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A Proof of Laplace Model Design

Proof. Consider the i-th data sample (Xi,Yi), as in the training process of the prediction model the
values of Xi and Yi are given, p(Yi ∣zi,Xi;w) is a function of zi ∈ R+ with the probability density

function: p(zi∣Xi) = 1
λ
e−

zi

λ :

p(Yi ∣zi,Xi;w) = fw(zi) =
1

(zi)m
2

e−
giw
zi ,

where giw = 1
2
(Yi −µw(Xi))[Σ−1w (X

i)](Yi −µw(Xi))T and m ∈ N+ is the number of the agents in
the i-th data sample. We need to prove that there should exist a (zi)∗ ∈ R+ to make:

p(Yi ∣Xi;w) = ∫
+∞

0
p(Yi ∣zi,Xi;w)p(zi∣Xi;w)dzi

= ∫
+∞

0
fw(zi)p(zi∣Xi)dzi

= Ezi[fw(zi)]
= fw((zi)∗)
= p(Yi ∣(zi)∗,Xi;w).

And the existence of (zi)∗ can be proved by proving a fact that, when zi ∈ R+, f(zi) is a continuous
bounded function.

As the giw can be reformulated as:

giw =
1

2
(Yi −µw(Xi))[L′w(X)L′Tw (X)](Y

i −µw(Xi))T

= 1

2
[(Yi −µw(Xi))L′w(X)][(Y

i −µw(Xi))L′w(X)]T

≥ 0, (1)

where L′w(X) is a lower triangular matrix and the equal sign of (1) is only true when µw(Xi) is
equal to Yi, but in practice, µw(Xi) is hardly equal to Yi, which means in the training process we
have:

giw > 0. (2)

∗The corresponding author is Siheng Chen.
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Based on (2), let si = 1
zi , then as zi → 0+, we have si → +∞, so for zi → 0+:

lim
zi→0+

fw(zi) = lim
si→+∞

(si)
m
2 e−s

igi
w

= lim
si→+∞

(m
2
)!

(giw)
m
2 es

igi
w

= 0 (3)

For zi → +∞:
lim

zi→+∞
fw(zi) = 0 (4)

Furthermore, as the derivative of fw(zi) is then:

f ′w(zi) = (zi)−
m
2 −2 ⋅ e−(z

i)−1gi
w ⋅ (giw −

m

2
zi). (5)

According to (2), (4), (3) and (5), when we set f ′w(zi) = 0, we can get the maximum value of fw(zi)
is fw( 2g

i
w

m
) ∈ R+.

On the basis of above discussions, when zi ∈ R+, f(zi) is a continuous bounded function, which
means the (zi)∗ is existent.

B Toy Problem

B.1 Generation Details of Synthetic Datasets
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Figure 1: Sample visualization of the generation of Gaussian synthetic dataset. x is the sum of
µgt and ϵ.
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Figure 2: Sample visualization of the generation of Laplace synthetic dataset. x is the sum of µgt

and ϵ.

For the Gaussian synthetic dataset, since a random variable x that obeys a multivariate Gaussian
distribution N (µ,Σ) can be formulated as the sum of the mean µ and a random variable ϵ: x = µ + ϵ,
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where ϵ ∼ N (0,Σ). For generating the Gaussian synthetic dataset, we firstly generate 50 different
two-dimensional coordinates of three agents that move in a uniform straight line. We denote this
part of the data as µgt, and set it as the mean of the multivariate Gaussian distribution to which the
trajectories belong. Subsequently, we sample a set of data ϵ from a multivariate Gaussian distribution
N (0,Σgt) (where Σgt ∈ R3×3), obviously this set of data contains the information of the covariance
matrix of its distribution. Finally, we add the data µgt representing the mean value of the distribution
and the data ϵ representing the covariance matrix information of the distribution to get our final data
x, which is x = µgt + ϵ. At this time, the data x we get is equivalent to the data sampled from the
multivariate Gaussian distribution N (µgt,Σgt). Moreover, following similar steps, we can get the
Laplace synthetic dataset.

B.2 Metric Computation Details

ℓ2 of µ is the average of pointwise ℓ2 distances between the estimated mean and the ground truth
mean. ℓ1 of Σ is the average of pointwise ℓ1 distances between the estimated covariance matrix and
the ground truth covariance.

KL is the KL divergence between the ground truth distribution and the estimated distribu-
tion DKL(pg(X)∣∣pe(X)), where pe(X) ∼ N (µpe ,Σpe) is the estimated distribution, pg(X) ∼
N (µpg ,Σpg) is the ground truth distribution, Σpe ∈ Rk×k and Σpg ∈ Rk×k . For multivariate
Gaussian distribution, we compute it by the following formula (6):

DKL(pg(X)∣∣pe(X)) = pg(X)∫
X
[log(pg(X)) − log(pe(X))]dX

= 1

2
[log(

∣Σpe ∣
∣Σpg
∣
) − k + (µpg − µpe)TΣ−1pe

(µpg − µpe) + trace{Σ−1pe
Σpg}]. (6)

For multivariate Laplace distribution, as the probability density function of it is too complicated,
when we compute the KL divergence, we firstly compute the value of pg(X) and pe(X) for each given
data sample X respectively, and then we compute DKL(pg(X)∣∣pe(X)) by the following formula (7):

DKL(pg(X)∣∣pe(X)) =∑
X

pg(X)[log(pg(X)) − log(pe(X))]. (7)

B.3 Implementation Details

(a) Framework

(b) Four-Layer MLP

Figure 3: The network architecture used in synthetic datasets. (a): The framework of the used
network. (b): The four-layer multilayer perceptron used to form the encoder and decoders of the used
network, where FC denotes the full connected layer and ReLu denotes the ReLu activation function.

Model Structure: For toy problem, the network architecture contains an encoder and two decoders,
all of which are four-layer multilayer perceptrons (MLPs), which are shown in Figure 3.
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Training Details: For toy problem, we train the model on 1 GTX 1080Ti GPU using a batch size
of 72 with the Adam [1] optimizer with an initial learning rate of 5 × 10−3 and the training process
finishes at 36 epochs.

C Real World Problem

C.1 Implementation Details

Figure 4: Implementation structure of VectorNet. N is the input vector number, M is the polygon
number, K is the actor number.More details please refer to [2]

Model Structure: We implemented the LaneGCN according to the structure shown in the appendix
of [3]. And the structure of our implemented VectorNet is shown in Figure 4.

Training Details: For LaneGCN in Argoverse, we train the model on 1 GTX 1080Ti GPU using
a batch size of 64 with the Adam [1] optimizer with an initial learning rate of 2.5 × 10−4 and the
training process finishes at 65 epochs. For LaneGCN in nuScenes, we train the model on 2 GTX
1080Ti GPUs using a batch size of 56 with the Adam [1] optimizer with an initial learning rate of
8 × 10−4 and the training process finishes at 90 epochs. For VectorNet in Argoverse, we train the
model on 2 GTX 1080Ti GPUs using a batch size of 128 with the Adam [1] optimizer with an initial
learning rate of 2 × 10−3 and the training process finishes at 105 epochs. For VectorNet in nuScenes,
we train the model on 2 GTX 1080Ti GPUs using a batch size of 128 with the Adam [1] optimizer
with an initial learning rate of 1 × 10−3 and the training process finishes at 500 epochs.

C.2 Additional Results

We compare our proposed approach with the approach not modeling uncertainty, which assumes the
covariance Σ is an identity matrix (ID). As the results illustrated in Table 2, our proposed Laplace
CU-based framework still enables LaneGCN and VectorNet to achieve the best performances on
ADE & FDE metrics on both Argoverse and nuScenes benchmarks in single future prediction.

After the paper is accepted in NeurIPS 2021, we also apply our proposed framework to the official
version of LaneGCN (with map information) and test it on the Argoverse benchmark in single future
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Table 1: Two special cases with various assumptions about covariance Σ. ID denotes the identity
matrix (no uncertainty). DIA denotes the diagonal matrix (individual uncertainty). FULL denotes
the full matrix (individual and collaborative uncertainty).

ASSUMPTION
TWO SPECIAL CASES

GAUSSIAN DISTRIBUTION LAPLACE DISTRIBUTION

ID∶
⎛
⎜⎜⎜
⎝

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ 1

⎞
⎟⎟⎟
⎠

∣∣Y−µw(X)∣∣22 ∣∣Y−µw(X)∣∣1

DIA∶
⎛
⎜⎜⎜
⎝

σ11 0 ⋯ 0
0 σ22 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ σmm

⎞
⎟⎟⎟
⎠

1
2

m

∑
i=1
[σ−2ii ∣∣yi−µw(xi)∣∣22+logσ

2
ii]

m

∑
i=1
[σ−2ii ∣∣yi−µw(xi)∣∣1+logσ2

ii]

FULL∶
⎛
⎜⎜⎜
⎝

σ11 σ12 ⋯ σ1m

σ21 σ22 ⋯ σ2m

⋮ ⋮ ⋮
σm1 σm2 ⋯ σmm

⎞
⎟⎟⎟
⎠

1
2 [qw(Y,X)−

m

∑
j=1

log(djj)] 1
2 [

qw(Y,X)
Φw(X) +m logΦw(X) −

m

∑
j=1

log(djj)]

Table 2: Ablation on assumptions about covariance Σ of chosen probability density functions (PDFs)
in single future prediction. ID denotes the identity matrix (no uncertainty). DIA denotes the
diagonal matrix (individual uncertainty). FULL denotes the full matrix (individual and collaborative
uncertainty). On Argoverse and nuScenes, a model with individual uncertainty surpasses a model
without uncertainty; a model with individual and collaborative uncertainty surpasses a model with
individual uncertainty only.

DATASET METHOD ASSUMPTION ABOUT Σ
TYPE OF CHOSEN PDF

GAUSSIAN LAPLACE
ADE FDE ADE FDE

ARGOVERSE

LANEGCN
ID 1.52 3.32 1.44 3.17

DIA 1.45 3.19 1.43 3.16
FULL 1.42 3.14 1.41 3.11

VECTORNET

ID 1.67 3.62 1.59 3.44
DIA 1.63 3.60 1.56 3.42

FULL 1.57 3.46 1.52 3.34

NUSCENES

LANEGCN
ID 4.50 10.62 4.47 10.54

DIA 4.47 10.59 4.34 10.34
FULL 4.39 10.44 4.25 10.15

VECTORNET

ID 4.23 9.91 4.09 9.80
DIA 4.07 9.86 4.02 9.79

FULL 3.99 9.57 3.81 9.22

prediction. As results shown in the Table 3, our proposed Laplace CU-based framework still enables
LaneGCN to achieve the best performances on ADE & FDE metrics on both validate set and test set
of Argoverse benchmarks in single future prediction.

C.3 Extra Visualization Results

Visualization of collaborative uncertainty between two agents. In Figure 5, there are 8 actor pairs
(blue and orange lines) trajectories (solid lines are the past trajectories and dashed lines are the future
trajectories) and their corresponding collaborative uncertainty values changing over the last 30 frames
(the heatmap). Pair I to IV and Pair V to VIII are the ones w/o obvious interaction. These results
show that the value of collaborative uncertainty is highly related to the amount of the interactive
information among agents.
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Table 3: Ablation on assumptions about covariance Σ of chosen probability density functions (PDFs)
on the basis of the official version of LaneGCN in single future prediction. ID denotes the identity
matrix (no uncertainty). DIA denotes the diagonal matrix (individual uncertainty). FULL denotes
the full matrix (individual and collaborative uncertainty). On both of the validate set and the test set
of Argoverse, a model with individual uncertainty surpasses a model without uncertainty; a model
with individual and collaborative uncertainty surpasses a model with individual uncertainty only.

DATASET SET ASSUMPTION ABOUT Σ
TYPE OF CHOSEN PDF

GAUSSIAN LAPLACE
ADE FDE ADE FDE

ARGOVERSE

VALIDATE

ID 1.36 2.94 1.28 2.78
DIA 1.32 2.90 1.27 2.76

FULL 1.31 2.89 1.26 2.75

TEST

ID 1.69 3.72 1.64 3.61
DIA 1.67 3.70 1.62 3.56

FULL 1.66 3.67 1.61 3.53

Figure 5: Visualization of CU on Argoverse dataset. Pair I: One agent approaching another agent
parking at an intersection waiting for green light, as little new interactive information would be
generated before the red light turns green, CU decreases over time. Pair II: Agents moving side by
side, which might generate complicated interactive information making CU show a non-monotonic
change over time. Pair III: Agents driving on the same road, which might generate complicated
interactive information making CU show a non-monotonic change over time. Pair IV: Agents moving
close to each other, CU increases over time. Pair V to Pair VIII: Agents located in completely
different areas on the map, CUs are close to zero.
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