
1 LSH bound

Here we repeat the definition given in the paper. For a domain S with distance measupre D, a LSH family
is:

Definition 1. H = {h : S → U} is called a (r1, r2, p, q)-sensitive LSH function family for D if for any two
points x, y ∈ S, one function h chosen uniformly at random from H satisfies:

• if D(x, y) ≤ r1, then Ph∈H[h(x)=h(y)] ≥ p,

• if D(x, y) ≥ r2, then Ph∈H[h(x)=h(y)] ≤ q.

Now we let r = r1, cr = r2(c > 1), p > q, h1, . . . , hK ∈ H. Construct gi(x) = [h1(x), . . . , hK(x)], select L
different functions g1, . . . , gL. For one point x, hash x into ALL L buckets, denoted by g1(x), . . . , gL(x). x
and y is called to “collide” if they collide under any of the g1, . . . , gL functions.

Theorem 1. • Under all previous definitions, if D(x, y) ≤ r, then P (x collide with y) ≥ 1− (1− pK)L.

• Under all previous definitions, if D(x, y) ≥ cr, then P (x collide with y) ≤ 1− (1− qK)L.

Proof. For (1),

P (x collide with y) = 1− P (x does not collide with y) (1)

= 1−
L∏
i=1

(1− P (gi(x) = gi(y))) (2)

≥ 1− (1− pK)L. (3)

For (2), similarly,

P (x collide with y) = 1− P (x does not collide with y) (4)

= 1−
L∏
i=1

(1− P (gi(x) = gi(y))) (5)

≤ 1− (1− qK)L. (6)

Theorem 2. For 0 < ε < 0.5, let C = logε(1 − ε), then 0 < C < 1, pick K = max{1, dlogq/p Ce}, pick

L = 1
logε(1−pK)

, under the previous definitions, we must have

• For all x, y satisfying D(x, y) ≤ r, P (x collide with y) ≥ 1− ε.

• For all x, y satisfying D(x, y) ≥ cr, P (x collide with y) ≤ ε.

The first part of theorem 2 can be easily proven by the choice of L. To prove the second part, notice the
choice of K satisfies (

q

p

)K
≤ logε(1− ε). (7)

This implies

(1− pK)

(
q

p

)K
≤ logε(1− ε), (8)
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which is

(1− pK)qK ≤ pK logε(1− ε). (9)

Divide both sides by 1 > (1− pK) > 0, we have

qK ≤
(

1

1− pK
− 1

)
logε(1− ε). (10)

Then divide both sides by
(

1
1−pK − 1

)
> 0, and re-arrange terms, we have

(1− pK)− 1

1− 1
1−pK

≤ logε(1− ε). (11)

Using the fact that 1 − 1
x ≤ lnx ≤ x − 1 for any x > 0, we slightly make the nominator smaller, and the

denominator bigger, which results in:

log(1−pK)(1− qK) =
ln(1− qK)

ln(1− pK)
≤ (1− qK)− 1

1− 1
1−pK

≤ logε(1− ε). (12)

This is:

(1− qK) ≥ (1− pK)logε(1−ε) = (1− ε)logε(1−p
K). (13)

Because the choice of L satisfying L = 1
logε(1−pK)

, we have 1
L = logε(1− pK). In other words,

(1− qK) ≥ (1− ε)logε(1−p
K) = (1− ε)1/L. (14)

which implies

P (x collide with y) ≤ 1− (1− qK)L ≤ ε. (15)

2 Physics background

2.1 Equations

This is the general form of update.

~u(~i, j + 1) = ~u(~i, j) + δtQ({~u(~i′, j),~i′ ∈ N(~i)}). (16)

The discretization of the following two physics equations, namely the Cahn–Hilliard equation and the Allen-
Cahn equation have this general form. The Cahn-Hilliard equation looks like:

∂u

∂t
= ∇ ·

(
M∇ 1

N

δF

δu

)
. (17)

And the Allen-Cahn equation has the general form:

∂v

∂t
= −L δF

δv
. (18)

2



2.2 Examples

Example 1: Material Grain Growth. In materials science, grain growth is the change of the grains shape
(crystallites) in materials. This occurs when the recovery and recrystallisation are complete and further
reduction in the internal energy can only be achieved by reducing the surface energy of the grain boundary.
The understanding of the factors influencing the evolution of a grain structure is of great scientific and
technological importance. In this paper, we use the grain growth model given by Fan and Chen [1]. In the
model, each grain is described by one order parameter ηi which takes the value one inside a designated grain
and the value zero outside. The evolution function is described by the non-conserved Allen-Cahn equation
in the form of:

∂ηi
∂t

= −Li
δF

δηi
. (19)

Here Li is the mobility coefficient, N is the number of grains and F is the free energy function which takes
the form:

F =

∫
V

[
f(η1, η2, ...ηN ) +

N∑
i=1

κi
2
|∇ηi|2

]
dV (20)

Here κi are the gradient energy coefficients and f is the local free energy density. The specific form of local
free energy which is independent of orientation is given as:

f(η1, η2, ...ηN ) =

N∑
i=1

(−A
2
η2i +

B

4
η4i ) +

N∑
i=1

N∑
j=i+1

η2i η
2
j (21)

in which A and B are positive constants. Substituting Eq 21 and Eq 20 into Eq 19, we can have the governing
equation for evolution as:

∂ηi
∂t

= −Li(−Aηi +Bη3i + 2ηi

N∑
i 6=j

η2j − κi∇2ηi)

In this equation, we can see that it matches the general form of the PDE given in Equation 1 in the main

text in this way: ∂~u(~p,t)
∂t is (∂η1∂t , . . . ,

∂ηN
∂t ). D(~u) can be viewed as the total of all the terms that has ηi or η2i

or η3i as base. G(~u)∇F (~u) is not presented here. And I(~u)∇2H(~u) can be viewed as the sum of terms κi∇2ηi.

Example 2: Nanovoid Evolution. Nanovoid evolution incorporates a coupled set of Cahn–Hilliard (Equa-
tion 17) and Allen–Cahn equations (Equation 18) to capture the processes of point defect generation and
recombination, annihilation of defects at sinks. The phase-field model includes 3 field variables, cv, ci, and
η, which are defined to describe the void fraction, the interstitial fraction and the void cluster concentration.
These variables and vary both spatially and temporally on a 2-dimensional space. The free energy function
F in here is described as:

F = N

∫
V

[
h(η)fs(cv, ci) + j(η)fv(cv, ci) +

κv
2
|∇cv|2 +

κi
2
|∇ci|2 +

κη
2
|∇η|2

]
dV. (22)

Here, fs(cv, ci) is the contribution term from the solid phase. h(η) = (η − 1)2, f i(cv, ci) is the contribution
term from the void phase, and j(η) = η2. We use the formulation from [2] for fs and fv: fs(cv, ci) =

Efv cv +Efi ci + kBT [cv ln cv + ci ln ci + (1− cv − ci) ln(1− cv − ci)]. fv(cv, ci) = (cv − 1)2 + c2i . Substituting
above formulas into Eq 17, we can have the governing equation for evolution of cv as:

∂cv
∂t

= Mv∇2
[
(η − 1)2(Ev + kBT ln(cv)− kBT ln(1− cv − ci)) + η22(cv − 1)− κv∇2cv

]
(23)

In this equation, we can see that it matches the general form of the PDE given in Equation 1 in the main

text in this way: ∂~u(~p,t)
∂t is ∂cv

∂t , ∂ci
∂t and ∂η

∂t . And D(~u) + G(~u)∇F (~u) is omitted here because the equation
doesn’t contain any terms like them. And I(~u)∇2H(~u) is the entire right hand side of the equation.
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The discrete form is

cvt+1 = cvt + dtMv∇2N

[
h(ηt)

dfs(cvt, cit)

dcvt
+ j(ηt)

dfv(cvt, cit)

dcvt
− κv∇2cvt

]
where cvt means cv values at time t, cit means ci values at time t, ηt means η values at time t, h(ηt)

dfs(cvt,cit)
dcvt

=

(ηt − 1)2(Ev + kBT ln(cvt)− kBT ln(1− cvt − cit)), and j(ηt)
dfv(cvt,cit)

dcvt
= η2t 2(cvt − 1).

Similarly, we can get the governing equation for ci as:

∂ci
∂t

= Mi∇2
[
(η − 1)2(Ei + kBT ln(ci)− kBT ln(1− cv − ci)) + η22ci − κi∇2ci

]
(24)

And its discrete form can be written as:

cit+1 = cit + dtMi∇2

[
h(ηt)

dfs(cvt, cit)

dcit
+ j(ηt)

dfv(cvt, cit)

dcit
− κi∇2cit

]
where cvt means cv values at time t, cit means ci values at time t, ηt means η values at time t, h(ηt)

dfs(cvt,cit)
dcit

=

(ηt − 1)2(Ei + kBT ln(cit)− kBT ln(1− cvt − cit)), and j(ηt)
dfv(cvt,cit)

dcit
= η2t 2cit.

Finally, we can get the governing equation for evolution of η as:

∂η

∂t
= −LN(2(η − 1)fs(cv, ci) + 2ηfv(cv, ci)− κη∇2η) (25)

And its discrete form is:

ηt+1 = ηt − dtLN(2(η − 1)fs(cvt, cit) + 2ηtf
v(cvt, cit)− κη∇2ηt)

where cvt means cv values at time t, cit means ci values at time t, ηt means η values at time t, fs(cv, ci) =

Efv cv + Efi ci + kBT [cv ln cv + ci ln ci + (1− cv − ci) ln(1− cv − ci)]. fv(cv, ci) = (cv − 1)2 + c2i .
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