
A Wasserstein Distances

Definition 5 (Wasserstein metric [50]). Let d : X ×X → [0,∞) be a distance function and Ω the
set of all joint distributions with marginals µ and λ over the space X;

Wp(d)(µ, λ) =

(
inf
ω∈Ω

E(x1,x2)∼ω[d(x1, x2)p]

) 1
p

. (18)

Definition 6 (Dual formulation of the Wasserstein metric [50]). Let d : X × X → [0,∞) be a
distance function, and µ and λ marginals over the space X;

Wp(d)(µ, λ) =

(
sup

φ⊕ψ≤dp
Ex1∼µ[φ(x1)] + Ex2∼λ[ψ(x2)]

) 1
p

, (19)

where φ⊕ ψ ≤ dp ⇐⇒ φ(x) + ψ(y) ≤ d(x, y)
p
, ∀(x, y) ∈ X ×X .

This dual formulation takes a simple form for p = 1:

W1(d)(µ, λ) = sup
f∈Lip1,d(X)

Ex1∼µ[f(x1)]− Ex2∼λ[f(x2)], (20)

where Lip1,d(X) denotes 1-Lipschitz functions f : X → R such that |f(x1)− f(x2)|≤ d(x1, x2).
Note that the 2-Wasserstein metric W2(‖·‖2) (or simply W2) has a closed-form for Gaussians [35]:

W2(N (µi,Σi),N (µj ,Σj))
2 = ‖µi − µj‖22 + ‖Σi − Σj‖2F , (21)

where ‖·‖F denotes the Frobenius norm. We can observe that for point masses (i.e., Σi,Σj → 0), the
2-Wasserstein metric is equivalent to the Euclidean distance between the two points.

Lemma 4 (p-Wasserstein Inequality [50]). For any two distributions µ, λ, if p ≤ q:

Wp(µ, λ) ≤Wq(µ, λ). (22)

Lemma 5 (Bounds on Wasserstein distances [41]). For any two distributions µ, λ over a space X ,
for all p ≥ 1:

W1(µ, λ) ≤Wp(µ, λ) ≤ diam(X)
p−1
p W1(µ, λ)

1
p . (23)

B Proofs

Remark 1. If p = 1, or both the environment and policy are deterministic, A1 holds.

Proof. The existence proof is virtually identical to the proof of Thm. 3.12 of [14], except it discards
maxa∈A operations in favor of expectations under a policy π. We need to show that the following
fixed-point update is a contraction:

F(dπ)(si, sj) := cR|rπi − rπj | + cTWp(dπ)(Pπ(·|si),Pπ(·|sj)),

and invoke the Banach fixed-point theorem to show the existence of a unique metric.

First, consider the case where p = 1:

F(dπ)(si, sj)−F(d′π)(si, sj)

= cT (W1(dπ)(Pπ(·|si),Pπ(·|sj))−W1(d′π)(Pπ(·|si),Pπ(·|sj)))
= cT (W1(dπ − d′π + d′π)(Pπ(·|si),Pπ(·|sj))−W1(d′π)(Pπ(·|si),Pπ(·|sj)))
≤ cT (W1(‖dπ − d′π‖∞ + d′π)(Pπ(·|si),Pπ(·|sj))−W1(d′π)(Pπ(·|si),Pπ(·|sj)))
≤ cT (‖dπ − d′π‖∞ +W1(d′π)(Pπ(·|si),Pπ(·|sj))−W1(d′π)(Pπ(·|si),Pπ(·|sj)))
= cT ‖dπ − d′π‖∞, ∀(si, sj) ∈ S × S.

For cT ∈ [0, 1), there exists a unique fixed-point due to the Banach fixed-point theorem.
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Next, we consider the case where both P and π are deterministic, such that Pπ is a delta distribution.
Observe that for point masses,Wp(d)(δ(si), δ(sj)) = d(si, sj), due to Definition 5 of the Wasserstein
metric. Then:

F(dπ)(si, sj)−F(d′π)(si, sj) = cT (Wp(dπ)(Pπ(·|si),Pπ(·|sj))−Wp(d
′
π)(Pπ(·|si),Pπ(·|sj)))

= cT (dπ(s′i, s
′
j)− d′π(s′i, s

′
j))

≤ cT ‖dπ − d′π‖∞, ∀(si, sj) ∈ S × S.

Then, fixed point iterations that update the metric as d(n+1)(si, sj)← F(d(n))(si, sj) will converge
for finite MDPs. �

Lemma 6 (p-Wasserstein value difference bound). For an on-policy bisimulation metric given by Eq.
(6), for any cT ∈ [γ, 1) and p ≥ 1, the bisimulation distance between a pair of states upper-bounds
the difference in their values:

cR|V π(si)− V π(sj)| ≤ dπ(si, sj), ∀(si, sj) ∈ S × S. (24)

Proof. The proof follows similarly to the proofs of Thm. 5.1 of [13] and Thm. 3 of [10]. We will
prove by induction. Consider the following updates:

V (n+1)(si) = rπi + γ

∫
s′∈S
Pπ(s′|si)V (n)(s′)ds′

d(n+1)
π (si, sj) = cR|rπi − rπj | + cTWp(d

(n)
π )(Pπ(·|si),Pπ(·|sj)).

We need to show that the following holds for all n ∈ N:

cR

∣∣∣V (n)(si)− V (n)(sj)
∣∣∣ ≤ d(n)

π (si, sj), ∀(si, sj) ∈ S × S.

Then, Eq. (24) holds by taking a limit n→∞. The base case holds since:∣∣∣V (0)(si)− V (0)(sj)
∣∣∣ = d(0)

π (si, sj) = 0, ∀(si, sj) ∈ S × S.

In the general case:

cR|V (n+1)(si)− V (n+1)(sj)| = cR

∣∣∣∣rπi − rπj + γ

∫
s′∈S

(Pπ(s′|si)− Pπ(s′|sj))V (n)(s′)ds′
∣∣∣∣

≤ cR
∣∣rπi − rπj ∣∣+ cRγ

∣∣∣∣∫
s′∈S

(Pπ(s′|si)− Pπ(s′|sj))V (n)(s′)ds′
∣∣∣∣

= cR
∣∣rπi − rπj ∣∣+ cT

∣∣∣∣∫
s′∈S

(Pπ(s′|si)− Pπ(s′|sj))
cRγ

cT
V (n)(s′)ds′

∣∣∣∣ .
Notice that by the induction hypothesis, cRV (n)(s) is a 1-Lipschitz function with respect to the
distance function d(n)

π , i.e., cRV (n)(s) ∈ Lip
1,d

(n)
π

. Then, since γ ≤ cT by assumption, cRγcT V
(n)(s)

is also 1-Lipschitz. Using the dual form of the W1 metric in Eq. (20):

cR|V (n+1)(si)− V (n+1)(sj)| ≤ cR
∣∣rπi − rπj ∣∣+ cTW1(d(n)

π )(Pπ(·|si),Pπ(·|sj))

≤ cR
∣∣rπi − rπj ∣∣+ cTWp(d

(n)
π )(Pπ(·|si),Pπ(·|sj))

= d(n+1)
π ,

where the last inequality is due to Lemma 4. �

Lemma 7 (Value function difference bound for different discount factors [37]). Consider two
otherwise identical MDPs with different discount factors γ1 ≤ γ2, and a bounded reward function
R ∈ [0, 1]. Let V πγ denote the value function for policy π given discount factor γ.∣∣V πγ1(s)− V πγ2(s)

∣∣ ≤ γ2 − γ1

(1− γ1)(1− γ2)
,∀s ∈ S. (25)

Proof. See Thm. 2 of [37]. �
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Theorem 1 (Generalized value difference bound). Let the reward function be bounded as R ∈ [0, 1].
For an on-policy bisimulation metric given by Eq. (6), for any cT ∈ [0, 1) and p ≥ 1, define
γ = min(cT , γ). Given A1, the bisimulation distance between a pair of states upper-bounds the
difference in their values:

cR|V π(si)− V π(sj)| ≤ dπ(si, sj) +
2cR(γ − γ)

(1− γ)(1− cT )
, ∀(si, sj) ∈ S × S. (7)

Proof. A bisimulation metric with cT ≤ γ can be viewed as approximating a value function for
another MDP with γ′ = cT . We will make use of this view and apply Lemma 6 with Lemma 7 to
derive the above relation.

First, note that by Lemma 6:

cR|V πcT (si)− V πcT (sj)| ≤ dπ(si, sj), ∀(si, sj) ∈ S × S.

Then;

cR|V π(si)− V π(sj)| = cR
∣∣V π(si)− V πcT (si) + V πcT (si)− V π(sj) + V πcT (sj)− V πcT (sj)

∣∣
≤ cR

(
|V π(si)− V πcT (si)|+|V π(sj)− V πcT (sj)|+|V πcT (si)− V πcT (sj)|

)
≤ dπ(si, sj) + cR

(
|V π(si)− V πcT (si)|+|V π(sj)− V πcT (sj)|

)
≤ dπ(si, sj) +

2cR(γ − cT )

(1− γ)(1− cT )
,

where the last inequality is due to Lemma 7. Due to Lemma 6:

cR|V π(si)− V π(sj)| ≤ dπ(si, sj) +
2cR(γ −min(cT , γ))

(1− γ)(1− cT )
. (26)

�

Lemma 8 (On-policy VFA bound). Let the reward function be bounded asR ∈ [0, 1] and Φ : S → S̃
a function mapping states to a finite partitioning S̃ such that Φ(si) = Φ(sj) ⇒ dπ(si, sj) ≤ 2ε,
which produces an aggregated MDP 〈S̃,A, P̃, R̃, ρ̃0〉. For cT ∈ [γ, 1):

|V π(si)− Ṽ π(Φ(si))| ≤
2ε

cR(1− γ)
, ∀si ∈ S. (27)

Proof. Let ξ be a measure on S . Given a partition Φ(s) ∈ S̃ , i.e., a set of points in S clustered in an
ε-neighborhood such that ξ(Φ(s)) > 0, we can define the reward function and transition probabilities
of a ξ-average finite MDP as in Thm. 3.21 of [14]:

r̃π(Φ(s)) =
1

ξ(Φ(s))

∫
z∈Φ(s)

rπ(z)dξ(z),

P̃π(Φ(s′)|Φ(s)) =
1

ξ(Φ(s))

∫
z∈Φ(s)

Pπ(Φ(s′)|z)dξ(z).
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Then,

|V π(s)− Ṽ π(Φ(s))|

=

∣∣∣∣rπ(s)− r̃π(Φ(s)) + γ

∫
s′∈S

Pπ(s′|s)V π(s′)ds′ − γ
∫

Φ(s′)∈S̃

P̃π(Φ(s′)|Φ(s))Ṽ π(Φ(s′))dΦ(s′)

∣∣∣∣
≤ 1

ξ(Φ(s))

∫
z∈Φ(s)

|rπ(s)− rπ(z)|+ γ

∣∣∣∣∣∣∣
∫

s′∈S

Pπ(s′|s)V π(s′)ds′ −
∫

Φ(s′)∈S̃

P̃π(Φ(s′)|z)Ṽ π(Φ(s′))dΦ(s′)

∣∣∣∣∣∣∣ dξ(z)

≤ 1

ξ(Φ(s))

∫
z∈Φ(s)

|rπ(s)− rπ(z)|+ γ

∣∣∣∣∣∣
∫

s′∈S

Pπ(s′|s)V π(s′)− Pπ(s′|z)Ṽ π(Φ(s′))ds′

∣∣∣∣∣∣ dξ(z)

≤ 1

ξ(Φ(s))

∫
z∈Φ(s)

|rπ(s)− rπ(z)|+ γ

∣∣∣∣∣∣
∫

s′∈S

Pπ(s′|s)V π(s′)− Pπ(s′|z)V π(s′)ds′

∣∣∣∣∣∣ dξ(z)

+ γ
1

ξ(Φ(s))

∫
z∈Φ(s)

∣∣∣∣∫
s′∈S
Pπ(s′|z)

(
V π(s′)− Ṽ π(Φ(s′))

)
ds′
∣∣∣∣ dξ(z)

≤ 1

ξ(Φ(s))

∫
z∈Φ(s)

|rπ(s)− rπ(z)|+ γ

∣∣∣∣∣∣
∫

s′∈S

(Pπ(s′|s)− Pπ(s′|z))V π(s′)ds′

∣∣∣∣∣∣ dξ(z)

+ γ‖V π − Ṽ π‖∞

≤
c−1
R

ξ(Φ(s))

∫
z∈Φ(s)

cR |rπ(s)− rπ(z)|+ cT

∣∣∣∣∣∣
∫

s′∈S

(Pπ(s′|s)− Pπ(s′|z))
cRγ

cT
V π(s′)ds′

∣∣∣∣∣∣ dξ(z)

+ γ‖V π − Ṽ π‖∞,

where ‖·‖∞ is the supremum norm over S . Due to Lemma 6, cRV (s) is a 1-Lipschitz function with
respect to the distance function dπ . Then, since γ ≤ cT by assumption, cRγcT V (s) is also 1-Lipschitz.
Using the dual form of the W1 metric:

|V π(s)− Ṽ π(Φ(s))| ≤
c−1
R

ξ(Φ(s))

∫
z∈Φ(s)

cR |rπ(s)− rπ(z)|+ cTW1(dπ)(Pπ(s′|s),Pπ(s′|z))dξ(z)

+ γ‖V π − Ṽ π‖∞

≤
c−1
R

ξ(Φ(s))

∫
z∈Φ(s)

dπ(s, z)dξ(z) + γ‖V π − Ṽ π‖∞

≤ c−1
R 2ε+ γ‖V π − Ṽ π‖∞.

Thus, taking the supremum on the LHS over the state space S:

|V π(s)− Ṽ π(Φ(s))|≤ 2ε

cR(1− γ)
, ∀s ∈ S.

�

Theorem 2 (Generalized VFA bound). Let rewards be bounded as R ∈ [0, 1] and Φ : S → S̃ be a
function mapping states to a finite partitioning S̃ such that Φ(si) = Φ(sj)⇒ dπ(si, sj) ≤ 2ε, which
produces an aggregated MDP 〈S̃,A, P̃, R̃, ρ̃0〉. For any cT ∈ [0, 1), let γ = min(cT , γ). Given A1,

|V π(s)− Ṽ π(Φ(s))| ≤ 2ε

cR(1− γ)
+

2(γ − γ)

(1− γ)(1− cT )
, ∀s ∈ S. (8)
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Proof. Due to Lemma 8,

|V πγ′(s)− Ṽ πγ′(Φ(s))|≤ 2ε

cR(1− γ′)
, (28)

where V πγ′ denotes the expected value under a policy π for a discount factor γ′. Then, for cT < γ:

|V π(s)− Ṽ π(Φ(s))| = |V π(s)− Ṽ π(Φ(s)) + Ṽ πcT (Φ(s))− Ṽ πcT (Φ(s)) + V πcT (s)− V πcT (s)|

≤ |V πcT (s)− Ṽ πcT (Φ(s))| + |V π(s)− V πcT (s)| + |Ṽ π(Φ(s))− Ṽ πcT (Φ(s))|

≤ 2ε

cR(1− cT )
+ |V π(s)− V πcT (s)| + |Ṽ π(Φ(s))− Ṽ πcT (Φ(s))|

≤ 2ε

cR(1− cT )
+

2(γ − cT )

(1− γ)(1− cT )
,

where the second and third inequalities are due to Eq. (28) and Lemma 7 respectively. For γ ≤ cT ,
we recover Lemma 8, hence, for all cT ∈ [0, 1):

|V π(s)− Ṽ π(Φ(s))| ≤ 2ε

cR(1−min(cT , γ))
+

2(γ −min(cT , γ))

(1− γ)(1− cT )
, ∀s ∈ S.

�

Lemma 1 (Diameter of S is bounded). Let d : S × S → [0,∞) be any bisimulation metric:

diam(S; d) := sup
si,sj∈S×S

d(si, sj) ≤
cR

1− cT
(Rmax −Rmin). (9)

Proof. This lemma is a slight generalization of the distance bounds given in Thm. 3.12 of [14], and
the proof follows similarly:

d(si, sj) = max
a∈A

(cR|R(si,a)−R(sj ,a)| + cTW1(d)(P(·|si,a),P(·|sj ,a)))

≤ cR(Rmax −Rmin) + cTdiam(S; d), ∀(si, sj) ∈ S × S,
due to Lemma 5 (upper bound as p→∞). Then,

diam(S; d) ≤ cR(Rmax −Rmin) + cTdiam(S; d)

≤ cR
1− cT

(Rmax −Rmin).

�

Theorem 3 (Boundedness condition for convergence). Assume S is compact. If the support of an
approximate dynamics model P̂ , i.e., S ′ = supp(P̂), is a closed subset of S, then there exists a
unique on-policy bisimulation metric d̂π of the form Eq. (10), and this metric is bounded:

supp(P̂) ⊆ S ⇒ diam(S; d̂π) ≤ cR
1− cT

(Rmax −Rmin). (11)

Proof. The existence proof is virtually identical to the proof of Remark 1, except it replaces P with
an approximate dynamics model P̂ . This is possible since S is compact by assumption such that
supp(P̂) ⊆ S is also compact:

F(dπ)(si, sj)−F(d′π)(si, sj)

= cT

(
W1(dπ)(P̂π(·|si), P̂π(·|sj))−W1(d′π)(P̂π(·|si), P̂π(·|sj))

)
= cT

(
W1(dπ − d′π + d′π)(P̂π(·|si), P̂π(·|sj))−W1(d′π)(P̂π(·|si), P̂π(·|sj))

)
≤ cT

(
W1(‖dπ − d′π‖∞ + d′π)(P̂π(·|si), P̂π(·|sj))−W1(d′π)(P̂π(·|si), P̂π(·|sj))

)
≤ cT

(
‖dπ − d′π‖∞ +W1(d′π)(P̂π(·|si), P̂π(·|sj))−W1(d′π)(P̂π(·|si), P̂π(·|sj))

)
= cT ‖dπ − d′π‖∞, ∀(si, sj) ∈ S × S,
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which implies F is a cT -contraction. It remains to prove that the distance is bounded. First, note that
due to Lemma 5:

supp(P̂) ⊆ S ⇒ sup
si,sj∈S×S

Wp(d̂π)(P̂π(·|si), P̂π(·|sj)) ≤ diam(S; d̂π), ∀p ≥ 1. (29)

Then, similarly to Lemma 1,

d̂π(si, sj) = cR|rπi − rπj | + cTWp(d̂π)(P̂π(·|si), P̂π(·|sj))

≤ cR(Rmax −Rmin) + cTdiam(S; d̂π), ∀(si, sj) ∈ S × S,

which implies,

diam(S; d̂π) ≤ cR(Rmax −Rmin) + cTdiam(S; d̂π)

≤ cR
1− cT

(Rmax −Rmin).

�

Lemma 2 (A reason for caution in on-policy bisimulation). On-policy bisimulation metrics of the
form Eq. (6) have an upper bound determined by their policy:

diam(S; dπ) ≤ cR
1− cT

sup
i,j
|rπi − rπj |. (15)

Proof. In the on-policy case, the bound in Lemma 1 can be much tighter depending on the policy:

dπ(si, sj) = cR|rπi − rπj | + cTW1(dπ)(Pπ(·|si),Pπ(·|sj))
≤ cR sup|rπi − rπj | + cTdiam(S; dπ), ∀(si, sj) ∈ S × S.

As before,

diam(S; dπ) ≤ cR
1− cT

sup|rπi − rπj |.

�

Lemma 3 (Relating collapse and low-dispersion rewards). Assume deterministic transitions and the
existence of a stationary distribution ρπ over states. Given a bisimulation metric of the form Eq. (6):

µπbd =
cR

1− cT
µπrd. (17)

Proof. For point masses, Wp(d)(δ(si), δ(sj)) = d(si, sj):

dπ(si, sj) = cR|rπi − rπj | + cT dπ(s′i, s
′
j).

Simply taking an expectation under νπ , due to the stationarity assumption:

µπbd = cRµ
π
rd + cTµ

π
bd

=
cR

1− cT
µπrd.

�

C Notes on Reward Scale, cR and cT

In recent work [10, 17, 53], various forms of bisimulation metrics have been presented with different
scaling constants; (cR = 1 − c, cT = c) as in Definition 1, and (cR = 1, cT = γ) as in Definition
2. Here, we aim to add clarity to the effect of these choices and how they relate to the reward scale.
First, note that due to Lemma 1, setting cR = 1− cT serves to ensure that d ∈ [0, 1] when the reward
range is specified as (Rmax = 1, Rmin = 0) as in [13, 14].
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Corollary 1 (Policy-independent mean and variance bounds). Due to Lemma 1, the first two moments
of the random variable given by bisimulation distance have the following bounds independently of
any policy π:

µbd ≤
cR(Rmax −Rmin)

2(1− cT )
, (30) σ2

bd ≤
c2R(Rmax −Rmin)2

4(1− cT )2
. (31)

Conversely, if (cR = 1, cT = γ) as in Zhang et al. [53], the formulation allows large distances
between embeddings since γ is commonly set to a value close to 1. Large pairwise distances imply
large norms and high variance (see Corollary 1), which may cause instabilities in optimization
(especially in the absence of norm constraints), considering the compactness conditions discussed in
Sec. 3.2.2.
Definition 7 (Variance of distances and reward differences). Given a stationary distribution ρπ over
states, and νπ the distribution over pairs of states, (si, sj) sampled independently from ρπ:

(σπbd)
2 := V(si,sj)∼νπ [dπ(si, sj)] (σπrd)

2 := V(si,sj)∼νπ [|rπi − rπj |]. (32)

Proposition 1 (On-policy variance bound). Assume a deterministic environment. Given cT ∈
[0,
√

0.5), the variance of the optimal on-policy bisimulation distance for an objective of the form Eq.
(3) can be upper-bounded as follows:

(σπbd)
2 ≤ 2c2R

1− 2c2T
(σπrd)

2 +
c2R (1− 2cT )

2

(1− 2c2T ) (1− cT )
2 (µπrd)

2, (33)

while for all cT ∈ [0, 1), the bound in Eq. (31) applies.

Proof. Given a deterministic environment:
dπ(si, sj) = cR|rπi − rπj | + cT dπ(s′i, s

′
j).

Then,
(σπbd)

2 = E(si,sj)∼νπ [dπ(si, sj)
2]− (µπbd)

2

≤ 2c2R((σπrd)
2 + (µπrd)

2) + 2c2T ((σπbd)
2 + (µπbd)

2)− (µπbd)
2.

When cT ≥
√

0.5 (as in Zhang et al. [53]), the above bound is loose. However, cT <
√

0.5 provides
a convenient upper bound:

(σπbd)
2 ≤ 2c2R

1− 2c2T
((σπrd)

2 + (µπrd)
2)− (µπbd)

2

=
2c2R

1− 2c2T
(σπrd)

2 +
c2R (1− 2cT )

2

(1− 2c2T ) (1− cT )
2 (µπrd)

2,

where the equality is due to Lemma 3. �

Tighter bounds on the variance of the on-policy bisimulation metric may be important, since the
statistics of rπ undergo change throughout training between policy updates. Hence, it is desirable to
remove the dependence of the bound from the µπrd term with a choice of cT = 0.5, such that tighter
bounds can be obtained. This choice renders the formulation more robust to changes in the scale of
the expected rewards. The resulting bound for cT = 0.5 has a simpler form:

(σπbd)
2 ≤ 4c2R(σπrd)

2 ≤ c2R(Rmax −Rmin)2. (34)
Indeed, in Figure 4, we show that such a choice can stabilize the DBC [53] algorithm significantly,
resulting in higher overall performance.

D Value Bounds with Model Error

Our goal in this section is to characterize the errors induced by using approximate dynamics and an
imperfect encoder, with respect to estimating both the ground-truth on-policy bisimulation metric, as
well as preserving the value function with the encoded state.

For this section, we first remark on the difference between three forms of the PBSM, for some fixed
policy π:
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Figure 4: Performance on the Sparse Cartpole task, comparing the standard DBC algorithm (using
cR = 1.0 and cT = γ) with an alternative weighting formulation (denoted “DBC-alt”), where
cR = 0.5 and cT = 0.5. For this task, the alternative weighting formulation is much more robust to
reward sparsity. Shaded bars are standard errors over 10 seeds.

• dπ(si, sj) is the ground-truth bisimulation metric, defined as the fixed point of the operator
defined in Assumption 1 (when it exists uniquely).

• d̂π(si, sj ; P̂) is the fixed point of the same operator but with approximate dynamics (i.e.,
using P̂ and r̂π instead of the true P and rπ; we leave out conditioning on r̂π for brevity).

• d̂π,φ(si, sj) := ||φ(si) − φ(sj)||q is a non-negative function of states, dependent on an
encoder function φ. For example, φ may be produced by a metric learning process, such as
by stochastic minimization of the objective in Eq. 3.

Notice that, if we attempt to learn φ with a metric learning process based on approximate dynamics,
then the best we can do is obtain d̂π,φ → d̂π , which can still have some irreducible error. On the other
hand, even with perfect approximate dynamics, the metric learning process may be incomplete, mean-
ing d̂π,φ 6= d̂π . We therefore hope to characterize the error into two types: dynamics approximation
error and metric learning error.

Next, we define three types of model errors, relating to the quality of encoding and forward dynamics
prediction (in terms of state and reward).

Definition 8 (Model and Encoder Errors). The bisimulation distance approximation error Eφ, transi-
tion probability error EP , and reward prediction error Er are given by

Eφ := ‖d̂π,φ − d̂π‖∞ (35)

EP := sup
s∈S

Wp(dπ)(Pπ(·|s), P̂π(·|s)) (36)

Er := ‖r̂π − rπ‖∞ (37)

where ||·||∞ is the supremum (or uniform) norm over states and d̂π is the fixed-point bisimulation
metric with the Wp distance defined by using P̂π and r̂π , instead of the true dynamics Pπ and rπ .7

Note that we have defined our forward dynamics model errors here irrespective of φ (i.e., it may be
used by P̂ and/or r̂π , or not). Our goal is to use these errors to bound the difference in the MDP value
function induced by the approximate nature of the environmental model and state encoder. First, we
consider how the model errors affect the optimal policy-dependent bisimulation distance that we can
obtain given our approximate forward dynamics.

7Firstly, note that for stochastic reward signals and/or policies, this is a difference between expectations,
meaning that there could be sampling noise. Otherwise, for the DBC use case, the observed reward collected by
the agent is used for training (meaning there will be zero modelling error for the reward term when computing
d̂π between observed states). Nevertheless, given a reward model, d̂π,φ and d̂π can still be queried for states
where the ground truth reward (or reward distribution) may not be known.
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Lemma 9 (Bisimulation distance error). Let cT ∈ [0, 1) and cR ≥ 0. Assume supp(P̂) ⊆ S and
1− cTap > 0. Then

‖dπ − d̂π‖∞ ≤
2cR

1− cTap
Er +

2cT
1− cTap

EP +
cT [ap − 1]

1− cTap
diam(S; dπ) (38)

where ap = 2(p−1)/p and diam(S; dπ) ≤ cR
1−cT (Rmax −Rmin) by Theorem 3.

Proof. We can first use the triangle inequality to bound the difference between reward distances:
|rπi − rπj | ≤ |rπi − r̂πi |+|rπj − r̂πi |≤ Er + Er + |r̂πi − r̂πj |,

so that |rπi − rπj |−|r̂πi − r̂πj |≤ Er + Er. Symmetrically, we can show that |r̂πi − r̂πj |−|rπi − rπj |≤ 2Er
as well. For notational clarity, let ap = 2(p−1)/p and Wp(dπ,Pπ) := Wp(dπ)(Pπ(·|si),Pπ(·|sj)),
as well as similarly for Wp(dπ, P̂π) and Wp(d̂π, P̂π).

First, by the Wasserstein triangle inequality [11], as for the reward difference:

|Wp(dπ, P̂π)−Wp(dπ,Pπ)|≤ 2EP . (39)

Second, the convexity of dp implies that,

Wp(||dπ − d̂π||∞+dπ, P̂π) =

(
inf
ω∈Ω

E(si,sj)∼ω[(||dπ − d̂π||∞+dπ(si, sj))
p]

) 1
p

≤
(

inf
ω∈Ω

2p−1E(si,sj)∼ω[(||dπ − d̂π||p∞+dπ(si, sj)
p]

) 1
p

≤ ap
(
||dπ − d̂π||p∞+W p

p (dπ, P̂π)
) 1
p

≤ ap
([
||dπ − d̂π||∞+Wp(dπ, P̂π)

]p)1/p

= ap

(
||dπ − d̂π||∞+Wp(dπ, P̂π)

)
. (40)

Third, recall that when supp(P̂) ⊆ S, due to Lemma 5, we have:

Wp(dπ, P̂π) ≤ diam(S; dπ). (41)

Then, the difference in distances can be bounded by:

|Wp(dπ,Pπ)−Wp(d̂π, P̂π)|

≤ |Wp(d̂π, P̂π)−Wp(dπ, P̂π)|+ |Wp(dπ,Pπ)−Wp(dπ, P̂π)|

≤ |Wp(d̂π, P̂π)−Wp(dπ, P̂π)|+ 2EP By Eq. 39

= |Wp(d̂π − dπ + dπ, P̂π)−Wp(dπ, P̂π)|+ 2EP
≤ |Wp(||d̂π − dπ||∞+dπ, P̂π)−Wp(dπ, P̂π)|+ 2EP
= |Wp(||dπ − d̂π||∞+dπ, P̂π)−Wp(dπ, P̂π)|+ 2EP
≤ |ap||dπ − d̂π||∞+apWp(dπ, P̂π)−Wp(dπ, P̂π)|+ 2EP By Eq. 40

≤ ap||dπ − d̂π||∞+[ap − 1]diam(S; dπ) + 2EP . By Eq. 41

We can then plug these into the difference between the true and approximate policy-dependent
bisimulation distances:

|dπ(si, sj)− d̂π(si, sj)| ≤ cR
∣∣|rπi − rπj |−|r̂πi − r̂πj |∣∣+ cT

∣∣∣Wp(dπ,Pπ)−Wp(d̂π, P̂π)
∣∣∣

≤ 2cREr + cT

∣∣∣ap||dπ − d̂π||∞+[ap − 1]diam(S; dπ) + 2EP
∣∣∣

||dπ − d̂π||∞ ≤ 2cREr + 2cTEP + cTap||dπ − d̂π||∞+cT [ap − 1]diam(S; dπ)

||dπ − d̂π||∞ ≤
2cR

1− cTap
Er +

2cT
1− cTap

EP +
cT [ap − 1]

1− cTap
diam(S; dπ)

where the second-last inequality follows by taking the supremum over states for both sides. �
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For the remainder of this section, we assume p = 1.

Corollary 2 (Bisimulation distance error with p = 1). Let p = 1, with the remaining conditions as
in Lemma 9. Then

‖dπ − d̂π‖∞ ≤
2cR

1− cT
Er +

2cT
1− cT

EP . (42)

Proof. When p = 1, we have ap = a1 = 1, giving the expression above. �

This bounds the error between the true on-policy bisimulation distance and the optimal approximate
bisimulation distance (i.e., the best distance function we could hope to achieve with our encoder,
given the error in our forward dynamics model). However, ultimately, we wish to bound the error in
the value function in terms of d̂π,φ, not just d̂π (to take the error of the encoder φ into account, as
well as that of the dynamics model). First, we can bound the true bisimulation distance in terms of
the encoder and model error as follows:

Lemma 10 (Bound on bisimulation distance with encoder error). Consider the same conditions as
Corollary 2. Then

‖dπ − d̂π,φ‖∞ ≤ Eφ +
2cR

1− cT
Er +

2cT
1− cT

EP . (43)

Proof.

‖dπ − d̂π,φ‖∞ = ‖dπ − d̂π,φ − d̂π + d̂π‖∞
≤ ‖dπ − d̂π‖∞ + ‖d̂π,φ − d̂π‖∞

≤ 2cR
1− cT

Er +
2cT

1− cT
EP + Eφ

using Corollary 2 and Equation 35. �

Thus, if we can relate dπ to the value function, we can also do so for d̂π,φ, as a function of model
error.

Finally, we look at bounding the difference in the state value function, using the approximate
bisimulation distance defined through the learned encoder (i.e., our partitioning Z is defined via d̂π,φ).
Let ε̂ be the aggregation radius in φ-space (meaning the maximum diameter with respect to d̂π,φ per
partition subset, or equivalence class, is at most 2 ε̂ ):

sup
z∈Z

sup
si,sj∈z

||φ(si)− φ(sj)||q ≤ 2ε̂.

Notice that ε̂ bounds the maximal diameter of the partition cells with respect to the learned metric,
using φ, rather than the ground truth bisimulation distance.

Theorem 4 (VFA bound in terms of model error). Consider the same conditions as in Theorem 2,
except that cT ∈ [γ, 1), p = 1, and Φ(si) = Φ(sj)⇒ d̂π,φ(si, sj) = ‖φ(si)− φ(sj)‖q ≤ 2 ε̂. Then:

|V π(s)− Ṽ π(Φ(s))|≤ 1

cR(1− γ)

(
2 ε̂+ Eφ +

2cR
1− cT

Er +
2cT

1− cT
EP
)
,∀s ∈ S. (14)

where Eφ := ‖d̂π,φ − d̂π‖∞ is the metric learning error, Er := ‖r̂π − rπ‖∞ is the reward approxi-
mation error, and EP := sups∈SW1(dπ)(Pπ(·|s), P̂π(·|s)) is the state transition model error.
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Proof. Following the proof of Lemma 8, we have that 8

(1− γ)|V π(s)− Ṽ π(Φ(s))| ≤
c−1
R

ξ(Φ(s))

∫
z∈Φ(s)

dπ(s, z)dξ(z)

≤
c−1
R

ξ(Φ(s))

∫
z∈Φ(s)

d̂π,φ(s, z) + |dπ(s, z)− d̂π,φ(s, z)|∞︸ ︷︷ ︸
L

dξ(z)

≤
c−1
R

ξ(Φ(s))

∫
z∈Φ(s)

2ε̂+ L dξ(z)

= c−1
R (2ε̂+ L) (†)

≤ 1

cR

(
2ε̂+ Eφ +

2cR
1− cT

Er +
2cT

1− cT
EP
)

where the last line used Lemma 10.

�

Rather than bound the ground-truth on-policy bisimulation distance dπ, we have instead bound the
estimated distance d̂π,φ, using both approximate predictive dynamics and error in the metric learning
process.

Notice that as we shrink the size of the equivalence classes in the partition, so ε̂→ 0, we get Φ→ φ.
This tells us that information about the value of a state is preserved by the encoder φ, as long as the
error in the forward dynamics model and metric learning process is small. Further, in the low error
case, if the vectors φ(si) and φ(sj) are close, we are guaranteed they have similar value under π,
with the difference growing only linearly with the error.

Corollary 3 (VFA bound in terms of model error for arbitrary cT ). Consider the same conditions
and definitions as Thm. 4, except cT ∈ [0, 1). Let γ = min(cT , γ):

|V π(s)−Ṽ π(Φ(s))|≤ 1

cR(1− γ)

(
2 ε̂+ Eφ +

2cR
1− cT

Er +
2cT

1− cT
EP
)

+
2(γ − γ)

(1− γ)(1− cT )
, ∀s ∈ S.

(44)

Proof. The proof follows similarly to the proof of Thm. 2. Suppose cT < γ:

|V π(s)− Ṽ π(Φ(s))| = |V π(s)− Ṽ π(Φ(s)) + Ṽ πcT (Φ(s))− Ṽ πcT (Φ(s)) + V πcT (s)− V πcT (s)|

≤ |V πcT (s)− Ṽ πcT (Φ(s))| + |V π(s)− V πcT (s)| + |Ṽ π(Φ(s))− Ṽ πcT (Φ(s))|

≤ 1

cR(1− cT )

(
2 ε̂+ Eφ +

2cR
1− cT

Er +
2cT

1− cT
EP
)

+ |V π(s)− V πcT (s)| + |Ṽ π(Φ(s))− Ṽ πcT (Φ(s))|

≤ 1

cR(1− cT )

(
2 ε̂+ Eφ +

2cR
1− cT

Er +
2cT

1− cT
EP
)

+
2(γ − cT )

(1− γ)(1− cT )
,

where the second and third inequalities are due to Thm. 4 and Lemma 7 respectively. For γ ≤ cT , we
recover Thm. 4, hence, for all cT ∈ [0, 1) and s ∈ S:

|V π(s)− Ṽ π(Φ(s))| ≤ 1

cR(1−min(cT , γ))

(
2 ε̂+ Eφ +

2cR
1− cT

Er +
2cT

1− cT
EP
)

+
2(γ −min(cT , γ))

(1− γ)(1− cT )
.

�

8Notice that using the Equation (†) allows us to recover the value bound with model error from [53]:
|V π(s)− Ṽ π(Φ(s))|≤ 2ε̂+L

(1−γ)(1−c) , where cR = 1− c.
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E Experimental Details and Additional Results

E.1 OpenAI Gym

E.1.1 Sparse Noisy Cartpole Additional Details

First, we consider modifications to the Cartpole-v0 task. In the standard version, the agent receives
a constant reward of +1 at each time-step for as long as the cart-pole system is upright between
[−θterm, θterm] degrees. If the pole falls below this range, the episode terminates. To make the task
more challenging, we introduce a second parameter θrew � θterm, such that the agent receives a
reward only if the pole is between [−θrew, θrew] degrees. We refer to this task as Sparse Cartpole and
set θterm = 12◦ with θrew = 0.01 θterm. Additionally, we consider a noisy version of Sparse Cartpole
to mimic distractors. In particular, we concatenate an Nmdim(S)-dimensional vector sampled from
an isotropic Gaussian to the state vector. The resulting task is referred to as Noisy Sparse Cartpole.
Thus, the encoder φ must learn to embed functionally similar states in close proximity, despite the
distractions, and maintain a well-behaved embedding, despite reward sparsity. While we provide
sparse reward signals at training time to make the learning problem more difficult, we evaluate the
resulting models in the standard environment based on θterm, since this provides a lower variance
return signal and still allows us determine whether the task has been solved.

E.1.2 Noisy Mountain Car Additional Details

We next tested on the Noisy Mountain Car task [32], implemented as MountainCarContinuous-v0
in the OpenAI Gym [7], and modified to concatenate Nmdim(S) noise dimensions to the observed
state to simulate distraction. Briefly, the agent controls a car that should reach the top of a mountain,
but has an engine of insufficient power to attain it directly. It must therefore learn a sequence of
actions that build enough momentum to complete the task. The reward signal is highly uninformative:
a small negative reward is given at every step, unless the task is solved, in which case a large positive
reward is given. For Nm > 0, this task has both noisy distractors and high sparsity, making it rather
challenging.

Note that only methods with intrinsic reward were able to solve the task (see Fig. 2 and Fig. 5), and
that DBC without normalization was also unable to complete it. We remark that all methods rely on
the maximum policy entropy RL formulation, which is known to improve exploration [23, 24, 55];
nevertheless, our results suggest that curiosity-driven exploration, induced by intrinsic rewards based
on predictive error, is at least complementary to such techniques.

E.1.3 Sparse Pendulum Task Details

For the Pendulum-v0 task, we implement similar modifications to those in SparseCartpole. The
standard Pendulum task starts with a pole in downright position, and provides negative rewards
proportional to |θpend|, degrees away from upright position. Our SparsePendulum instead provides a
reward of +1 only when the pendulum is between [−θrew, θrew] degrees, where θrew, and does not
provide a reward otherwise. NoisySparsePendulum similarly concatenates to state vectors a noise
vector of Nm times the original dimensionality. Note that we evaluate with an environment with
θrew = 1◦, to reduce variance in the evaluation reward.

Results (see Fig. 6) show that our method performs comparably to DBC. In the presence of high
distraction (Nm = 10), DBC-based approaches can do much better than SAC, which is no longer
able to solve the task.

E.1.4 Plots with Additional Distraction

In Fig. 5, we show results for Sparse Cartpole (left) and Mountain Car (right), with an even higher
level of distraction (Nm = 3). On Sparse Cartpole, only DBC-normed-IR and DBC-normed-IR-ID
were able to solve the task, with the latter being slightly more stable, while DBC-normed performed
significantly better than any methods without normalization. On Mountain Car, all methods struggle
to solve the task at this level of distraction; however, DBC-normed-IR-ID performs significantly
better than the others, showing the utility of the inverse dynamics regularization.
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Figure 5: Additional plots on Sparse Noisy Cartpole (left) and Mountain Car (right) at high distraction
(Nm = 3). Shaded bars are standard errors over 10 seeds.
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Figure 6: Results on the Sparse Pendulum task with differing levels of distraction and sparsity (shaded
bars are standard errors over 10 seeds).
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E.1.5 Hyper-parameters and Architectures for OpenAI Gym Tasks

All models use the code generously released alongside the DBC paper [53] (CC-BY-NC 4.0 licensed),
with default hyper-parameters and architectures according to the released code, unless otherwise
specified. DBC and our modifications of it are all built on top of the Soft Actor-Critic implementation
therein. Actor, critic, and encoder learning rates were all 0.001, using the Adam optimizer. A replay
buffer of 50K was used, with a batch size for all training steps of 512. All encoders were implemented
as multilayer perceptrons (MLPs) with four layers, except for the SparsePendulum task where two
layers were used for all normalized approaches (unnormalized DBC still performed better with four).
Encoder feature dimensionality was set to dim(φ(s)) = 50. When inverse dynamics prediction was
needed, we implemented gI as an MLP with two hidden layers (of size 256 and 128), with ELU
activations. Note that for the predictive approximate transition model P̂ , we use a deterministic
predictor. Following the implementation of [53], distances in reward and predicted encoded state, for
the bisimulation metric, were computed with a Huber loss, defining the value of q as a function of
the distance. However, embedding normalization was computed with the L2 norm. A discount of
γ = 0.99 was always used. In all tasks, rewards are bounded as R ∈ [0, 1].

We remark that all evaluation rewards in plots (per seed) are computed as averages over 10 episodes.

We used a maximum intrinsic reward clamping value of Rmax,I = 0.1 for all Gym tasks, and set ηr
and ηd per task as in Table 1 below. Hyper-parameters not left at default (Rmax,I , ηr, ηd, and number
of encoder layers and latent dimensionality) were set by searching over a small, manually defined set
of values.

E.2 DeepMind Control Suite

For the DeepMind Control Suite [45], our encoder model architecture is identical to the open-source
code repository released by [53]. Namely, a 3x3 convolutional layer with stride 2 is followed by
another 3x3 convolution with stride 1 (both with 32 channels), before a fully-connected layer with
50-dimensional output and layer normalization. ReLU activations are used between neural layers.
When an inverse dynamics model is used, we use the same architecture as those used for the OpenAI
experiments (described in Appendix E.1.5), namely, a two-layer MLP. Differently from [53], to speed
up training, we run 16 environments in parallel, all of which add experience tuples to a shared replay
buffer. After every 16 environment steps (i.e., each parallel step), we apply 2 gradient updates. Our
hyperparameters for inverse dynamics and intrinsic motivation are given in the last column of Table
1, and were selected by searching over a small, manually defined set of values.

Cartpole Pendulum Mountain Car DMC
ηr 2 0.1 20 1
ηd 1 0.1 20 10

Table 1: Hyper-parameters used per task for intrinsic reward and inverse dynamics.

E.3 Computational Resources and Timing

All training and evaluation was done on a small set of NVIDIA GPUs (GTX 1080 TI, Titan X, or
RTX 2080 TI), less than 10 in total and shared with other users.

OpenAI Gym tasks were run with multiple seeds per GPU (up to the GPU memory limit) during
training. In this parallel training context, which allowed us to complete a Gym task for all methods
and seeds (for a single distraction level) within roughly a day on 2-4 GPUs, we obtain the following
approximate timings (in seconds per training iteration). Cartpole: ∼0.1 for DBC-based methods and
∼0.07 for SAC. Pendulum: ∼0.09 for DBC-based methods (∼0.1 with IR+ID present) and ∼0.06
for SAC. Mountain Car: ∼0.07 for DBC-based methods and ∼0.04 for SAC.

For the Deepmind Control (DMC) tasks, experiments were performed on 4 GPUs over the course of
a week. Our 16-process parallelization for running MuJoCo [47] simulations greatly sped up training,
resulting in approximately 0.03, 0.05 and 0.07 seconds per environment step (with 2 gradient updates
for every 16 environment step) for SAC, DBC and DBC+IR+ID respectively.
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