup — Z vagg x; ||2 < B*trY and — Z ||Vggo(ac,»)||§ < B*ry.
oecg M ZE[TLT] T i€

Proof. To bound the average squared Hessian operator norm, note that V3gg(z;)[A, w] = Bz, Aw,
which is independent of 6. Then, by the variational characterization of the operator norm,

[Vige(zlll,=  sup  |[Vige(x)[Aw]|=  sup  fla] Aw|
Al A+ wl3<1 Al A+ wl3<1
< sup o Bl [Allg [[wl
JAI+wl3<1
< Bllall, -

and thus ||V3ge(z; H2 <pB? ||$ZH2 Consequently,

52

Sup— Vgg Z;) <—trXXT<52trZ
6 2 nr

n
0cCg "'T icn

We now proceed to bound the squared norm of the gradient. Observe that the gradient is given by
Vggo(xi) = BlAg, x4, vec(z;w, )], and therefore,

o Z IVogo @)z = B = > ARy + s |I7 < 6 > lills = ft XxT

ZE[’I’LT] ZG[TLT] ze[nT]
< By,
where the first inequality uses the fact that ||A£0:cl||; =2 HBJle; =2 HPBOxng < | g by
the definition of Ap, and assumed orthogonality of B. O

Lemma B.7 (L; is Lipschitz). Let go(x) = Bz (Ap, + A)(wo + w) for § = (A,w) € Cg,
where Cg is considered as a subset of R¥*+E - Furthermore, assume that the high-probability event
in Lemma B.2| - holds. Then, with probablllty at least 1 — §/3 over the draw of nrt labels, we have
that for any c1,co > 0 and 3% > 2 + c3,

N 1
sup [V, Ca(aoCON S - |18l (10715 -+ + ) + o (14105 ) |.
0eCs nr
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Proof. 'We assume that ||z||§ /nr < 0?[1+1og(1/6)], which occurs with probability at least 1 —6/3
via standard tail bounds on chi-squared random variables. Then, the gradient of the loss with respect
to the predictions is given by

VaLal90(X)) = = (y = 90(X)) = ~-[X(6" ~ FAp,uw — BAw — fAw) + 2]
Therefore,
;;g”vgﬂﬂ@aCY»Hg egzé‘l (0" — BAp,wo — BAw — BAW)|5 + THzM
S — {HEQ (16713 + ¢ + 3) + o <1+1og(15>} O

Lemma B.8. Let w, w, and 6 be defined as in Lemma- Then, assuming that the high-probability
event in Lemma|B.2| holds, the three quantities above are norm-bounded by k/?(| B*w* ||, + &),

up to constant factors. Furthermore, we can also bound H5 H2 as

1]l < &0 + (Ilw 2 + dor'/ ) | Pis5, =2

1 /2 P

Proof. Throughout the proof, we will write A\yax and Ay, as shorthand for Apax (2) and Apin (2),
respectively. By definition, since By is assumed to be orthonormal, the concentration of the sample
covariance in Lemma [B.2]implies that

1 1

| X Bowl; = — DR

1
|Px 5, X0% |15 < S

)\mm min

2
< k|0*]?
Q_HH Hz

w2 <
]} <

< w([|B w5 + do)*.

Following similar arguments for @ and &, we obtain the same bounds. Thus, we have demonstated
that all three quantities are indeed norm-bounded by x'/2(|| B*w* ||, + &), up to constant factors.

Finally, we proceed to derive the final bound on 5. Note that X6 = Xé* — Py By X% +
Pj(-BOX B*w*. Therefore,

H5H2§50+ |:||PXBOX6*||2+HP)J(_BOXB*

2]

+ HPEI/2B ZI/QB*

1
\/ NT Ami

§50+ |:HP21/QB Z /25*

o[,

+ [lw*, H P o, S12B°

/\1/2

min

< do +

["21/25*

F]

)\1/2 HPE”?BOPEWB*

min

Now, by applying the properties of the trace operator and Proposition

2 1
F =1tr PEVZBO PEUQB* le/zBO = tr (I — P21/2B* )le/zBO

1
HPEl/QBOPEl/QB*
=1tr PEUZBO - PEI/QB*PEI/ZBO

S trpzl/zB* - PEI/ZB*PEI/zBo == trpgl/zB*(I_ PEI/2BO)
2

:trpzl/zB*P 1/23 PE1/23* = H 21/23 P21/2B* P
1/2 px*
S )\mm PEI/2B E / B F7
and thus
< 1 1 1/2 g% * 1 1/2 px*
HéHQS(SHTZi Lff (RR: =+l |Pés5, =B i

I, 49, 1/2
< dp + (Hw Hz}\l/z - HPXJ]_I/QBOEI/zB*

P .
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B.4 Deducing Theorem 3.1

Having proven all the previous results, we can now assemble the main claim in Theorem 3.1. Recall
that we have defined the rates

o? 1\ b 2] 1

rs(ns,T) = T (kT+ kdlog kng + log 5) + TTZ kT + kdlog kng —i—logg
0'(5() T
trX {1+ log —
+ = r ( + log 6)

2 1 ) 1
r(Tl)(nT) = krg(ns,T) + Z—T (k:—Hog 6) + 7% Jaw (1 + log )

A/ T 5
2 1
r%?)(nT) = :T <k+log 5)

T

[w*[l; + dor/

T [50 ' ( N2 (x)

2 1
r%f)’)(nT) = Z—T (d—i—log 5) .

\/trE <1+log(15>

Theorem 3.1 (Performance guarantee, linear representations). Assume that Assumptions 3.1 and 3.2
hold, ng > p*(d+log(T/$)), and nr > p*(d+log(1/5)). Then there are (A, 7, B, Teap, 1, C1, C2)
such that the training procedure in Section 3.2, with high probability, finds 6 achieving excess risk
bounded as

) krs(ng,T)

E (270" —270)?] < min(r{ (nr), v (1), r (n1)).

Proof. Assume that during source training, the regularization parameters (\,~) are chosen ac-
cording to Lemma We instantiate the high-probability events in Lemmas [B.5] and
These events occur altogether with probability at least 1 — §. Throughout the proof, we define

r(n) = min(ry (n), v (n), Y (n)).

Given all the events above, we know that the optimization landscape induced by L is well-behaved.
That is, the function class is approximately linear in the parameters by Lemma [B.6] and the loss is
Lipschitz by Lemma Furthermore, for any of the proposed feasible sets in Lemma the
bounds on relevant quantities provided by Lemma [B.8]imply that

A4S SRIB I B) = s IVaLalanCO < o |12, 72+ o (14105 ).
%/_/ B

=:R?

=:a?

Therefore, we have demonstrated that £ satisfies the assumptions in Section [H| for any 8 > R
Consequently, by running projected gradient descent with parameters

2. /ir 5 2 p2
5 = max RQ,QR try and TPGD:aR trE’
r(nt) r(nt)?

and setting 7 as in Theorem we can guarantee that projected gradient descent finds an r(nr)-
suboptimal point. Therefore, by choosing (¢1, ¢2) in order to achieve the minimal rate r(nT) in
Lemma [B.5] we can guarantee that

1 .
min — || X (6; — 6*)|3 < r(nr).
t nr

Finally, due to target covariance concentration as guaranteed by the event in Lemma [B.2| we thus
have that the excess risk of the best predictor found by the algorithm on the target task is bounded
as

2
minE (270, 27 6;)?] = min | £/, ") S min(r (), ), 1P (). O
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C Linear Hard Case: Construction, Proofs, and Experiments

C.1 Hard Case Construction

In the following section, we will provide the construction of a task distribution family that is used in
proving Theorem 3.2 in the main text.

C.1.1 Formal Construction

We now proceed with a formal construction that satisfies the conditions of Section 3.1. We provide
the intermediate results used to prove Theorem 3.2, but leave their proofs for Section|C.2]to simplify
the presentation in this section.

Fix an € € (0, 1), and let p be a Gaussian distribution on R? with block-diagonal covariance ¥

_ |ela—x O
s e o]

We define E*, E;, C R? to be the two eigenspaces of ¥ determined by the two blocks, i.e.

E* = Col |14k| and B, =cCol|Y].
0 I,

Then, for an orthogonal matrix B € R4** with Col B* C E*, define a corresponding task distribu-
tion given by
1

V2e

where w and § are uniformly sampled from the unit spheres in R* and E}, respectively.

0 Bw + 4, (10)

Recall that in the linear representation setting, FROZENREP optimizes the following objective to
obtain a representation B:
A 1

B = argmin min
gB Wt 2nsT

Z llye — Xthtﬂg :
te[T]

First, we characterize the span of B in the limit of infinite source tasks and data. Intuitively,
span { B*w;} and span {Ajw; } correspond to the green and red “vectors” in Figure 2, respec-
tively, and thus we expect FROZENREP to learn E.

Lemma C.1 (FROZENREP learns incorrect space). Fix an orthogonal matrix B* € R™* with
Col B* C E*, and assume that we sample task weights from the distribution in . Then, with

infinitely many tasks and per-task samples (ng, T — o0), Col B = Ej.

Although “incorrect”, it is unclear a priori that learning Col Ej, is undesirable performance-wise.
The next result formalizes the resulting degradation in performance due to learning Col Ej.

Theorem C.1 (FROZENREP minimax bound). For an orthogonal matrix B* € R** whose column
space lies in E*, let Sp~ be the set

1
Spr =4 —=B"w+46|||w|]|, <1,||0|l, <1,6 € Ey ;.
v { \| o < 1,]11] y

We consider the following procedure:
1. We draw nt samples for target time training, which are collected into a matrix X.

2. Player chooses a target-time estimator 0 = B + b, where B, W, and & are measurable
Sunction of (X, y), and Col B = Col B.

3. Player chooses target-time estimator § = B+ 6, where t and § are measurable functions
of (B, X,y).
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4. Adversary chooses an orthogonal matrix B* € R¥* satisfying Col B* C E}, and a target
time predictor 0* € Spx.

5. FROZENREP returns a representation B under the setting of Lemma with the task
distribution determined by B*.

6. Target time samples are generated using y ~ N (X 0%, JQIn), and the player estimator is
evaluated.

Then, with probability at least 1 — § over the draw of X, we have that

2 2
]Zod
T

)

1
min max E [ HX(G* — Bw —0)
w,6 ,B” nr
0 esS

2

B*

where the expectation is over the randomness in the labels y ~ N (X 0%, O'QInT). Note that the

minimization over W and § is performed over the set of measurable functions from (X, y) to R¥ and
R?, respectively.

The result above comprises the minimax bound in Theorem 3.2. In contrast, by specializing the
ADAPTREP performance bound in Theorem 3.1, we obtain the following corollary:

Corollary C.1. Set k = O(1), d > k, and ¢ = k/d. Furthermore, assume that ngT > d?, and
ng > nr =< d. Then, for a fixed target task in Sp~ as defined in Theorem with probability at
least 1 — 0 over the draw of samples, the procedure in Section 3.2 achieves excess risk bounded as

E|(z"6" - ;UTGA)Q} < min (o/y/nr, o°d/nr).
Thus, we have constructed the desired task distribution family, proving Theorem 3.2.

C.2 Proofs for Section 3.4

Lemma C.1 (FROZENREP learns incorrect space). Fix an orthogonal matrix B* € R¥™* with
Col B* C E*, and assume that we sample task weights from the distribution in (I0). Then, with

infinitely many tasks and per-task samples (ng, T — o0), Col B = Ej.
Proof. Fix a B. For any t € [T, as ng — oo, we have that

1 1
min — |y, — X;Buw||; = min — || X, (8] — Bw:) + 2|,
wr Ng wt NS

= min
we

- “P§1/2321/29?

2 2
2

‘?W%—BW)

2 2
+o°.
2

Therefore, we can rewrite the objective defining Bas

2
2

® 1 1 1/2p*
B = argfrgnlnf Z HPEUQBZ / 0;
te[T]

1
= argmintrP§1/2321/2 T Z 0;(67)" | ©1/?
B
te(T]

. 1
= argmin tr lewB [2 B+ PEk]
B

1
= arg}rgnin 3 HP2J:_1/2BPB* 2F + ||PEJ:_1/QBPEk||i“’

28



where the third equality uses the definition of the task distribution in (I0). Now, let S be the space
defined as E}, + Col B*. Observe that

2
PPy = tr B 2P
= tI'PXJi/QBPg +trP§1/2BPEk
= HP51/2BPB*

By putting everything together, we thus see that

o e P

B = argmin|| Py Ps . + [| P a5 P |7

This objective is minimized if and only if the span of ©/2B is exactly E}. By inverting, this is only
possible if Col B = Ej,. O

Theorem C.1 (FROZENREP minimax bound). For an orthogonal matrix B* € R*** whose column
space lies in E*, let Sp~ be the set

1
Spr =4 —=B*"w+46|||w|]|, <1,||0|l, <1,6d € Ey ;.
5 {ﬁ \| o < 11151, }

We consider the following procedure:
1. We draw nt samples for target time training, which are collected into a matrix X.

2. Player chooses a target-time estimator 0 = Bw + b, where B, W, and 6 are measurable
Sunction of (X, y), and Col B = Col B.

3. Player chooses target-time estimator = B +6, where W and § are measurable functions
of (B, X, ).

4. Adversary chooses an orthogonal matrix B* € R¥* satisfying Col B* C E}, and a target
time predictor 0* € Spx.

5. FROZENREP returns a representation B under the setting of Lemma with the task
distribution determined by B*.

6. Target time samples are generated using y ~ N (X 0%, O'ZIn), and the player estimator is
evaluated.

Then, with probability at least 1 — § over the draw of X, we have that
2] S o?d

1
min max E [ HX(H* — Bw —0)
w,6 ,B” nr
0 es

~ )
2 nr

-
where the expectation is over the randomness in the labels y ~ N (X 0%, aQInT). Note that the

minimization over W and § is performed over the set of measurable functions from (X, y) to R¥ and
R?, respectively.

Proof. We instantiate the event guaranteed by Lemma [B.2] over the draw of target samples, which
guarantees that
1
09 < —XTX <113,
nr
with probability at least 1 — 4.

Recall that by Lemma[C.T] FROZENREP will always find an orthogonal matrix whose column space
is E), no matter how B* is chosen. Therefore, we can rewrite the minimax expression as

1 N o
min max E { HX(G* — B — 0)
w,6 B*,0" nr

0" ecSp«

j =min max E {an HX(G* - é)Hz]

6 B*,0"
0*€Sy
112
0*79H ,
>

*

2 min max E ‘
i B0
0" €Spx
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where @ is simply a measurable function of (X, y) to R%. To further simplify the problem, observe
that if we define the set

1

1Pe-0]15 < o || Pe,0]l5 < 1} C Sp-

T 2
then since the estimator only depends on B* through 6%,

2 ~ 112
|z (o -o 2] an

T:{HeRd

nr

To lower bound the right-hand side of (TI)), we use local coverings in the ¥-norm and apply the Fano
bound for minimax risk. Let B := {6 €R? ‘ ¢ || Pg~6 |§ + ||PEk9||§ < 1} be the unit ball in the

Y-norm, so that %B C T Using a known volumetric argument, there exists a (1/2)-packing of B

in the X-norm with at least 2¢ elements. Equivalently, there exists a 25-packing of 46 B with at least
2¢ elements — let this packing be S. Then, for any #, 6’ € S,

1
KL (N (X6,0°L, ) [N (X0, 0° L)) = 55 IX(0 = 03 S 575 10— 0'[5

S 32’ILT

g,

o
Therefore, by Fano’s inequality, for any 52 <1 /32 (which ensures that S C 40B C LBCT,

Vi
. e al2] o 2m , 1
- _ > v 82 -
min max i [n H(e G)HE] 29 (1 dlog2’ d)

3 32n
>52 (- _62). >
29 (4 U2dlog25> (d=4)
lo,

2 . .
As long as nr > °6252d, we can set 6% = (106%2) ‘;—j, and thus putting everything together, we
have that

1 L 2] - 0%
min max E [ HX(&*fBszd) ] >74 O
w,s B™.0" n 2 nr
0" €S px

C.3 Simulations

In this section, we experimentally verify the linear hard case presented in Section 3.4. Since the
empirical success of MAML and its variants has already been demonstrated extensively in practice
and in existing work, it is not the focus of this section.
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Figure 6: Sine distances of the representations learned by each method
from the correct space B*.
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Figure 7: The worst-case average excess risk for several settings of nr,
plotted on a logarithmic y-axis.

We consider the high-dimensional setting where d < nr, and k = ©(1). We fix k = 2 throughout
the experiment. The matrix B* spans the first k coordinates, while the residuals J; lie in the span of
the last k coordinates. Finally, we set the Gaussian noise variance to o2 =1.

During source training, both FROZENREP and ADAPTREP are provided with 1000 tasks and 10d
samples per task from the task distribution in Section 3.4 (both are provided with the same samples).
During target time, we evaluate the methods on the worst-case regression task from the same family.

Nonconvexity in Source Procedure. Rather than optimizing (4) or (6) during source training,
we use an additional Frobenius-norm regularizer on BT B — WW T to balance B and W. For
FROZENREP, the regularized objective was shown to have a favorable optimization landscape in
Tripuraneni et al. (2020a). We used L-BFGS to optimize these regularized objectives. To further
mitigate optimization issues, we evaluated both methods with 10 random restarts, and report the best
of the 10 restarts (as measured by the worst-case performance on the target task) for both methods.

(Subspace Alignment). We plotted the alignment of the learned representation (using the best of
the 10 restarts) with B*. We measure this via the sine of the largest principal angle between the two
spaces, i.e.

sin©,(B, B*) = /1 — o2 (BTB*).

We plot the results in Figure [f] As predicted by Lemma FROZENREP does not learn B*, in
contrast to ADAPTREP.

(Target Task Performance). We evaluated how the methods fare on their corresponding worst-case
target tasks. We do so by training with the representation over 1000 i.i.d. draws of the target dataset,
and averaging the excess risk over all obtained representations. We provide the results in Figure
and include a comparison with standard linear regression. As predicted, ADAPTREP performs much
better than FROZENREP, with a gap that grows with n.
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D Proof of Theorem 4.1

In this section, we will prove the guarantee provided in Theorem 4.1, along with all related inter-
mediate results. Along these lines, we proceed as we did for Section [B] More explicitly, the overall
outline of the proof follows the four major steps below. We have placed in parenthesis the corre-
sponding intermediate steps in the linear representation case (Section[B)) as an additional illustration
of the procedure:

(1) Provide a statistical rate for source training (Lemma[B.3).

(2) Bound the difference in performance between the solution found by the optimization algo-
rithm and the ERM solution (Lemma [B.6}+ Theorem [H.T).

(3) Prove uniform concentration over A¢.. () as a function of target sample size (Lemma
(4) Connect the best-case performance in Ac,(6p) to the performance of the learner on the

source tasks (Lemmas [B-3]and [B-8).

Note that step (4) is provided by the (v, )-diversity condition. We will now proceed to demonstrate
the remaining steps.

D.1 Bounding Average Source Task Performance (1)

The (v, ¢)-diversity condition implies that we can bound the best-case performance during target
time training via control over the average source task performance. We proceed to provide such
a bound using a standard uniform convergence argument. Recall that for a set of vector-valued
functions ‘H mapping from R” — R", the Rademacher complexity of H on ng samples, denoted
Rng(H), is given by

Rns(H) =E bupi Z Z 61] xz )
hen Si €[ns] j€[n]

where the expectation is over the samples (z;) and i.i.d. Rademacher random variables ¢;;.

Lemma D.1 (Source Training Bound). Let 8 € ©g be a minimizer of the training objective in (7).
Then, with probability at least 1 — § over the random draw of inputs and labels,

1 T B
= inf  £%(gs,97) < R U A (0" | + ——.
T te(T] g€ Aes(0) or S Ov/nsT
Proof. For any t € [T'], we define the empirical risk minimizer g, := argmin ¢ 4 cs (6) L(g,97).

Then, since # minimizes the training objective in (7),

> LG g7) — L(g7,97) < 0.
te[T)
Following the canonical risk decomposition, we have that
Z ‘Cex gfagf Z ‘C gtvgt gtagt Z ‘C gtvgt (gz(mg;:)

te[T] te([T] te([T]

+ > L9, 97) — Loolgi s 97)

te[T)

<2 Hsu(g) Z Loo(gt:9f) — L(9t,9¢)| -
g€ Acq (6) [*€1T)

We give a high-probability bound on the right-hand side by first bounding its expectation, and then
applying Markov’s inequality to obtain the desired result. To bound the expectation, note that via
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symmetrization,

E sup Z Loo(gt,9¢) — L(9t59¢)

0e®
gtejcso(e) telr]
1
< 2E sup |— Z Z i (9e (i), Yirt)
[UASSH ns telT
ge€Acg (6) €[T) i€[ns]

Recentering about £(0, y; +) and using the constant-shift property of the Rademacher complexity,

E sup Z Z i (9e(Tie), Yie)

gteei?so(g) te[T] i€[ns]
<E| sup | =33 enlllge(wie) vir) — £0,5:0)]| | + By —
= Gegpg s ij [E\Gt\Tit ), Yit s Yiot s

th.AcS 9) te[T) i€[ng]

Finally, since the loss is 1-Lipschitz, we can apply the Rademacher contraction principle, from
which we find that

E sup Z Z ij[0(ge(wie), yie) — £(0, yit)]

qtegi?so(e) te[T] i€[ns]
SE sup Z Z €ij9t(Tit)|| = Rns [ U [ACS(Q)]e@T] '
_gtee.flceso(G) te[T] i€ns] 0cO,

Putting everything together, we can thus bound the expectation of the maximum deviation as

. T
E sup Z Loo(9t:9¢) — L(g1,9¢)| | S Rns [ U [Acs (6 )] + B n
gte"j?so(e) te[T] 9€00 s
Therefore, by applying Markov’s inequality, we have that with probability at least 1 — 6,
= Z L0 97) S f sup [ Y Loo(g6,97) — L(g6,97)
t€ il tgi?so(e) te[T]
1 T B
oT S |ﬂgo [ s } 5\/n5T

D.2 Bounding Optimization Performance (2)

Having provided a bound on source task performance, we now proceed to analyze the objective be-
ing optimized during target time training. We first note that the approximate linearity assumption in
Assumption 4.4 and the norm-boundedness of Cp via Assumption 4.5 ensure that the results from
Sectionapply, as long as we can show that the empirical loss satisfies an (o//nr)-Lipschitz con-
dition. We proceed to show that this is indeed a simple consequence of the 1-Lipschitz assumption
on the loss given by Assumption 4.2.

Lemma D.2. Define the function L : R"™ — R as

= Z yzayz

LE[nT]

Vi L( )||2 <1/nr.

for fixed y1, ..., Yyn, € V. Then, for any 7,
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Proof. By direct computation,

1
<
IVaL@I; = memfm7
lE’I’LT
where we have used the fact that £(-, y) is 1-Lipschitz for any y € ) by Assumption 4.2. O

Having verified that the assumptions in Section[H|hold, it follows that we have the following perfor-
mance bound on projected gradient descent during target time training:

Lemma D.3. Assume that we run projected gradient descent during target training time for Tpap
iterations with step size 1 given by

o R
= UTean VI?+2R?)

Let go, ..., g1 denote the sequence of predictors obtained, where go = gp,. Then, for any

g S “4CT(00)
. . . L2_|_ 2R2
min £(g:, 9;) — L(g9,9;) < BR> + R LR
i Tpep

D.3 Bounding the Performance of ERM during Target Training (3)

We now proceed to bound the performance of the ERM solution during target time training. Via
following the canonical risk decomposition as in Lemma|[D.]] we can prove such a bound simply by
bounding the maximum deviation between empirical and population losses over Ac..(0p).

Lemma D4. Let S be the support of p. With probability at least 1 — § over the random draw of
inputs and noise,

1 B
su L(g,9") — Loo(g,9" — sup R [Ace + .
sup, 1£(9,97) (9,971 < 5 up R [ Ac (0)] 5/t
g€Ac (60)

Proof. The proof proceeds similarly to that of Lemma [D.1] Note that the supremum over g* does
not affect the bound, since g* only enters into the expression through the labels y;, and no matter
what choice of ¢g* is made, |£(0, y;)| < B for all 7. The final result follows from taking a supremum
over all possible initialization choices.

D.4 Concluding: Proving Theorem 4.1

Having completed all the steps for the outline, we now proceed to compile the main result. Intu-
itively, since the diversity condition allows us to bound the performance of the best predictor, and
projected gradient descent can perform as well as any predictor in A¢... (6p) (and thus, as well as the
best predictor), we can obtain performance bounds on the iterates found while training on the target
task.

Theorem 4.1 (General Performance Bound). Assume that all assumptions in Section 4.2 hold. Let
(0:) be the set of iterates generated by PGD following the procedure in Section 4.1. Then, with
probability at least 1 — § over the random draw of samples,

. [L2 4+ 32R? 1 B
. ex * < 2 _
Eg ~p |:Int111 ‘Coo(gata g ):| ~ ﬂR + R TPGD + 6 0€11(I))0 RTLT [ACT( )] + 6\/7TT

EOPT EEST

+H$%LMMWM

0€0
Note that the R, complexity term samples from p. Meanwhile, the R,y complexity term samples
from p®T', which concatenates T i.i.d. samples from p (one for each task) for every draw.

B
+ 5\/nsT} +

EREPR
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Proof. We instantiate the high-probability events in Lemmas[D.T]and[D.4]both with failure probabil-
ity 0 /2, which simultaneously occur with probability at least 1 — § via a union-bound. Consequently,
we have the bounds

1 . 1 T B
= inf L%(91,97) S 55 Ras [ U Mes 0| + —==
T o ge€Acg (0) orT P ovngT
1 B
su L£(g,9") — Loo(9,9")| S = sup Ruyp [Acr(0)] +
s 1L£(g,9%) (9,97 5 Sup [Ac: (6)] Ny
g€Ac (00)

Given g*, let g be the population risk minimizer in A¢.. (6p). Througout this proof, we omit g* when
writing £ and £, whenever it is understood. Then, by Lemma projected gradient descent
always generates iterates satisfying

L2 2 P2
min £(g0) — £(g) < BR® + Ry | P (12)
t Trcp

independent of g*. Let g be the predictor achieving the minimum. We thus proceed to decompose
the risk as

min Loo(g¢) = Loo(97) S Loo(g) = £(9) + £(9) — £(9)

=T =Tz
=T3 =Ty

We now bound the terms 77, . . ., T individually. As a result of uniform convergence as guaranteed
by Lemma [D.4]

1
T, T3< sup  |L(9) — Lol9)] S 5 Rnr [Acy (60)] +
eSS
9€Ac, (90)

B
5./nT’

where S is the support of the target task distribution p. Furthermore, we have demonstrated a bound
on 75 in . Finally, by applying the (v, €)-diversity condition as guaranteed by Assumption 4.3,

Egcnp [T4] = Eg=np [ inf Eg.’f(g)}

g€Ac (00)
111
<-|= inf  LZ(g1)| +¢
T Je7) 91 €A (9)
11 T B
<—-<¢—=R, Acs ()% — Fe.
_V{(ST ngo[ () +§m} )

Taking the expectation with respect to g* ~ p and putting all of these bounds together, we thus have

that
L2 + B32R? 1 B
Eg-mp [£35(9,97)] S BR® + Ry| ——— + 5 sup Ry [Ac, (0)] +
g p[ (g g )] /8 TPGD 5066130 T[ CT( )] 5\/7TT

1 1 ®T B
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E Case Study: Two-Layer Neural Networks (Proofs)

E.1 Additional Assumptions on Initialization and Diversity
Before we proceed with the proofs for Section 5, we first formalize the additional assumptions that
were referenced in the main text.

Assumption E.1 (Initialization Assumptions). The initialization (B*,w) satisfies the following
assumptions:

(a) B* = [A*, A*] for A* € R¥* Furthermore, wi € {—1,1}*%, with (w3); = —(w})izr
Sfori € [k].

(b) The columns of B* are norm-bounded by 1.

(c) o1l < E [pgg (a:)pgg (I)T] = col for ¢y > 0. We define k = o/ c1.

We refer to initializations satisfying (a) as antisymmetric initializations. Note that under any anti-

symmetric initialization 6, fei (z) = 0. Additionally, the assumption on the representation covari-
ance in (c) ensures that that representation is well-conditioned, with condition number «.

Finally, we need to impose diversity conditions on the source tasks. Recall that for every t € [T],
there exists unit-norm w; € R?* and §; € R* such that the corresponding source predictor is
parameterized by

1 1
0; = | B +E > (60)iAy w3+gwf
i€ [k]

We note that the fine-tuning step for ¢ € [T] can be parametrized by w; = [w},d;] € R3* via
a (natural) linear transformation. We assume that this parametrization has a matrix representation
I'/B, so that 0f = 6 + T'w; /B. Then, we impose the following condition on (w; );:

Assumption E.2. Let 2 € R?***T pe the matrix [w}, ... ,wk]. Then, 02(Q) > T/k.

The assumption above is analogous to the diversity conditions assumed in the previous sections.

E.2 Formalizing Approximate Linearity
In this section, we demonstrate that under Assumption f@; behaves approximately like its lin-
earization for large enough f.

Recqll that the lin§arizati0n of f(f . i.nvolves two feature vectors, ¢p,(x) and ¥p, w,(x). We now
provide the following formal definitions for these vectors:

Definition E.1 (Feature vectors ¢, ), p). Let 8 = (By,wp) be an antisymmetric parameter, i.e.
satisfying Assumption [E.1|c). Then, for every x, there exists feature vectors ¢, () and 1, uw, ()
such that

P sty (@) = BT D, (@) + BA ¥, g (2) + BC5 ", (@)

We interpret the features ¢, () and ¥, , () to be the gradients of (B, w) — f(ﬁB w) (x) evalu-
ated at Ay, which have closed forms

6p,(x) = 0(Bix) and ¢y u,(x) = w o' (Bf z)a.

Additionally, Cgﬂuu (x) is the Taylor error. By Taylor’s theorem, there exists B = By + a; A and

W = wo + asw for some aq, oz € [0, 1] such that C(AB’:’wO)(x) can be written as
2k
(Bl oy (@) =Y wio" (B 2) (A 2)* + 2wio’ (B 2)(A z).
i=1
Finally, we define pp, ., () to be the concatenation of ¢, (x) and ¥, w, (). o
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For 6y = (By,wp) and § = (A, w), we will frequently abuse notation and let py,(x)d denote the
linearization of fg,4s, i.e.

Poo (.’L‘)(S = wT¢Bo (CL‘) + <w90 (m)7 A> :

We will show that if ||Al|, and ||w|  are both O(1/f3), then the remainder term Cﬁéf‘;o (x) is
O(1/), and thus the function class is approximately linear in (A, w) with feature functions OB, (+)
and ¥, w, (-). We first bound the Hessian term, in order to control the remainder term 5 (Bo wo) (z),
which depends on the Hessian.

Lemma E.1 (Hessian Bound). Fix a matrix B € R***? and a vector w € R?**. Assume that all rows
2
Vil @) S

~

of B are 2-norm-bounded, and that |||, < 2. Then, for x ~ p almost surely,
B(p+ L).

Proof. Throughout the proof, we will use the fact that ||z||, < 1 for x ~ p almost surely. By
definition,

|Var @], = s B> @ (Bla)(Ana)? +2 Y wio (B @) (As,a)
VN AT RS et icl2H

To bound the first term, observe that by applying Holder’s inequality,

Z W;o Az,x> < (sup ‘wl "(B; x)‘) Z <Ai7m>2

ic[2k] €2k ic[2k]

_ <sup ‘w "B m)D 1Az|? < 2u.

€2k
To bound the second term, we apply Cauchy-Schwarz, from which we see that

N\ 12
2 Z w;o’ (B, x) (A;,x) <2 (Z [’wia/(BiTx)} ) Az,

i€[2k] i€2k
< 2L |jwl, [|[Az]l, < 2L
Altogether, we thus have that almost surely for x ~ p,

|35, 5 0+ ]

As an immediate corollary, since Ce (x) evaluates the Hessian at a point satisfying the preconditions
of Lemma [E.T| during both source and target trainng time, we have the following result:

Corollary E.1. For any 6y € ©¢ and any (A, w) with | Al < c1/8, |w|ly < e2/B, we have that
‘BC(A w) )’ < crea(p+ L)/ B for x ~ p almost surely.

Therefore, we see that for large enough 3, the remainder term is close to 0, and thus the family
is indeed approximately linear. Finally, we provide a norm bound on the combined representation
vector pg, (z).

Lemma E.2 (Representation Norm Bound). For z ~ p, ||pg, (2)|l, < 2LV'k almost surely for any

0o = (Bo,wo) € Oo.

Proof. Recall from definitions that || pg, (x) ||§ = ||¢p, () Hg + [|%g, () ||iﬂ To bound the activation
features, since 0(0) = 0 and |o’(z)| < L for z € [-1,1],
B[Iir
/ o'(z)dz
0

To bound the gradient features, we once again use the boundedness of ¢’ to obtain

2

loB, (x)||§ =2k _m[%?j] ’O‘(B()Til‘)‘2 < 2k max < 2kL2.
1€ ’

1€[2k]

dia dia;
o)1 = iz’ (BT e)a ||, = [wizo’ (BT )| ol = [lo" (BT )] el < 2k,

Putting the bounds together, we obtain the desired overall bound. O
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E.3 Verifying Assumptions of Section 4.2

Having shown that the function class is approximately linear as well as the norm bounds above,
we now can proceed to verify the required assumptions. First, we verify the assumptions on the
loss function; clearly, the squared error loss is convex, so we simply need to verify that the loss
is Lipschitz over the prediction, and that £(0, y) is bounded. Note that we have to prove separate
bounds for source and target training, due to the change in the function class.

Lemma E.3 (Validating Loss Assumptions). Assume that ¥*> > 2k. Define the quantities
L
ap = IVk + % and oo = kY2ILVE + r (u+L).
Y

Then, during both source and target training time, [€(0,y)| < of for any y, and ((-,y) is -
Lipschitz during source training time and ca-Lipschitz during target training time for any y, all up
to universal constants.

Proof. For the squared error loss, £(0,y) = y? and V4£(9,y) = 2(§ — y) for any y. Therefore,
since the additive noise is O(1) bounded, the claims hold as long as we can prove a bound on the
predictions of any feasible predictor.

We first consider bounding the Lipschitz constant during source-time training. That is, we need to
provide a uniform bound on = — Bpg, () "8 + B¢ (x) for Oy € Oy, § € Cs, and x in the support
of p. To this end, we apply the bounds in Corollary and Lemma|E.2] from which we obtain

1Bpa, ()76 + B, ()] S LVE + % — oy

By applying a similar argument for target-time training, we find that

K
700 (2) T8 + 7G5, (2)| S &/2LVE + S (Bt L) = ao.

We thus can conclude that during both source and target training time, |£(0,y)| < aF for any ¥, and
that £(-,y) is o -Lipschitz during source training time and «y-Lipschitz during target training time
for any feasible . O

Lemma E.4 (Neural network diversity). Assume that v > max(x3,v/2k). Then, the source tasks
satisfy a (1, (L + p)?/3%)-diversity condition with respect to the target task distribution p.

Proof. Observe that we can write the excess risk of a predictor f{’BD we) 8

E (30 B0 (208 = B (2)6%) + (165 sy (2) — B s (@))?]

We proceed to upper bound the averaged best-case target performance, and lower bound the best-
case performance averaged over source tasks.

Upper bounding the expected best-case target performance.

Fix a 6*. Then, since 72 > 2k guarantees that Lemmaholds,

E |[(f7+5@) = ff 5 @)?] S E [(v00,(2)5 = po; (2)8")] +E [(26F,(2) - B¢ (2))?]

2 2
<E [(weo ()8 — Bpe; (w)f?*)ﬂ + [,’;(L + u)] + (L;zu)
SE [(weo ()8 — Bpeg (w)5*)2} + (L;zm

Therefore, by taking the infimum over § € Cr and noting that the unconstrained infimum of the
right-hand side is feasible by Proposition[I.7]and the conditioning constraint imposed by Oy,
2 (L+p\
: B 2 2 1/2 g+ H
LB (1) — s @] < 0 Mo+ (52
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Now, by the choice of target task distribution, we can write 6* as I'w* /3, where we note that
E [w*(w*) "] = (1/k)I2. Thus, by taking expectations, we have that

. 1 2 L+p 2

Bormy |08 B [(Fa0) — s @] < 1 [Momps 0]+ (£52)

Lower bounding the source task-averaged best-case target performance.

Fix a source task ¢ € [T']. By Corollary[.1| we have the bound

B%E [(p0, (2)6 — pug (2)57)2] S E [(f5)1.5(@) = F5: @))%] + B [(¢h (@) - ¢ (2))%]
SE [(f§0+5(x) — 5. (:c))ﬂ + (L;”f.

Therefore, by taking the infimum on both sides and applying Proposition [[.7]

2. L+p\’
/21, * 8 B 2
o g 2 [0t ]+ ()
By averaging over the set of source tasks,
1 1/2 ? 1 : B B 2 L+p ?
— . < = — =0 .
7 [ Ao om0 < 5 30 nf B[ s(0) — @) + (7

te[T]

Finally, by applying Assumption [E.2]to lower bound the left-hand side, we find that

LG po 0 < 25 ing B850 — s 007] + (L2
Lk Poo >y PO* PO 51élcS Oo+6 T 9 €T B .
te[T]
Concluding.
Consequently, by putting the two parts together, we have that
T
1 . L+p\?
B B 2
<23 B[t - o]+ (B52) :

te[T)
Lemma E.5 (Neural network approximate linearity). Assume that v> > 2k. For any 0y € ©,

1
oo 2 IVess, @lly S 2PRE*

i€[n) i€[nT]

i 2 ¢y NI 2 2
S 3T (VES s S92+ 0 and

Proof. The first bound is a trivial consequence of Lemma Meanwhile, we note that the second
inequality, the quantity inside the norm is exactly Spg,(x), and thus the bound follows by Lemma
O

E.4 Computations

Lemma E.6 (Source Rademacher Bound). We have the following bound on the Rademacher com-
plexity:

1
T

+L
log(nsT) + it

Rns 5

U [Acs<9)]®T]< Ly

~ 2
0€0g (nST)

k k
L4 p)——— + Ly —
(L+p) TST+ ns]
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Proof. We first consider bounding the empirical Rademacher complexity for a fixed set of inputs
(x;,), after which we obtain the desired result by taking expectations over the sampled inputs.
Expanding the definition, we have that

|
|
&=

Ag,wy
o7 | s | 2 e (0] 6B i) + (B, s (@i0)) + Bl (i)
(acwees |

w+L

/8 )

IN

1
Ry (FET 0 @) + fRnS (FET o W) +
where

Fo ={z B(w,z)||lw], <1/8}
Fo ={Z = B(AZ)||Allp <1/8}
O = {¢p | (Fw) (B,w) € Oy}
U= {Yp. | (B,w) € Op}.

We proceed to bound the two complexity terms by noting that for any function class F, R (F) <

~

Gns (F), and making use of the Gaussian complexity chain rule from Proposition First, note that

for a fixed set of latent vectors 21, . .., Zng,
1 1 1
Gz(Fo)=—E | sup |[{z,Zw)|| < —VtrZZT = — Z Hleg
ns lwll,<1 ns ns i€[ns]

Then, applying the representation norm bound Lemma[E-2Jto the latents,

k
E [rzneaggz(]%)] < L\/%.

Similarly, for a fixed set of latent matrices Z1, ..., Z,g

Gz(Fu) <

i
> 1zl = E [rzngggz(fm)] <Ly
S

1€ENng

where we once again used the representation bound from Lemma[E.2]

Finally, we bound the complexity of the classes ® and V. Firstly, we have

%Qns (@) = ns%E sup Z Z Z ZT’i’tU(BIZEi’t)

_(Bo,wo)e@o re[2k] i€[ng] te[T)
< B sup > D o)
T nsT | ),<1 i€[ns] te[T) | |
kL
St || 2,

L 1€ [ns T] 2

where the second inequality makes use of the Gaussian contraction result in Ledoux & Talagrand
(1991, Corollary 3.17). Note that we reindex at the third line, which is made possible by the fact
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that the source tasks have the same input distributions. Secondly,

%gns (\II) = %%E sup Z Z Z B Z; t xz,tvzr,i,t>

_(Bo,wo)e(ao re[2k] i€[ng] te[T)

! L
:nsiTE sup Z Z Z (B! zig) — o' (0)] (@i, 2rie) +m

| (Bo:wo)€80 |,.cak) ic[ns] te[T]
2k L
=_—FE | sup o (b z;y) — o (0)] (@i g, 204 + —
2| | 3 [#07e) = 0] bz | + 7

i€[ng] te[T)

k
5 nSiTE ‘ Z <xi,tazi,t> Lt
L||i€[nsT] 9
< ku L
- \/’I’LsT \/nST’

following the same reasoning as before. Therefore, by applying Propositionm we obtain the bound

1 or| < kL a2

\/ST B

Lemma E.7 (Target Rademacher bound). We have the following Rademacher complexity bound:

sup R [Acx (0)] S Lf@/ L + ).

[ASSH)

Rous + [(L+p)

Proof. Following definitions, we have that
sup R [Acy (0)]
[ASISH)

- g

nrt 56(37 nrt

sup |(e, p(X)6 + (5 (X))]| < -E lsup (e, p(X)3)]

= @E (o) el + (2 + ) < 2B [l Tells) + 22+ 1)

<Lf\/> —(L+ p),

where the final inequality uses the bound on the representation given in Lemma|[E.2] O

E.5 Compiling the Bound

Theorem 5.1 (Neural net performance bound). Assume that Assumptions 5.1, and @ hold.
Then, if ng > nr, there exists a setting of the training parameters (see Section [E) such that with
probability at least 1 — 0, the iterates (0;) satisfy

: ex * k k3/2 + L

vV nsT ﬁ
Proof. By incorporating previous bounds and invoking Theorem 4.1, we have that for large enough
'7,

Efenp [mtinﬁg’.f(fgt,f*)}

kr(L 2 k k3/2 L
Relltp) g2 * =+ L(L+p) +<‘H >L\/E.

~ Trcp Vn vngT B
Therefore, by running enough projected gradlent descent iterations so that the first term matches
kLK /+/nT, we obtain the desired bound. O
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F Case Study: Logistic Regression

To further illustrate our framework, we analyze the performance of ADAPTREP on logistic regres-
sion, as done by Tripuraneni et al. (2020b). In this setting, we let = (B, w) for B € R%** and
w € R¥, and define the predictor corresponding to 6 to be gg(z) = =" Bw.

F.1 Statistical Assumptions

As in the linear setting, we consider an input distribution p with covariance ¥. We restrict the set of
labels Y to {0, 1}, and consider the conditional distribution ¢(y | go(z)) = Ber (0(go(x))), where
o(y) = 1/(1 4+ e7Y) is the sigmoid function.

We define the optimal parameters for tasks ¢t € [T] to be (B*+ A}, wy), where B* is orthogonal and
|AFl > < 8o. As before, we define §; == Ajwj forany t € [T] and W* = [wy,...,wr] € RF*T.
Having defined the prior quantities, we make use of the statistical assumptions presented in Section
3.1, reproduced below for convenience:

Assumption F.1 (Sub-Gaussian input). There exists p > 0 such that if © ~ p;, then X~Y/2x is

p?-sub-Gaussian.

Assumption F.2 (Source task diversity). Foranyt € [T, ||w;||, < r, and o3(W*) = Q(r*T/k).

Finally, we define the target task distribution p by sampling w*, §* uniformly from the r— and §o—
balls of R¥, respectively, and letting * = B*w* + 0*.

F.2 Training Procedure

We use the standard logistic loss (¢,y) = —yloglo(§)] — (1 — y)log[l — o(4)]. During source
training, we optimize over initializations ©y = {(B,0) | B is orthogonal}. Let B, € R4*k
be the obtained representation. To adapt to the target task, we initialize the learner at 6§, =
([Bo, Bo], [wo, —wp]) for some unit-norm vector wy, and scale the predictor by a fixed parameter (3
to be chosen later. Finally, we set the feasible sets for optimization to be

8 do rrt/?
Cs ={(Aw) [[|Allp < b0, lwlly <7} and Cpi= 9 (A w) | |A]p < 3 [wll; < a

where K = Apax(X)/Amin (X). Note the similarity of this procedure to that of the linear setting.

F.3 Performance Guarantee
Having described the statistical assumptions and the training procedure, we now specialize the guar-
antee of Theorem 4.1 to this setting.

Theorem F.1 (Performance Guarantee for Logistic Regression). Assume that Assumption [F.1)and
Assumption[F2]both hold. Set the parameters for target time training to be

Viry (kr? +62)trX
= (kr? + 62 1, Y= T, = /=
B = (kr*+ 50)max< VN and Tprcp oy

Then, for ng,nt > p*d, we have that with probability at least 1 — § over the random draw of
samples, the iterates (0;) satisfy

Ey-p [mtin L£5(96, g*)}

1 PR
<= {ml/2 ISa/? /= + Vs
é nt /Nt

[N 5
+exp [pS(r+50) ||E||§/2} lrj/n!i?j’ kT+kdlogng+Tf)S\/t by

} |
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F.4 Proofs

In this section, we prove the performance bound provided for logistic regression. First, we verify
that the setting satisfies the assumptions of our general framework. Subsequently, we compute the
quantities required to instantiate our bounds.

F.4.1 Verifying Assumptions of Section 4.2
In this section, we verify that the logistic regression setting, as described in Section [F] satisfies the
assumptions required by the general framework in Section 4.2.

It is easily verified that the logistic loss is 1-Lipschitz, convex, and that [¢(0, y)| < 1fory € {0,1} =
Y. Furthermore, as we have already characterized the approximate linearity of the function class in
Lemma the approximate linearity assumption in Assumption 4.4 holds with high probability.
Finally, Cr is norm-bounded by (xr2 + 62)/5%.

Therefore, all that remains is verifying that a (v, €)-diversity condition holds in this setting. In what
follows, we will do so by connecting the logistic loss to squared error loss via leveraging smoothness
and local strong convexity, as was done by Tripuraneni et al. (2020b). Consequently, we can utilize
the same argument as in the linear setting to obtain the desired diversity condition.

Lemma F.1 (Diversity condition, logistic regression). Under the assumptions above, the source
tasks satisfy a (Q(exp[—p®(r + &o) ||ZH;/2]), 0)-diversity condition.

Proof. We remark that under the choice of ¢ and the logistic loss, we have that

By [(g6(x), y) — £(gor (2),y)] = Ex [KL (Ber ((go(z)))[Ber (a(gor (2))))]
Using the results in Tripuraneni et al. (2020b, Lemmas 2 and 3),
éEI [exp(— max(lgo ()], g0 (2))) (g6 (2) — gor ()] < Eay [€(g0(2),y) — Lgor (x),9)] (13)
1

Eay [£(90(2), y) = Lgp (), 9)] < gBa [(90(2) — g0 ()] . (14)

In what follows, we will make use of @]) to lower bound the task-averaged best-case performance,
and (T4) to upper bound the expected best-case target performance. Note that this results in bounds
in terms of best-case mean squared error — we can then proceed to use arguments similar to that of
the linear case to connect the two inequalities.

Upper bounding the expected best-case target performance.

Assume that the optimal predictor is given by 6* = B*w™* + ¢*. Then, defining
1
g

we note that § := ([A,0],[0,@"]T) € C3, following the argument in Lemma and achieves a
squared-error excess risk of

. 1
A= =6w; and w= B(BJEBO)TBJEB%*,

E [(B9g,5(x) — go-(z))*] = HEW[(BOm %) — (Brw* — 6] Hz — HP;/QBOzl/?B*w*

Therefore, by taking the infimum of the excess risk over feasible § and applying the excess risk
upper bound in (T4)),

i Eey [6890,+5(2). ) = ao- () 9)] < Bey [£(305,15(2).) — oo (). 9)]

N

< 3B [(890,.5(2) — g0 2]

1
i
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Finally, recall that Eg-, [(w*)(w*)"] = (r?/k)I. Therefore, by taking expectations with respect
to p,

Eo«~p

;ergﬁ Em,y [g(ﬂg%-‘ré (1’), y) - 6(99* (Cﬂ), y)]]

.
< Egenp [tr Pt o, SY2B (w*) (w*) T <P§1/23021/23*> }

r? |2
== HP;/QBOZUQB

» .

Lower bounding the task-averaged best-case performance.

We proceed to lower bound the task-averaged best-case performance. To proof proceeds similarly
to that of Tripuraneni et al. (2020b), lower bounding the excess risk by a constant multiple of the
squared-error excess risk. Then, the result follows by an application of the transfer lemma in Lemma

B.4

Fix a task ¢t € [T]. Define Z; = x " (B*w; + &;) and Zy == x " (Bow; + 6;). We see that Z; is
sub-Gaussian with parameter p? ||S1/2(B*w; + 6;) ‘z < pA(r* + 83) |IZ]|, =t 0% Note that Z5 is
also sub-Gaussian with proxy o2. Then, by applying the lower bound in ,

Eay [£(g5,(x),y) — L(g0; (I)J/)] > éEm [e*ma"(‘zl"'ZZ')(ggt(w) — go: (fv))2] IS

We will now show that the right-hand side is lower bounded by a constant multiple of the squared
error excess risk. Intuitively, since Z; and Zs concentrate around 0, e~ max(|Z1],1221) concentrates
around 1.

Formally, consider the event E, := {max(|Z1],|Z2|) < ao} for any «. Since the quantity inside
the expectation of (I3) is non-negative,

SEx [em 12D (g, (2) — gy; ()]

> SB [1[Ea] e (g5, (0) — g0; (0)?]

— {E [(99,(@) = 90; @))*] —E [ [ES] (95, (2) — g0; (@))*] }.
Now, we upper bound the last term. By Cauchy-Schwarz,

E [1[ES] (99, (2) — 90; (2))?] < \/P<E5>¢E (99, (@) = go; (@))*]

where we have used the fact that Var [X] < o2 for a o2-sub-Gaussian random variable. We use
properties of sub-Gaussian random variables to bound both factors. First, by Chebyshev’s inequality,

e

\%

2Var [Z4] 2

P(ES) <2P(1Z1] > a0) < —;

o202 T a?’

For the second factor, g, () — go; () is sub-Gaussian with proxy p*E [(gét (z) — gor (w))Q}, and
so via an equivalent definition of sub-Gaussian random variables,

B [60,65) — 00 @] 5 7 [0, 0) — g 2]

Putting these bounds together, we have that

E {11 (ES] (g5, (€) — go: (x))ﬂ S :

o

E [(95, (@) — go; (2))?]
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Therefore, by setting o < p2, we can ensure that
Evy €95, (), 9) = Ugo; (2),9)] 2 e 0FI=E"E (070, — 2T0;)?]

1
— 7 2 Bay [fo5,(@).) — go; (2).)]
te[T)
—p*(r+0) 12115/
2 BB o - B )
]

2
‘2’
te(T

By applying Lemma[B.4] we finally obtain the final lower bound

3 1/2
eP” (r+80) (123 ] r2 L2
> il Eay [0, (2),9) — Ug0; (2),9)] = - || Pag, BB
t€Cs k 0 F
te[T]
Putting everything together, we thus have the desired diversity condition
inf B,y [((890,+6(7),y) — (go- (), y)]
811 <60
e (r+30) 1311 .
S Y inf Eay [y, 5, (0),9) — Lo (0),0)] O

teqry 19| <8

F.4.2 Computations

Having demonstrated that the assumptions in Section 4.2 hold, we proceed to calculate the relevant
quantities required for establishing a performance bound in this setting. First, we compute the
Rademacher complexity for source task training.

Lemma F.2 (Source Rademacher Bound). Assume that ng 2 p*d. Then, we can bound the source
Rademacher complexity as

1 r 2y 5o
—~R, Ac. (0157 < 2 /KT + kdl 0 Virs.

Proof. Observe that if (A, w;) € Cs, then 6; := Aqwy satifies ||d¢ ||, < do. Therefore, we have that

U [Acs,(e)}@T]

0€0y

1
= E Slép nsiT Z <€t7Xt<B + At)wt>
L(As,wi)eCs telT]

1

T s

1 1
=E| sup — e, XeBwy) | +E | sup ——= e, X0y
wp D {en XeBuy) MMHSTZ@ ‘)
lwel, <r te[T] te[T)

=(I) =(ID)

We proceed to bound these two quantities separately.

Bounding (I) via discretization.

In this section, we bound the complexity by discretizing the set OF*? of (k x d) orthogonal matrices.
We remark that the argument is similar in form to that of Lemma [B.3]
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Let S be an e-covering of O**? in the Frobenius norm with at most (6v/k /¢)?* elements guaranteed
by Proposition[[.T} Then,

1 1 _
(I <E sup  — Z (€1, X¢Bwy) | +E sSup — Z <5t7Xt(B _B)wt>

Bes s B,Bes S
te[T "B te[T
lwell,<r 7] |B-B|| < (7]
=:(A) [lwelly <7

=:(B)

To bound (A), we bound the corresponding Gaussian complexity and use the fact that R(-) < G(+).
Consequently, via multiple applications of Cauchy-Schwarz,

0 1
A)<,/=E — P X:B
(A) =4/ Sup T > (Px,p2, X1 Buy)
lwell<r — tEIT)

1 2 1 2

< B s —— S IPxpali] B | s —— 3 | XeBu .
Bes nsT Bes mnsT

te(T] lwe |l <r te[T]

Conditioned on Xy, > ;e 7y [|Px, thﬂg is distributed as a chi-squared random variable with kT

degrees of freedom, with mean k7. Therefore, using known bounds on expectations of finite maxima

of subexponential random variables,

E |sup D |Px,pzll; — kT | S kT log|S] + log 9]

BES /oy 6

— E [sup >  |[Px,pzl3| KT +1loglS]|.
te[T]

Furthermore, by applying the expectation bound on the empirical spectral norm in Proposition [[.5]

1 1 BTX/ X:B
E sup ﬁ Z HXthtH; =r |E sup T Z )\max ('fzt> (17)
wafﬁfg,,. S te[T] _BES te[T] 5
T
< P (5]
ng
ST DI (1)
Therefore, by combining the inequalities from (I6) and (T8),
2
(A) S w\/kT+log\S|.
~ \/nsT

We proceed to bound (B), the error arising from discretization. We have that

1 _
(B)<E| sup o > (e, Xi(B = Byw) | Sre ‘EI/ZHQ.
B,BEeS
Is-5[<e "
[lwillo <7
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Finally, by setting ¢ = \/k/ng, we have an overall bound of

1/2
(1) < T”EHZT/ VT + kdlog ns.

ns

Bounding (I).

By bounding by the Gaussian complexity,

1 do I o7 do =
(II) S —FE sup <Zt,Xt6t> S —FK |:HX1 z :| S ——VtrX.
nsT | |i5.)1,<60 tez[;} Vs vn ol — /NS
Putting the bounds on (I) and (II) together, we thus have that
1 r| - i)y do
~R Acs )" | £ —=2-/kT + kdlogns + ——=V/tr%. O
T ns Lgo [ CS( )} ] ~ m g 1S \/7TS

Now, we compute the Rademacher complexity term associated with target task training.

Lemma F.3 (Target Rademacher Bound). For 3 > rr'/2, the Rademacher complexity of the feasible
set during target time training is bounded by

k 5
Sup Ry [Aes (00)] < ret /28|52 ) — + —Virs.
06@122 T[ CT( 0)} ~ || HQ nr \/,,TT

Proof. We can write the Rademacher complexity for a fixed 6§y € O as

1
Ry [Acy (60)] = BE [ sup — (g, X[By, BoJw + X Awp + X Aw)
(Awyect T

Firstly, by converting to Gaussian complexity and following standard arguments, we can bound the
first term as

1 1
BE sup — (2, X[By, BoJw) | < SE sup — <[BO,B0}TXTz,w>]
lwlly<ret/2/p T l[wll,<r/p 1T
1/2 T
<Gl )
nrt nrt 9

k
S D
nr

For the second term, note that we only need to consider the set of rank-1 matrices of the form
A = v[wg, —wo] ", where [|v]|, < §o/Bv/2. As such,

CE

1 ]
sup — (z,Xv)] <2
Ivll,<d0/Bv2 T

EHXZ2<6O\/trE
VA P IRVATTY '

Finally, to bound the Hessian term, note that ||Aw||, < rx'/2§,/8%. Therefore, by a similar argu-
ment to the previous term,

I{(SO
< Vir 2.
~ Bynr '

Thus, as long as § > r«x'/2, we can take suprema and obtain the overall bound of

k 1)
sup R [Ac.(0)] < rit/? (R AR/ 3} O
sup Ry ey (0] 5 e 2SI\ + 2

1
sup — (e, XAw)
(A,w)eCr nr

BE
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F.4.3 Compiling the Bound

Having performed all required computations, we now prove the provided performance guarantee.

Theorem F.1 (Performance Guarantee for Logistic Regression). Assume that Assumption [F.1)and
Assumption[F2| both hold. Set the parameters for target time training to be

VirX (kr? 4+ 02)tr s
(2 52 _ 0
B = (kr® + 65) max (1, NG and Tpgp = —1/52nT

Then, for ng,nr > p*d, we have that with probability at least 1 — § over the random draw of
samples, the iterates (0;) satisfy

Egenp [mtinﬁ ~(90.,9" }

{T“”Q RIS

+exp [p(r +60) 1113/ [

S

\/tT

S

1/2
r =]l

do
————/kT + kdlogng + —Vtrx
\/nST gns A/ NS

} |

Proof. With probability at least 1 — §/2, the approximate linearity property of the function class
holds via Lemma [B.2] and Lemma [B.6] Therefore, by combining all prior calculations and in-
stantiating Theorem 4.1 with failure probability ¢ /2, projected gradient descent finds a predictor g
satisfying the desired bound in the theorem statement. O
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G The Nonlinear Hard Case

G.1 Construction

In what follows, we establish the existence of a nonlinear setting where there exists a sample com-
plexity separation between ADAPTREP and FROZENREP, similar to Section 3.4. As before, fix
k,d € N with 2k < d. The construction relies on the observation that linear predictors lying in a
rank-k space are representable as linear functions of 2k appropriately chosen ReL.U neurons.

Following the discussion in Section[E] note that when we take 5 — oo, the resulting function class
can be expressed as
T T T
fBiaw =w' o(B'z)+ (zo'(z' B),A),
where B, A € R*2k and w € R2*, We further constrain B so that the first & columns are equal to
the negation of the last k& columns. Finally, we choose o(x) = max(z,0), which we will also write
as x4 for convenienceﬂ For convenience, we follow the convention in Section of writing ¢p, ¥ p

and pp for the activation, gradient, and concatenated features corresponding to B, respectively, as
defined in Definition [E ]l

We briefly review the construction in Section 3.4. Let the input distribution p be a Gaussian distri-
bution on R? with covariance
Y |:Efdk 0:|

0 Iy

for a fixed ¢ € (0,1). Furthermore, we define £*, E;, C R? to be the two eigenspaces of ¥
determined by the two blocks, i.e.

E* = Col |1k | and By = col |V ].
0 Iy,
Then, for any orthogonal matrix A € R?** with Col A C E*, define a distribution over 6 given by
1

\@Av +6, (19)

where v and § are sampled uniformly at random from the unit spheres in R* and E},, respectively.

0

Now, we lift this linear task distribution setting into the ReLU setting. In particular, we sample the
source tasks by fixing orthogonal A € R*** sampling v and § as before, and letting the optimal
predictor be f(pyA w), Where

1 1
B:=[A —A], wi=——[v,—v], A:==15". 20
(A, 4} wi= o], A= 0)
One can easily verify algebraically that
1
T
)=z |—=Av+46]),
oy (@) =" (=do+)

as desired. As before, we consider the family of task distributions induced by any A* with Col A* C
E*.
With the above task distribution, we can then prove the following hardness result on FROZENREP:

Theorem G.1 (FROZENREP Minimax Bound, ReLU). For an orthogonal matrix A* € R¥* such
that Col A* C E*, let B* = [A*, — A*], and define S~ to be the set

1
SA*:{A*U—F(S’ v, < 1,||0]], <1, € E }
o [olly <1, 1111, K
Furthermore, let B be the output of FROZENREP with access to infinite per-task samples and tasks,
with the task distribution deterined by B*. Then, with high probability over the draw of np > d
samples during target training, we have that

. E 1 Yo X 2 >O'2d
ming e B X0 = fip 00| 2 T
T 0 eS

8Note that o’ (z) = 1 [z > 0].
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where B, 0, and A are all measurable functions of (X,y) to RAx2k R2E  qnd RAX2k respec-

tively, and Col B = Col B. Furthermore, the expectation is over the randomness in the labels
y~N (XO*,JQInT).

In contrast, we have the following upper bound on the performance of ADAPTREP:

Lemma G.1 (Adaptation target performance, ReLU). Let By = [Ag, —Ao), and fix a 6* € Sy-.
Consider a learner which solves

min min Z llop (X)[w, Al —y||§

. 1
min  — [|pp, (X)[w, A] - y3

during target training, where B is the representation obtained from source training. Finally, we
set k = ©(1) and e = k/d. Then, with access to infinite per-task samples and tasks during source
training, the learner achieves target loss bounded as

1
L o), A] - Xo*||2<<1+1og ) 1+ los
nrt n

with probability at least 1 — 0 over the draw of target samples.

Proofs of the above results are provided in the following section. As before, we compare the two
methods when nt = ©(d). Then, from the results above, the lower bound on the loss of FROZEN-
REP is €)(1), while the upper bound on the loss of ADAPTREP is O(1/,/nT). Therefore, we also see
a strict separation between the two methods within this setting as well, which grows with np — oc.

G.2 Proofs

Throughout this section, we write §; = A*v} + ¢; for the linear predictor parameter for source
task ¢ € [T]. Furthermore, we assume that this linear predictor corresponds to ReLU predic-
tor f(p«4 A= w+). First, we prove the following intermediate technical result which will be used
throughout this section.

Lemma G.2 (Optimal ReL.U Predictor is Linear). Let € RY, and assume that B = [A, —A].
Then, if we set
w = argminE [(w" (BTz)y —276;)?],
weR2k

then the predictor x — w' (B x) is in fact a linear function of x, and takes the form of " Av for
some v € R¥,

Proof. Write w = [wy,w_], and thus the objective defining w can be written as

min B [(wi(ATz)y +wl (—AT2)y —z6;)?].

W4, W
Now, define the matrices
Q:=E[(AT2) (2T A) ] =E[(-ATa) (2" A)4]
T=E [(~AT2): (T 4):] = E [(AT2) 1 (2T A)],
where the equalities follow from the fact that Az and — Az are equal in distribution. Additionally,,
1 1 1 1
E[(AT2):2"] = iE [(ATz)42"] - §IE [(—AT2) 2] = §ATE [z2] = §ATE
and thus once again since Ax and — Az are equal in distribution,

E [(—ATx)_,_xT} =-E [(ATx)+mT] = —%ATZ
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Thus, by explicitly solving for the optimum of the convex objective,

wy] 1[0 T]7'[ ATs6;
w_| 2| Q —ATY0;
(@ -ran)-t 0 I ~TQ Y [ AT%6;
- 0 (Q-ran) -t |-ro-t I ~ATY0r |’
where we have applied blockwise matrix inversion to obtain the second inequality. From this, we

see that w; = w_, and thus the corresponding optimal predictor is linear, and can be shown to be
Tz Aw,. O

G.2.1 Hardness Result for FROZENREP

Lemma G.3 (FROZENREP learns incorrect neurons). Fix an orthogonal matrix A* € R¥* with
Col A* C E*, and assume that we sample tasks from the distribution in (@) Assume that B =
[/1, —121] is the representation found by FROZENREP. Then, with infinitely many tasks and per-task
samples (i.e. ng, T — o0), A = Col E.

Proof. Intuitively, the result follows from the fact that the optimal predictor is equivalent to a linear
predictor, and thus the result follows by Lemma [C.I] More formally, by Lemma|[G.2]

L(B) = % Z IIgIlE [(wT(Balc)Jr — xTGZ‘)z] = % Z InvinIE [(xTAv — xTGf)Q]
te[T] te(T]
= % Z mvin ’ =

1 mk:
2 T Z Hpg_l/ZAEI/QQt 2’
te[T] te[T]

’Zl/z(Av—QZ‘)

At this point, we recognize that the objective is equivalent to the one analyzed in Lemma [C.T] and
thus the same characterization of global optima holds. That is, the solution B found by FROZENREP
can be expressed as B = [A, —A], where Col A = Ej. O

Theorem G.1 (FROZENREP Minimax Bound, ReLU). For an orthogonal matrix A* € R¥* such
that Col A* C E*, let Sa~ be the set

1
Sue =4 —— A" 446 <18, <1,6 € B Y.
we={ a6 ol < L1, 3

We consider the following procedure:
1. We draw nt samples for target time training, which are collected into a matrix X.

2. Player chooses target-time estimator x wT(BTx) +1 [xTB > 0] ATac, where B,

and A are measurable functions of (X,vy), and B is an orthogonal matrix with Col B =
Col B.

3. Adversary chooses an orthogonal matrix A* € R¥¥ satisfying Col A* C Ey, and a target
time predictor 0* € S z-.

4. Compute the representation B returned by FROZENREP under the setting of Lemma
with the task distribution determined by A*.

5. Target time samples are generated using y ~ N (X 0%, (72[”), and the player estimator is
evaluated.

Then, with probability at least 1 — § over the draw of X, we have that

1 - - AT )2 2d
min max E | — Z (xj@* —w' (B'x;) — 1[z] B> 0] ATIE> > U—,
B,w,A e*ég nr nr
A* -

where the expectation is over the randomness in the labels y ~ N (XG*, O’QInT).
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Proof. Throughout this proof, we assume the high-probability event in Lemma [B.2] which guaran-
tees that with probability at least 1 — 6,

1
09 < —XTX <1.1%.
nr

Let S denote the intersection of the d-dimensional unit sphere with E. For any infinite-dimensional
vector f indexed by S and a measure y on S, we define 1! f to denote integration with respect to

W, 1.e.
Wi = [ 1
S
We then define the infinite-dimensional vectors 7 and ¢ @ fori = 1,...,d, both indexed by 5, as
n(x):=@w"'z)y and ¢(D(z)=1 [UTCL' > 0] z;.

Recall that by Lemma Col B = E},. With the preceding discussion in mind, we can equivalently
think of the player as choosing d + 1 signed measures «, f1,..., 8¢ over S, all with a common
support of 2k elements in S, as a function of (X, y). The player then plays the predictor

d
z— o n(z) + Z,B;FCU)(.Z‘).
i=1

Then, if we let T = {9 ) || Pg+0

\3 <1/2, |\PEk9||§ < 1} C S 4+, then we have the inequality

. 1 & w  AT(D - A 2
min max E [nT Z (zZTG —w (BTz)y —1 [IIB > O] ATLE) ]

! e
w,A 0% ES - =1
2
1 nT d
. T T _
=, pn -max B O Do w o —aTn@) =38P (w)
sPLyeeey Q*GSA* i=1 j=1

2
nT

d
1 ,
= min maxE | — 2T 0* — o n(x) — Tl (g
o d10, BB (T 2 (0 —aTnle) = 2, ¢

where the second equality follows from the fact that the expression has no direct dependence on A*.

The rest of the argument follows makes use of Fano’s minimax bound, applied similarly as in
the linear setting. First, note that for any § € T, there exists d + 1 signed measures on .S
with common support size 2k, which we denote with of and 3¢,...,39, such that 276 =
(@) Tn(z) + > (ﬂg)TC(j)(as). Using this construction, we can lift the local packing set from
the linear setting into this setting, where the associated seminorm (defined over vector measures) is
given by

2
nr

d
”(O‘?Bl? e 7ﬁd)”2 = i Z 04T77(l') + Zﬁ;C(a)(m)
Jj=1

i=1

More formally, let B be the unit ball under the ¥-norm, which we observe satisfies (1/ \/i)B CcT.
Recall that there exists a (1/2)-packing of the unit ¥-ball in the X-norm with at least 2¢ elements, via
a standard volumetric argument - let this set be P. Equivalently, there exists a (25/+/0.9)-packing
of (46/+/0.9) B with at least 2¢ elements, which we denote as P. Note that for any 6,0’ € P,

H(aeaﬁlea' 763) - (a9/76f/a" '7Bd/)

which implies that the vector measures corresponding to the elements of P are 2J-separated in the
associated seminorm. Furthermore, for any 6,6’ € P,

‘ 2

1
= — [ X(0—0)ll3 > 0960 —¢'[5, > 407,
nr

32’1’LT 52

1 2 n 2
KL (N (X0,0° Ly ) [N (X0, 0% L)) = 55 1 X0 = 0, < 55 10 = 0'lls, < 55,50
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Therefore, for any 62 < 1/32, which ensures that P C 46B C (1/ \/§)B C T, Fano’s inequality
implies that

. " " 2 32n 1
i BB - >62 (1 L 5% =
i (a6 (|| 20 (1 it

3 32’ILT
>8 (5 - ————07).
- <4 0.902d log 2 )

X 2 L .
Therefore, as long as nt > (O‘S“Tog’ﬂ o2d, we can set §2 = (%) Z—Td, which implies that

1 nTt B B R 2 2d
min max E | — Z (xZTG* — Qf)T(BTJ?i) -1 [ajjB > O] ATJ:) P 7e O
w,A 9*&4; nr — nr
A* -

G.2.2 Adaptation Upper Bound

Having proven the minimax result for FROZENREP, we now proceed to prove a corresponding upper
bound on the performance of ADAPTREP. To do so, we need to prove a result analogous to Lemma
[B.4]for the ReLU setting.

Before we proceed to the proof, we need to find proper generalizations for relevant objects in the
proof of Lemma In particular, we recall the prominent use of the projector Ps.p,, which,
loosely speaking, can be thought of as representing the “average” component of the signal that can
be represented by a parameter in Col By.

Recall that the inputs (which are element of R?) are sampled from a distribution p. This input dis-
tribution induces the Lo (p)-norrrﬂ on vector-valued functions of R? and its associated inner product
via

¢z, =B [llK@3] and  (¢,€)z, = E [¢(@) ()] -

Now, let ¢ : R? — R? and ¢ : R — RY be two representation functions on R?. Then, we can define
the linear projector onto ( as the linear operator P taking representations R? — RY onto itself via

[Pe€](x) = E [£(2)¢()T] E [¢@)¢(@)T] ¢(a).

We denote the corresponding orthogonal projection as Pg—g = {— Pr£. We note that these operators
satisfy the orthogonality property

E [[Pcg](x) '[P €l (2)] =0,
which can be easily verified algebraically.

To understand the operator P, consider the problem of approximating a linear function of £ via a
linear function of (, as measured via the input distribution p. More formally, for v € R?, we want
to find )
w* = argrﬂrgin ||§(-)Tv — C(-)TwHL2 and f* = C(-)Tw*.
weRP

As the problem is differentiable and convex in w, we can simply use standard optimality conditions
to find that ;
w' =E [((@)¢(@)"] B [((2)¢(x) v and [ = () w

That is, P¢£ is performing exactly the transformation required on ¢ such that [P:£(+)] T is the best
approximation to £(-) T v via linear functions of ¢ in Lo-norm. To further connect this construction

to the linear setting, observe that if {(x) = B(')Vx and £(x) = x, then for any 0, v € R,
(O 0, [PFEN) "), = v B2 Py B2,

and thus P:¢ is indeed the desired generalization of the projection operators used in the proof of
Lemma [B.4] Having introduced the required mathematical tools, we now prove the corresponding
transfer lemma for this setting.

we write Lo throughout as a shorthand for L2 (p).
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Lemma G.4 (Transfer Lemma, ReLU). Assume that By = [Ag, —Ag]. Then, we have that

2 1 _ .
Pgija g, B2 ATW PRT Z]EEIEE [("@Tet - PBo(”f)[“”A])Q} :
=1

7

Proof. This proof follows the outline of Lemma[B.4] with all inner products computed with respect
to (-, ), Throughout the proof, we will write /> and P+ as shorthand for the operators P, 5, and

P(j-BO respectlvely First, we decompose the task-averaged population risk as for any choices of
(wt), (At) as

;i 1) 705 — pp,y () [wr, At]Hiz
tez[; 65+ () Twi — [Ppp,) () we, Ad|[},
‘x tez[;] @5+ ()T A; = [PLp5,]()wr A,
- t;] (65 () T wf = [P, ] (Ve Ay - ()T AF = [P, ) (Vs Add) |

Z [0+ ()T AF = [P o) e, Ad|[3,

te[T]

I Z ‘<¢B* PpBoK')[wtaAt}va*(')TA: - [PlpBo](')[wtaAtDLz"

te [T

1/2 A% %
ZTZH 21/2,42/‘4

The second inequality follows from noting that ¢~ (x) "w; is a linear function of z, and thus by

Lemma [G.2] the best linear predictor on ¢ is a linear function of z. Since the Lo-norm on linear
functions of x is equivalent to the >-norm on the parameters, we obtain the inequality abov

Now, we proceed to prove a bound on the inner product above. For any fixed ¢ € [T7,

(05 () T wp = [P, ] (), AL s ()T A7 = [P, ] (), Al)
< [(0n- () Tw = [Pop- ), AL ()T AF = [P pp] ()i A7) |

(@8- () Twp = [Pos- 1), A7) [P 1)y A7) = [P ps )l A |

+ [(1Pps-1C)lwr, A7) = (Ppsa) e, Ay - ()T A7 = [P ) ()iwn, Add) |

< [(0n- () Tw = [Pop-O)lwf, AL - ()T AF = [P pp]()[wi A7) |

+ (1P 6100 T [P pe | ()l A7) = [P ), Adl) |

(P57, A7) = [Pos,)(lwn, Adds s ()T AT = [P ps ) (Vwes Al

where adding and subtracting [Ppp-](-)[w;, Af] and [P+ pp-](-)[w}, Af] in the first and second
arguments of the inner product, respectively, results in the first inequality. The second inequality
then uses the orthogonality properties of P and P~ in the second term. Furthermore, observe that

(65 (@) Ty - [PpB*Kx)[wr,Aﬂ,wg*(xm: — [P ](@)wf, ATl |
(1P 65-1(@) w0} = [Ps-](@) T A7, [Prip-](@) A7 = [Pos-)()lwr, Afl),,
\ bn- (o) i, Vo (2)TAT) | = ;AT

b

19This is exactly the argument used in Lernrna
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where we have used the algebraically-verifiable fact that [Ppp-|(-)[w,A] = [Pép-](z)" +
[Pyp+](z)[A], and that [P pp-][w, A] decomposes in a similar fashion. Finally, since ¢%(z) " w;
is linear, we can apply Lemma|G.2] and thus

[[PHop-](x) "wi|,, = HPEU?A S2 Ay

2

From here, we note that we have an analogous quadratic inequality to that of Lemma [B-4] in the
terms

* ok 2 1 % 2
T Z H S1/24, 21/2A Ut ) and T Z ||¢B*()TAt — [PJ-pBO](.)[wt’At]HLQ
te[T) te[T)

upon applying Cauchy-Schwarz as before. Furthermore, note that via orthogonality, we have the
Pythagorean identity

I1PolI3, + [ Poll;, < ol -

and thus by following the exact same algebraic argument as in Lemma[B.4] of using Proposition [[.2]

2 2
1/2 pgxy/* 1/2 A%, *
T e oY T
te[T)
<= Z E [(¢767 — pp, (@)[we, Ad])?] -
T (T}
Since the result holds for any (w;) and (A;), it holds for the minimizers. O

Lemma G.1 (Adaptation target performance, ReLU). Let By = [Ag, —Ao), and fix a 6* € Sy-.
Consider a learner which solves

. 2
min min anB Al =yl
A 5 <1 tE (T]

during source training, and

1

2
min s (X)lw, Al =yl

lAllp<1

during target training, where By is the representation obtained from source training. Then, with

probability at least 1 — 9,
2 2k 1
+22 (1 + log >
2 nr 1)

o 1
— Y(|1+log—|.
+ nT\/ktr <+0g5)

In particular, with k = O(1) and € = k/d, and assuming access to infinite per-task samples and
tasks during source training, the learner achieves target loss bounded as

1 *
o, (X)lw, A] - X0 ||2<n<1+1og )+ 1+ iog;

with probability at least 1 — 0 over the draw of target samples.

1 " *
oo (O, A] = X073 £ || Pgia, 21/2A

Proof. Throughout the proof, we instantiate the high-probability event in Lemma[B.2] which guar-
antees that with probability at least 1 — §/9,

1
09 < —XTX <1.1%.
nr
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By forming the least-squares basic inequality, we have that

1 * ok *
o oo (X)[w, A = X (A" + 7)1

< e (| Pxa, X A*v 2+—T (2, pBy (X)[w, A] — Px 4, X A*v* — X6%)].

=
Then, since Px 4, X A*v* is in the span of ¢p,(X), we can bound the right-hand side of the basic
inequality by
. * ok *
o ‘<Z’P¢Bo<x> (PBo (X)[w, A] = Px 4, X A*v* — X§ )>‘
=Tlow-rank

- % ’<Z’P¢l50(x) (¥5, (X)[A] _X‘S*)>‘ '

Furthermore, we can lower bound the left-hand side by

1 " 1 2 -
— [lpBo(X)[w, A] = X (A*v* +6) 13 > — || Tiowrankll3 + — (P4, X A*0", Thow-rank ) -
nrt nrt nrt

Note that ¢, (X) is a matrix with rank < 2k, and therefore, Py, (X)z is a chi-squared random
variable, with at most 2k degrees of freedom. Subsequently, by applying known bounds on chi-
squared random variables, we have that with probability at least 1 — (4/9)4,

1 20k 1 1
7T ||ﬂow-rank||g S C+ ( C + \/TiT 1 + log 5) ﬁ IlTlow-rank”2

(2Pl oo (em,(OA] - X59)].

nrt

which thus implies via Proposition|[.2] that

1 %,k *
El\pBo(X)[w,A]*X(A vt 46713

%k 1 1
<42t A n o
S+ o <1+log6) + o ’<Z,P¢BO(X) (s, (X)[A] — X6 )>‘
To bound the final term, note that

- ]<z,P;B o) (5, (X)[8] - X6%) )|

nr
al *|= J

by applying the norm bounds on A and §*, and thus by applymg the Hanson-Wright inequality, with
probability at least 1 — (4/9)4,

i ‘<27P$BO(X) (V8o (X)[A] = X5*)>‘

F [\/1trw30( )T, (X) + \/an trXTX} \/1 +log <

o 1
< ——[ktrX(1+1log=|.
Sy frours (1410g )

.
X'Py (x)

’ rwBO ) ¢B (X)Z

Therefore, since ||v*||, < 1, we have an overall bound of
1 2 o%k 1
- ”pBo (X)[U), A} - XQ*”% § HP;]_1/2A021/2A* + — (1 + log >
nr 2 nr 1)

o 1
Etr¥(1+4log— ).
+ nT\/ tr < —|—0g5)
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To prove the second part of the statement, note that with infinite source tasks and samples, global
optimality with respect to the source loss together with Lemma[G.4]implies that

207

1 1 1/2 pAxyyr*
T HPEI/M“Z A 2

2
1 1/2 g%
=0 = ||Pdiaa, =24

since (k/T) [V*TV*} = [Ij,. Furthermore, with the choice of d and ¢, tr ¥ = ©(1). Therefore, we
obtain the second claim. O
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H A Performance Bound for Projected Gradient Descent

In this section, we provide a performance bound for projected gradient descent on the objective

£0) =~ 3 Ugolo) )

1€[n]

for & € ©, where © C R?. We assume that © is norm-bounded by D, and that © is convex and
contains 0. Furthermore, we assume that gy is twice-differentiable as a function of 6.

Key to the performance bound that we will demonstrate is that gy is “approximately linear” in
the parameter 6, which we formally define below. Under this assumption, we demonstrate L is
approximately convex over © if L is Lipschitz as a function of the vector of predictions and £ is
convex in the first argument. Therefore, with slight modifications to the online analysis of projected
gradient descent, we obtain the desired performance bound.

Following the discussion above, we make the following assumptions:
Assumption H.1 (Approximate linearity). There exists 8 and L such that

. l 2 . 2 2 l 2 2
sup = Z_EZ[T,:] V590 (x|, < 6° and iEZM IVogo(x)ll3 < L2

Assumption H.2 (Assumptions on ). We assume that ¢ is convex in the first argument. Further-
more, if L is viewed as a function of the vector of predictions go(X), then we have that

2 o?
||vg£(90(X))H2 < o
forany 0 € ©, i.e. Lis (a/+/n)-Lipschitz as a function of the vector of predictions.
Note that we abuse notation in Assumption using L to reference both the function of the param-

eter, and of the vector of predictions. Given these two assumptions, we now proceed to demonstrate
that the loss landscape of £ has several desirable properties.

Lemma H.1 (Approximate convexity in ©). Let 01,602 € ©. Then,
<VQ[,(91), 0y — 91> < £(02) — E(Gl) + 40{[3D2.
Proof. Note that L is a convex function of the vector of predictions gg(X), as it is a sum of convex
functions by Assumption[H.2] Therefore,
L(02) = L(61) = (VgL(90, (X)) g6, (X) — g6, (X)) -
Furthermore, by the chain rule,
(VoL(01),02 = 01) = (VgL(g0, (X)), [Vago, (X)](02 — 61)) -
Putting the two statements together and applying Cauchy-Schwarz,
L(02) — L(01) — (VoL(01),02 — 01)
> (VgL(90, (X)), 90, (X) = g0, (X) = [Vogo, (X)](02 — 01))
= = [VgL(ga, (X))l g0, (X) = g6, (X) = [Vaga, (X)](02 — 01)]l
e
z2 7 196, (X) = g6, (X) = [Vogs, (X)] (02 — 61)]],

Now, by Taylor’s theorem, there exists § = \0; + (1 — X)) such that
96,(X) — g, (X) = Vogo, (X)(02 — 61) = [(02 — 1) " Viga(z:) (62 — 61)]icpn)-

Consequently, by rearranging,

(VoL(61),02 — 01) < L(02) — L(01) + % D162 —61) T Vigs(wi) (62 — 1))
1€[n]

S £(02) — 5(91) + 40&5D2. D
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Lemma H.2 (Gradient bound in ©). For any 6 € ©, we have that
IVeL(O)3 S o*(L* + °D?)
Proof. Using the Lipschitz assumption in Assumption[H.2}
VoL )5 = H Vage ()] TV Lgo (X5 < V090 (3 IV LL90 (X3
< Z IVogo (i)l

i1€[n]

Now, by integrating, we have that for any fixed ¢ € [n],

VOQO(mZ) Vego mz |:/ Vegae xz) da:| 0.

Therefore,
2

V@) < S [Vomola}+ & H / Vitole)dal| 1013

16[ ]

2p?
<L Z IVogs, (z)ll3 + & / > V3gao(@i)]l; do

i€[n]

<a (L2+[32D2). O

Having proven the results above, we now proceed to the main claim of this section.

Theorem H.1 (Bound on PGD performance). Assume we run projected gradient descent on L with
constraint set © for Tpgp iterations with step size 1 given by

1 D
= VTrap (om/L2 +62D2> .

Let (0¢)te|Tpap) denote the sequence of PGD iterates obtained, where 6y = 0. Then, for any 0 € ©,

L2 2D2
min £(6,) — £(8) < aBD? + aDy| D%
i Tpap

Proof. Forany t € [Tpgp],

r2y = [|6rs1 — 013
< |16 — Vo L(8;) — 0|3
=17 +20 (VoL (0:),0 — 0:) + 1% VoL (915
<1y +2n[L(0 + 0) — L(6o + &) + 4aBD?] + n°a® [L* + B*D?],

where the first inequality follows from the nonexpansive property of projections onto convex sets.
Furthermore, the last inequality makes use of the approximate convexity property from Lemma[H.T]
and the gradient bound over © from Lemma[H.2} Therefore, via telescoping,

Tpgp—1

S Lo - L)
t=0

2
Trcp

r <r2+2n + 8nTpapaBD? + n*Tpepa?[L? + B2D?,

or by rearranging,

2 2 Trep—1

"0~ "Teap 2, 2 22 1

——FCD 1 4D L*+ B°D*| > L(Oy+6)—L(Oy+ 6
T 3 2 [ D7) 2 70— > Lo +0:) — L(Bo + )

t=0

> min L0+ 6) — L0 +9).

t=0,....,Tpap—1
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Now, using the choice of step size, observe that

2 .9 2 2

"o " "™regp M1 272 212 not oo 212
10 Meap | Dyp2p2y g2p2) < = 0072, g2
2nTrap 2[ } 2nTrcp 2 [ ]

12 212
_up [P
Tpcp

from which the desired claim easily follows.
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I Technical Lemmas

Proposition I.1 (Du et al. (2020), Lemma A.5). Let O% %92 be the set of matrices in R4 > with or-
thonormal columns, di > da. Then, there exists an e-covering of O% > % with at most (6+/da/ E)d1d2
elements.

Proposition 1.2 (Solving quadratic inequalities). Assume that az? < bx + c for a,b,c > 0. Then,
br +c < (b2 /a) + e

Proof. Since a > 0, the solution set to the inequality is given by the interval [ry, 2], where  and
7o are the roots of ax? — bx — c. By the quadratic formula, the larger root 7 is given by

_b+\/b2+4ac<é+ c

"2 2a a a
Therefore,
b b? b b2
x§r2§+\F = bx—i—cg—&—()\/é—l—cg—i—c,
a a a Va a
where the last inequality makes use of the Cauchy-Schwarz inequality. O

Corollary I.1. Let X andY be random variables.
E[X?] SE[(X+Y)’]+E[Y?]

Proof. We have that

E[(X+Y)’] =E [X?] +2E[XY]+E [Y?] > E [X?] - 2E[| XY]].
Therefore, by applying Cauchy-Schwarz,
E[X?] <E[(X+Y)?]+2E[XY[|<E[(X +Y)?] +2VE[X2E[Y2].

Finally, by applying Proposition [[.2]

E[X?] SE[(X+Y)]+E[Y?]. O

Proposition 1.3. Let A, B be matrices with compatible dimensions, and assume that rank A = r >
0. Then,

1
1PaBllp < 5 147 Bl -

Proof. Let (U, %,V ") be the compact singular value decomposition of A, i.e. we only retain posi-
tive singular values in . By rotational invariance,

1T B = |[VsUT B, = |=UT B
Furthermore, by definition,

[BUTBIL = 3 20T Bl 2 029) Y 07 Bel = 2(4) U
i [

Finally, by applying rotational invariance once more,

2 2
|ATB|| = 02(A) [[UUT B, = 07 (A) [ PaBl %,

from which the desired claim follows. O

Proposition L.4. Let A,y > 0, and fix a vector y. Then,

LA 2 2
min 2 A7+ 5 llzllz = /A7 ;.
Azi:y
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Proof. We proceed by cases. If y = 0, then the result is trivial.

Otherwise, if y # 0, note that * # 0. Now, for any fixed x # 0, the minimizing choice for A is
22| for some z. To see this, observe that if A is not rank-1, then we can achieve a lower Frobenius
norm by reducing its rank. Consequently, for a given z, the minimizing choice for A is yz '/ H:c||§
necessarily. Therefore,

min 2 1AL + 2 ol = min 2 (12} 4 2 o2 = mn 2 (M2} . 22
A 2 U M2 T 9 )2 22302\ 2 2

Axz=y

This final optimization problem is convex in z — using first-order optimality conditions, we can thus
easily see that z* = \/\/7 |ly||,, and therefore

A2 Y 2
min 5415 + 5 2l = v s -

’

Azx=y

Proposition .5 (Expectation bound on empirical spectral norm). Let X € R"*? be a matrix with
rows drawn i.i.d. from a zero-mean distribution with covariance .. Furthermore, assume that the
whitened distribution is p*-sub-Gaussian. Then, whenever n > pd,

X'X

Proof. By Weyl’s inequality,

E [Amax(X;Xﬂ < 2||2+E[ 2]'

Thus, by applying the result in Vershynin (2017, Theorem 4.4.1), we have that as long as ng > pd,

XX
E [ (5] S0 =

Proposition 1.6 (Gaussian complexity chain rule, Tripuraneni et al. (2020b), Theorem 7). Assume
that F is a class of functions RF — R such that every f € F is L-Lipschitz in the Ly-norm.
Furthermore, assume that ® is a class of functions RY — R¥ such that for any ¢ € ®, ¢(x) is
norm-bounded by D for any x in the support of the input distribution. Then, we have the bound

%gn(}'w 0d) < 8D o (;gn(@) +E [sup Qz(}')D log(nT),

XTX XTX
o (555) <3| < e[| 55 -

(nT)? zZez

where Z is the random set {($(xs,), ..., ¢(xi,)) | 915 ..., in € [NT]} and Gz (F) is the empirical
Gaussian complexity on samples Z. Note that the inner expectation is over the nT' input samples,
and that we have assumed that all input samples come from a single distribution.

Proposition 1.7 (Tripuraneni et al. (2020b), Lemma 6). Let h,h* : R? — R¥* be representation
functions, and define

A(h,h*) =E [p*(z)h*(2) ] = E [n*(2)h(z) "] (E [h(m)h(m)T])TE [h(z)h*(z) ] .
Then, inf, E [(h(z) v — h*(z) "v*)?] = (v*) TA(h, h*)v*. Furthermore, if
Omin(E [R(x)h(z)T]) > e1 >0 and  omax(E [R*(2)2* (2) T]) < ea,
then this infimum is achieved within the ball of radius ||v*||, \/c2/c1.

Proof. The calculation of the infimum is provided in Tripuraneni et al. (2020b), and is thus omitted.
However, we prove the sharper radius bound below.

Define Fy,pr = E [h(z)h'(z) "], so that A(h,h*) = Fpepe — Fh*’hF,I’hFh’h*. Then, since
A(h, h*) = 0, and recalling that the infimum is achieved at v = F;[ nFh v,

2 1 1/2 2 1 1/2
HF}JLr hFh,h*”*H < *HF}L/}L Fi]:hFh-,h*U*H < *HF;L*/h*U
’ 2 C1 ? ’ 2 C1 ’

2 &1 2
<23,
2 C2

as desired. O
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