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Abstract

In this paper, we comprehensively reveal the learning dynamics of normalized1

neural network using Stochastic Gradient Descent (with momentum) and Weight2

Decay (WD), named as Spherical Motion Dynamics (SMD). Most related works3

focus on studying behavior of “effective learning rate" in “equilibrium" state, i.e.4

assuming weight norm remains unchanged. However, their discussion on why this5

equilibrium can be reached is either absent or less convincing. Our work directly6

explores the cause of equilibrium, as a special state of SMD. Specifically, 1) we7

introduce the assumptions that can lead to equilibrium state in SMD, and prove8

equilibrium can be reached in a linear rate regime under given assumptions; 2) we9

propose “angular update" as a substitute for effective learning rate to depict the state10

of SMD, and derive the theoretical value of angular update in equilibrium state; 3)11

we verify our assumptions and theoretical results on various large-scale computer12

vision tasks including ImageNet and MSCOCO with standard settings. Experiment13

results show our theoretical findings agree well with empirical observations. We14

also show that the behavior of angular update in SMD can produce significant15

effect to the optimization of neural network in practice.16

1 Introduction17

Normalization techniques (e.g. Batch Normalization (Ioffe & Szegedy, 2015) or its variants) are18

one of the most commonly adopted techniques for training deep neural networks (DNN). A typical19

normalization can be formulated as following: consider a single unit in a neural network, the input is20

X , the weight of linear layer is w (bias is included in w), then its output is21

y(X;w; γ;β) = g(
Xw − µ(Xw)

σ(wX)
γ + β), (1)

where g is a nonlinear activation function like ReLU or sigmoid, µ, σ are mean and standard deviation22

computed across specific dimension of Xw (like Batch Normalization (Ioffe & Szegedy, 2015),23

Layer Normalization Ba et al. (2016), Group Normalization (Wu & He, 2018), etc.). β, γ are learnable24

parameters to remedy for the limited range of normalized feature map. Aside from normalizing25

feature map, Salimans & Kingma (2016) normalizes weight by l2 norm instead:26

y(X;w; γ;β) = g(X
w

||w||2
γ + β), (2)

where || · ||2 denotes l2 norm of a vector. Though formulated in different manners, all normalization27

techniques mentioned above share an interesting property: scale-invariant28
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Definition 1 (Scale-invariance). Given loss function L(w), w is scale-invariant w.r.t. L if and only29

if ∀k ∈ R+, we have L(w) = L(kw).30

By definition of scale-invariant property, we can directly derive the following properties of scale-31

invariant weights in Lemma 132

Lemma 1. If w is scale-invariant with respect to L(w) , then for all k > 0, we have:33

〈wt,
∂L
∂w

���
w=wt

〉 = 0 (3)

∂L
∂w

���
w=kwt

=
1

k
· ∂L
∂w

���
w=wt

. (4)

Proof is in appendix. Lemma 1 is also discussed in Hoffer et al. (2018); van Laarhoven (2017); Li &34

Arora (2020); Li et al. (2020), it makes the learning dynamics of normalized neural network exhibit35

an interesting phenomenon when using Stochastic Gradient Descent (SGD) with Weight Decay (WD):36

a typical SGD update rule with WD is37

wt+1 = wt − η(
∂L
∂w

���
w=wt

+ λwt) = (1− ηλ)wt − η
∂L
∂w

���
w=wt

, (5)

Figure 1: Illustration of optimization behavior with
BN and WD. Angular update ∆t represents the an-
gle between the updated weight wt and its former
value wt+1.

where η denotes learning rate, λ denotes WD38

factor. Then dynamics of wt is like a physical39

process – Spherical Motion (see illustration in40

Fig.1): due to Eq.(3), −η∂L/∂w
��
w=wt

(green41

line in Fig.1) is always perpendicular to wt, pro-42

viding “centrifugal effect” to make ||wt+1||243

larger than ||wt||2; while −ηλwt (red line in44

Fig.1) is always in the opposite direction of wt,45

providing “centripetal effect” to make ||wt+1||246

smaller than ||wt||2. Because of this “tug of war”47

phenomenon between “centrifugal effect” and48

“centripetal effect”, we formally call the learning49

dynamics of normalized neural network using50

SGD(M) and WD as Spherical Motion Dynam-51

ics (SMD) in this paper.52

Concept of “Equilibrium” Since “tug of53

war” in SMD influences the relative sizes54

of ||wt+1||2 and ||wt||2, a question naturally55

arises: what will happen if ||wt+1||2 = ||wt||2?56

van Laarhoven (2017) discuss this question first; Chiley et al. (2019) named this state ||wt+1||2 =57

||wt||2 in SMD as “equilibrium”, and discuss its properties; Li & Arora (2020) derives a lemma58

about equilibrium in SGD with Momentum (SGDM). Early literatures (van Laarhoven, 2017; Chiley59

et al., 2019; Li & Arora, 2020) do not discuss a crucial question: “Can equilibrium be reached in60

SMD?” van Laarhoven (2017) intuitively explains that equilibrium is caused by convergence of61

optimization. But there exists a contradiction between the interpretation of van Laarhoven (2017)62

and traditional view of optimization: if equilibrium (||wt||2 = ||wt+1||2) is caused by convergence63

of optimization, then gradient of loss ∂L/∂w
��
w=wt

should be equal to 0, which makes the balance64

of “centrifugal effect” and “centripetal effect” impossible to reach (since centripetal effect comes65

from ∂L/∂w
��
w=wt

). Therefore, van Laarhoven (2017); Chiley et al. (2019); Li & Arora (2020) all66

essentially regard equilibrium as an assumption, and do not justify its existence in neither empirical67

nor theoretical aspects. “Equilibrium” was not even a phenomenon observed in practice, but only a68

concept until recently.69

Recent work (Li et al., 2020) successfully exhibits the existence of equilibrium by formulating SGD70

in Eq.(5) via a Stochastic Differential Equation (SDE) in the continuous time limit. They theoretically71

prove equilibrium can be reached in SDE settings: the convergence of ||w||t is only driven by Brow-72

nian motion; the mixing time is O(1/(λη)) (λ, η denote WD factor and learning rate respectively).73

However, due to the gap between discrete formulation of SGD and continuous formulation of SDE,74
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theoretical results derived from SDE model can only provide intuitive understanding on empirical75

observations. Besides, SDE can hardly take SGD with momentum (Polyak, 1964) into account,76

which has become default setting in nearly all kinds of deep learning tasks. In summary, a thorough77

understanding on cause of “equilibrium” and its impact to learning dynamics of normalized neural78

network is still needed.79

In this paper, we comprehensively reveal Spherical Motion Dynamics (SMD), i.e. the learning80

dynamics of normalized neural network using SGD(M) and weight decay (WD). Our analysis on81

SMD is directly established on discrete settings. We interpret why equilibrium can be reached in82

SMD in both theoretical and empirical aspects, and show how SMD affects the optimization trajectory83

of neural network. Speci�cally, our contributions are84

• We introduce the assumptions which can lead to equilibrium in SMD, and justify their rea-85

sonableness by suf�cient experiments. We also prove under given assumptions, equilibrium86

can be reached as weight norm approach to its theoretical value in a linear rate regime. Our87

theorem show equilibrium is a dynamic state in SMD, norm weight is unnecessary to be88

steady within equilibrium state;89

• We de�ne a novel index,angular update, to measure the change of normalized neural90

network within a single iteration. We also derive its theoretical value in equilibrium. Our91

results show that angular update is better than norm of weight to indicate if equilibrium92

has been reached reached in SMD. Our empirical results further show angular update is an93

important index to re�ect the effect of SMD and equilibrium;94

• We verify our theorems on different computer vision tasks (including one of most challenging95

datasets ImageNet (Russakovsky et al., 2015) and MSCOCO (Lin et al., 2014)) with96

various networks structures. Experiments show the theoretical value of angular update97

and weight norm agree well with empirical observation. We also show how SMD in�uence98

the optimization trajectory of normalized neural network by controlling angular update.99

Our theorem on equilibrium implies equilibrium is a special state of SMD which only relies on100

the update rules of SGD/SGDM with WD, and scale-invariant property. The cause of equilibrium101

is independent of optimization trajectory, but equilibrium signi�cantly affects update ef�ciency of102

normalized network in turn by controlling angular update. We believe SMD is one of the key reason103

why learning dynamics of normalized neural network is not consistent with traditional optimization104

theory (Li et al., 2020). We think it is of great potential to take SMD and its equilibrium state into105

account while studying leaning dynamics of modern normalized neural network or designing novel106

ef�cient training strategy.107

2 Related work108

This paper mainly discuss Spherical Motion Dynamics, i.e. joint effect of normalization and weight109

decay when training neural network work. Normalization techniques and weight decay are both110

relevant topics which should be carefully reviewed. But due to the limitation of the length, we have111

to leave the reviews on normalization techniques and weight decay separately in appendix. Here we112

only review the previous works focusing on joint effect of normalization and weight decay.113

Since the scale invariant property caused by normalization makes euclidean metrics of weight114

meaningless, researchers start to study the behavior of effective learning rate. van Laarhoven (2017);115

Chiley et al. (2019) estimate the magnitude of effective learning rate under equilibrium assumptions116

in SGD case; Hoffer et al. (2018) quantify effective learning rate without equilibrium assumption;117

Arora et al. (2019) proves that without WD, normalized neural network still can converge using118

�xed/decaying learning rate in Gradient Descent(GD)/SGD cases respectively; Zhang et al. (2019)119

shows WD can increase effective learning rate; Li & Arora (2020) proves standard multi-stage120

learning rate schedule with BN and WD is equivalent to an exponential increasing learning rate121

schedule without WD. As a proposition, Li & Arora (2020) quanti�es the magnitude of effective122

learning rate in SGDM case. But none of them have ever discussed why equilibrium condition can be123

reached. A recent work Li et al. (2020) studies the convergence of effective learning rate by SDE,124

proving that the convergence time is ofO(1=(�� )) , where�; � are weight decay factor and learning125

rate respectively. Kunin et al. (2021) also depicts the equilibrium state by gradient �ow.126
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3 Theoretical results127

In this section, we theoretically formulate Spherical Motion Dynamics (SMD) in discrete SGD/SGDM128

settings, and provide a precise description on “equilibrium” phenomenon. First we prove equilibrium129

can be reached in SMD under speci�c assumptions. Then, we propose a new index to indicate the130

state of SMD, and derive its theoretical value in equilibrium.131

First of all, we give a new de�nition. Eq.(4) implies though norm of scale-invariant weights does not132

affect the output of neural network, it can in�uence norm of gradients, thus we de�neunit gradientin133

order to eliminate the effect of weight norm makes to gradient norm.134

De�nition 2 (Unit Gradient). If w t 6= 0, ~w = w=jjw jj2, the unit gradient of@L=@wjw = w t is135

@L=@wjw = ~w t .136

According to the de�nition of unit gradient, the unit gradient norm is independent of weight norm.137

Speci�cally, by settingk as1=jjw t jj2 in Eq.(4), the relation among weight norm, gradient and unit138

gradient is139

@L
@w

�
�
�
w = w t

=
1

jjw t jj
�

@L
@w

�
�
�
w = ~w t

: (6)

Now, we can depict equilibrium of SGD and SGDM in theorem 1, 2 respectively.140

Theorem 1. (Equilibrium in SGD) Assume the loss function isL (X ; w ) with scale-invariant weight141

w, denotegt = @L
@w

�
�
X t ;w t

, ~gt = gt � jj w t jj2. Consider the update rule of SGD with weight decay,142

w t +1 = w t � � � (gt + � w t ) (7)

where�; � 2 (0; 1). If the following assumptions hold:143

1) �� � 1 (o(�� ) can be omitted);144

2) LetL t = Ejj ~gt jj2
2. 9V 2 R+ , 8t 2 N+ , E[(jj ~gt jj2

2 � L t )2jw t ] � V ;145

3) 8t 2 N+ , L t satis�esjL t +1 � L t j < 4
p

V(�� )3=2;146

4) 9l 2 R+ , 8t 2 N+ , jj ~gt jj2
2 > l , l > 2[ 2��

1� 2�� ]2L t .147

Then9B > 0, 8t 2 N+ , w�
t = 4

p
L t �= (2� ), we have148

E[jjw t jj2
2 � (w�

t )2]2 � (1 � 2�� )t B +
2V � 2

l (1 � 2�� )
: (8)

Remark 1. The theoretical value of weight normw�
t in Theorem 1 is consistent with the magnitude149

of weight norm (O( 4
p

�=� )) in equilibrium in van Laarhoven (2017), though van Laarhoven (2017)150

assumes the equilibrium has been reached in advance, hence van Laarhoven (2017) cannot provide151

the approaching rate and scale of bias/variance. The vanishing term ((1 � 2�� )t B ) in Eq.(8) is152

consistent with the mixing timeO(1=(�� )) presented in Li et al. (2020).153

The proof can be seen in appendix. Assumption 1 is consistent with commonly used settings in154

practice (Goyal et al., 2017; He et al., 2017; Ma et al., 2018); Assumptions 2, 3, 4 all concern155

unit gradient: unit gradient norm should change smoothly (assumption 3) with bounded variance156

(assumption 2); besides, unit gradient norm should have a lower bound (assumption 4). We will see157

these assumptions can easily hold in practice in section 4.1.158

True meaning of “equilibrium”: a dynamic state of SMD Recall as we demonstrate in intro-159

duction, the concept of equilibrium is originally established on the assumption that weight norm160

is steady (jjw t jj2 = jjw t +1 jj2). But the assumption (jjw t jj2 = jjw t +1 jj2) is unrealistic due to the161

complex dynamics of training process and the variance of stochastic gradients. Now theorem 1162

provides a realistic meaning of equilibrium in SGD settings: equilibrium is just a dynamic state of163

SMD, meaningjjw t jj2
2 oscillates around the theoretical value(w�

t )2 determined by hyperparameters164

and unit gradient norm. Its variance is bounded by2V � 2=[l(1 � 2�� )], which is relatively small165

comparing with(w�
t )4 because166

2V � 2

l (1 � 2�� )
=(w�

t )4 =
4V ��

L t l (1 � 2�� )
= O(�� ) � 1: (9)
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Note besides the stochastic behavior ofjjw t jj2
2, the “dynamic state” also re�ects in the variation of the167

theoretical value(w�
t )2. Because(w�

t )2 is determined byL t , which is allowed to change smoothly168

across the whole training process in assumption 2 (See more discussion in appendix). In summary,169

the sign of equilibrium is neither the convergence of weight normjjw t jj2
2 (van Laarhoven, 2017;170

Chiley et al., 2019) nor the convergence ofjjw t jj2 in expectation (Li et al., 2020). The real sign of171

equilibrium is whetherEjjw t jj2
2 is close to its theoretical value(w�

t )2.172

Theorem 1 also shows the dynamic equilibrium can be reached in a linear rate regime when vanishing173

term is larger than constant term in Eq.(8). The approaching rate is only determined by prede�ned174

parameters�; � . Moreover, based on the proof of theorem 1, the cause of equilibrium is independent175

of optimization process at all, which implies the possibility that equilibrium can be reached long176

before the convergence of loss function.177

Now we extend theorem 1 to momentum case. SGDM is more complex than SGD since momentum178

is not always perpendicular to the weight, hence we need to modify assumptions.179

Theorem 2. (Equilibrium in SGDM) Considering the update rule of SGDM (heavy ball180

method (Polyak, 1964)):181

v t = � v t � 1 + gt + � w t (10)
w t +1 = w t � � v t (11)

where�; � 2 (0; 1); � 2 ( 1
2 ; 1). If following assumptions hold:182

5) �� � 1, �� < (1 �
p

� )2;183

6) De�ne ht = jjgt jj2
2 + 2 � hv t � 1; gt i , ~ht = ht � jj w t jj2

2, L t = E~h. 9V 2 R+ , 8t 2 N+ ,184

E[(~ht � L t )2jw t ] � V ;185

7) 8t 2 N+ , L t satis�esjL t +1 � L t j < 4
p

V(�� )3=2;186

8) 9l 2 R+ ; 8t 2 N+ ; ~ht > l > 2[ 6��
(1 � � )3 (1+ � ) � 8�� (1 � � ) ]2L t , ;187

then9B; C > 0, C only depends on� , w� = 4
p

L t �= (� (1 � � )(2 � ��= (1 + � ))) , we have188

E[jjw t jj2
2 � (w�

t )2]2 � (1 �
2��

1 � �
)t B +

V � 2

l
C; (12)

Remark 2. So far, no other work rigorously prove equilibrium can be reached in SGDM. The most189

relevant work (Li et al., 2020) only provides a conjecture on convergence rate of weight norm in190

SGDM. By regarding SGDM as SGD with larger learning rate, they guess that the mixing time to191

reach equilibrium in SGDM case should beO(1=(�� )) , same order as mixing time in SGD case.192

Their conjecture cannot provide further insight on difference between SGD and SGDM. While our193

results (vanishing terms in Eq.(8), (12) respectively) clearly re�ect the difference: the approaching194

rate of SGDM should be1=(1 � � ) times larger than rate of SGD with same�� . � is usually set as195

0:9 in practice, hence SGDM can reach equilibrium condition much faster than SGD.196

Proof can be seen in appendix. Like assumption 1, assumption 5 also holds for commonly used197

hyperparameter settings; Assumption 6, 7, 8 concerns not unit gradient normjj ~gt jj2
2 but an adjusted198

value~ht which dominates the expectation and variance ofjjw t jj2
2. We empirically �nd the expectation199

of hv t � 1; gt i is very close to0, therefore the behavior of~ht is similar to that ofjj ~gt jj2
2 (see Figure 2(d)).200

We leave theoretical analysis on~ht as future work. The experiments on justi�cation of assumptions201

6, 7, 8 can be seen in Figure 2. Comparing with Eq.(8) and Eq.(12), we can infer with same�; � ,202

SGDM can reach equilibrium state much faster than SGD, but it may have a larger variance, our203

experiments also verify our claim (see Figure 2(b), 2(e)).204

We have derived the theoretical value of weight norm in equilibrium, it allows us to check if205

equilibrium has been reached in practice. But the theoretical value of weight norm still relies on206

the expectation of unit gradient norm, which is not easy to compute in practice. Besides, weight207

norm is of little value for studying normalized models since their weight is scale-invariant. Hence we208

introduce an new and meaningful index,angular update, to re�ect the effect of SMD and equilibrium.209
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De�nition 3 (Angular Update). Let w t denote a scale-invariant weight from a neural network at210

iteration t, thenangular update� t is de�ned as211

� t = ] (w t ; w t +1 ) = arccos
�

hw t ; w t +1 i
jjw t jj � jj w t +1 jj

�
; (13)

where] (�; �) denotes the angle between two vectors,h�; �i denotes the inner product.212

Angular update has a concrete geometric meaning (see illustration in Figure 1): it is exactly the213

geodesic distance between~w t and ~w t +1 onSp� 1, where ~w t = w t =jjw t jj2, ~w t +1 = w t +1 =jjw t +1 jj2.214

Comparing with the Euclidean distancejjw t +1 � w t jj2, angular update� t better re�ects the effective215

update of the scale-invariant weightw t on its intrinsic domainSp� 1. Angular update is determined216

by the relative sizes of gradient norm and weight norm, while the relative sizes of gradient/weight217

norm are in�uenced by SMD, hence angular update is strongly affected by SMD. The following218

theorem exhibits the behavior of angular update when equilibrium is reached in SMD.219

Theorem 3. (Theoretical value of Angular Update)In SGD(SGDM) case, if assumptions in theorem220

1(2) hold,� 2 � 1, t is suf�ciently large so that vanishing terms in Eq.(8), (12)can be omitted, then221

with probability at least1 � 3

q
V

L t l we have222

j� t �

r
2��

1 + �
j < O( 3

r
V
L t l

): (14)

In SGD case,� = 0 .223

Remark 3. Results of SGD and SGDM case are summarized in Eq.(14) in order to highlight the224

connection between SGD and SGDM. Theoretical value of angular update in Theorem 3 is partially225

consistent with previous works (Chiley et al., 2019; Li & Arora, 2020; Li et al., 2020; Kunin et al.,226

2021), detailed discussion is buried in appendix. Note bias term in right side of Eq.(14) is of227

O( 3
p

V=Lt l ), which is too large comparing with its empirical value (see Figure 2(c), 2(f)), we leave228

it as a future work to improve the bound in Eq.(14).229

Proof is in appendix. According to theorem 3, the theoretical value of angular update in equilibrium230

only depends on hyper-parameters: learning rate� , WD factor� , and momentum factor� . Hence231

comparing with behavior of weight norm, angular update provides an easier way to check whether232

equilibrium is reached. Since equilibrium can be reached in a linear rate regime as theorem 1, 2233

demonstrate, theorem 3 implies update ef�ciency of scale-invariant weights within a single step234

eventually will be determined only by prede�ned hyperparameters, regardless other attributes of the235

weights (shape, size, position in network structure, or effects from other weights).236

Besides, far beyond just an index indicating whether equilibrium is reached, angular update is also237

a important way by which SMD can affect the optimization process of normalized neural network.238

SMD cannot in�uence the direction of update (like gradient direction in SGD), but it can in�uence239

the scale of updatejj ~w t � ~w t +1 jj2 on intrinsic domain by controlling the scale of angular update� t .240

More detailed discussion on connections between angular update and performance of neural network241

can be seen appendix.242

4 Experiments243

In this section, we verify our theorems on SMD and equilibrium by empirical study. First, we show244

the equilibrium depicted in our theorems really occurs in various computer vision tasks including245

ImageNet (Russakovsky et al., 2015) and MSCOCO (Lin et al., 2014). Second, we analyze an246

interesting phenomenon as an example to show how SMD can affect training process in a way247

different from traditional view on optimization of neural network.248

4.1 Verify the existence of equilibrium249

We conduct proving experiments in two cases. In the �rst case we train neural network using �xed250

learning rate to verify our assumptions and theorems in SGD and SGDM respectively; in the second251

case we investigate behavior of angular update with a more practical setting, multi-stage learning rate252

schedule, to explore what will happen when equilibrium is broken by decaying learning rate.253
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(a) Unit gradient norm in SGD (b) Weight norm in SGD (c) Angular update in SGD

(d) Unit gradient norm square and
~h in SGDM

(e) Weight norm in SGDM (f) Angular update in SGDM

Figure 2: Performance oflayer.2.0.conv2from Resnet50 in SGD and SGDM, respectively. In (a), (d),
semitransparent line represents the raw value ofjj ~gt jj2

2 or ~ht , while solid line represents the averaged
value within consecutive 200 iterations to estimate the expectation ofjj ~gt jj2

2 or ~ht conditioning on
t; In (b), (e), blue solid lines represents the raw value of weight normjjw t jj2, while dashed line
represent the theoretical value of weight norm computed in Theorem 1, 2 respectively. To compute
the theoretical value of weight norm, we use the estimatedEjj ~gjj2

2 andE~h (solid lines) in (a) and (d)
respectively; In (c), (f), red lines represent raw value of angular update during training, dashed lines
represent the theoretical value of angular update computed by

p
2�� and

p
2��= (1 + � ) respectively.

Fixed learning rate We train Resnet50 (He et al., 2016) with SGD/SGDM on ImageNet. Learning254

rate is �xed as� = 0 :2; WD factor is� = 10 � 4; In SGDM case, the momentum factor is� = 0 :9.255

Figure 2 presents the square norm of unit gradient, weight norm, and angular update of the weights256

from LAYER .2.0.CONV2 of Resnet50 in SGD and SGDM cases respectively. In Figure 2(a), 2(d), the257

solid lines represents the estimated expectation (Ejj ~gjj2
2, E~h). These estimated expectations allow258

us to estimate the theoretical value of weight norm in Figure 2(b), 2(e). In Figure 2 the behavior259

of jj ~gt jj2
2 (~ht ) and hyperparameter settings satisfy the assumptions used in theorem 1 and 2:Ejj ~gjj2

2260

(E~h) changes slowly and smoothly (see solid line in Figure 2(a), 2(d), the whole training process261

consists of 450,000 iterations).jj ~gjj2
2 (~h) has a lower bound and moderate variance.262

Form Figure 2(b), 2(e), 2(c), 2(f), we can see empirical value ofjjw t jj2
2 and� t differ from their263

theoretical value respectively at very beginning, because the initialized value of weight norm is264

handcrafted, far away from the theoretical value in equilibrium. After several iterations, empirical265

values of weight norm and angular update agree with their theoretical values very well, which implies266

equilibrium has been reached. We also observe SGDM can achieve equilibrium much faster than SGD.267

According to Eq.(8), (12), the underlying reason might be with same learning rate� and WD factor268

� , approaching rate of SGDM (��1� � ) is larger than approaching rate of SGD (�� ). Results in Figure269

2 also prove our claim that equilibrium is a dynamical state: after equilibrium is reached,Ejj ~gjj2
2270

(E~h) constantly increase,jjw t jj2
2 increases accordingly,jjw t jj2

2 and� t always oscillate around their271

theoretical values respectively, showing equilibrium state maintains in SMD.272

Multi-stage learning rate Now we study the behavior of angular update with SGDM and multi-stage273

learning rate schedule on Imagenet (Russakovsky et al., 2015) and MSCOCO (Lin et al., 2014). In274

ImageNet classi�cation task, we still adopt Resnet50 as baseline. The training settings rigorously275

follow Goyal et al. (2017): learning rate is initialized as� = 0 :1, and divided by10 at 30; 60; 80276

epoch; WD factor is� = 10 � 4; momentum factor is� = 0 :9. In MSCOCO experiment, we277

conduct experiments on Mask-RCNN (He et al., 2017) benchmark using a Feature Pyramid Network278

(FPN) (Lin et al., 2017), ResNet50 backbone and SyncBN (Peng et al., 2018) following the 4x setting279
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(a) Angular update in Imagenet(b) Angular update in Imagenet
(rescaled)

(c) Weight norm in Imagenet

(d) Angular update in MSCOCO(e) Angular update in MSCOCO
(rescaled)

(f) Weight norm in MSCOCO

Figure 3: In (a),(b),(d),(e), solid lines with different colors represent raw value of angular update from
all convolution layers; In (a), (d), training setting rigorously follows Goyal et al. (2017); He et al.
(2019) respectively; In (b), (e), weight norm is divided by4

p
10 as long as learning rate is divided

by 10; In (c), (f), weight norm is computed onlayer.1.0.conv2in Resnet50 backbone. Blue line
represent original settings, orange lines represent rescaled settings.

in He et al. (2019): total number of iteration is360; 000, learning rate is initialized as0:02, and280

divided by10at300000; 340000step; WD factor is� = 10 � 4; momentum factor is� = 0 :9.281

There appears to be a mismatch between theorems and empirical observations in Figure 3(a), 3(d):282

angular update� t in the last two learning rate stages is smaller than its theoretical value. This283

mismatch can be well interpreted by our theory: according to Theorem 1, 2, when equilibrium state284

is reached, theoretical value of weight normjjw t jj2 satis�esjjw t jj2 / 4
p �

� . However, when learning285

rate is divided byk, equilibrium state is broken, theoretical value of weight normjjw t jj2 in the new286

equilibrium state is4
p

1=k times smaller. But new equilibrium cannot be reached immediately (see287

Figure 3(c), 3(f)), following corollary gives the least number of iterations to reach new equilibrium.288

Corollary 3.1. In SGD case with learning rate� , WD factor� , if learning rate is divided byk,289

and unit gradient norm remains unchanged, then at leastd[log(k)]=(2�� )e iterations are required290

to reach the new equilibrium state; In SGDM case with momentum coef�cient� , then at least291

d[log(k)(1 � � )]=(2�� )e iterations are required to reach the new equilibrium state.292

Corollary 3.1 implies SGD/SGDM with smaller learning rate requires more iterations to reach new293

equilibrium state. Hence, in second learning rate stage in Imagenet experiments, angular update294

� t can reach its new theoretical value within 15 epochs. But in last two learning rate stages of295

Imagenet/MSCOCO experiments, SGDM cannot completely reach new equilibrium by the end of296

training. As a result, we observe empirical value of� t is smaller than its theoretical value. Based on297

our theorem, we can bridge the gap by skipping the intermediate process between old equilibrium298

and new one. Speci�cally, when learning rate is divided byk, norm of scale-invariant weight is299

also divided by 4
p

k, SGDM can reach new equilibrium immediately in new learning rate stage.300

Experiments((b),(e) in Figure 3) show this simple strategy can make angular update� t always close301

to its theoretical value across the whole training process though learning rate changes.302

4.2 “Over�tting” by Spherical Motion Dynamics303

“Over�tting” issues often bother practitioners badly when training deep neural networks. The term304

refers to the phenomenon where trained models can �t training data very well, but fail to �t additional305

data for validation or prediction. Over�tting has various manifestations in practice, a typical one306
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