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Abstract

Imbalanced datasets are commonplace in modern machine learning problems. The1

presence of under-represented classes or groups with sensitive attributes results in2

concerns about generalization and fairness. Such concerns are further exacerbated3

by the fact that large capacity deep nets can perfectly fit the training data and appear4

to achieve perfect accuracy and fairness during training, but perform poorly during5

test. To address these challenges, we propose AutoBalance, a bi-level optimization6

framework that automatically designs a training loss function to optimize a blend7

of accuracy and fairness-seeking objectives. Specifically, a lower-level problem8

trains the model weights, and an upper-level problem tunes the loss function by9

monitoring and optimizing the desired objective over the validation data. Our10

loss design enables personalized treatment for classes/groups by employing a11

parametric cross-entropy loss and individualized data augmentation schemes. We12

evaluate the benefits and transferability of our approach to the application scenarios13

of imbalanced and group-sensitive classification. Extensive empirical evaluations14

demonstrate the benefits of AutoBalance over state-of-the-art approaches. Our15

experimental findings are complemented with theoretical insights on loss function16

design and the benefits of the train-validation split.17

Organization of Supplementary18

1. Section A is the extended related works. Here, we provided a discussion for the related19

works of data augmentation and algorithm for Implicit Differentiation [49].20

2. Section B provides the standard error of Table 1,2,3 and 4 over 5 runs as well as several21

extra experiments. We also extend the discussion of Fig. 3 in its caption.22

3. Section C extends the discussion of Section 4 on the importance of validation in multi-23

objective learning and generalization.24

4. Section D proves Lemma. 1 on the consistency of the parametric cross-entropy with multi-25

plicative adjustments.26

5. Finally, Section E establishes the benefit of data augmentation by relating “data-augmented27

cross-entropy” to parametric cross-entropy loss.28

1 Introduction29

Recently, deep learning, large datasets, and the evolution of computing power have led to unprece-30

dented success in computer vision, and natural language processing [15, 41, 66]. This success is31

partially driven by the availability of high-quality datasets, built by carefully collecting a sufficient32

number of samples for each class. In practice, real-world datasets are frequently imbalanced and33

exhibit long-tailed behavior, necessitating a careful treatment of the minorities [21, 56, 24]. Indeed,34
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modern classification tasks can involve thousands of classes, so it is perhaps intuitive that some35

classes should be over/under-represented compared to others. Besides class imbalance, minorities can36

also appear at the feature-level; for instance, the specific values of the features of an example can vary37

depending on that example’s membership in certain sensitive or protected groups, e.g. race, gender,38

disabilities (see also Figure 1a). In scenarios where imbalances are induced by heterogeneous client39

datasets (e.g., in the context of federated learning), addressing these imbalances can help ensure that a40

machine learning model works well for all clients, rather than just those that generate the majority of41

the training data. This rich set of applications motivate the careful treatment of imbalanced datasets.42

In the imbalanced classification literature, the recurring theme is maximizing a fairness-seeking43

objective, such as balanced accuracy. Unlike standard accuracy, which can be dominated by the44

majorities, a fairness-seeking objective seeks to promote examples from minorities, and downweigh45

examples from majorities. Here, note that there is a distinction between the test and training46

objectives. While the overall goal is typically to maximize a non-differentiable objective such as47

balanced accuracy on the test set, during training, we use a differentiable proxy for this, such as48

weighted cross-entropy. Thus, the fundamental question of interest is:49

How to design a training loss to maximize a fairness-seeking objective on the test set?

A classical answer to this question is to use a Bayes-consistent training loss function, so that50

as the sample size grows, the training process returns the Bayes-optimal decision rule. Thus,51

weighted cross-entropy (e.g., each class gets a different weight, see §4) is traditionally a good52

choice for optimizing weighted accuracy objectives. Unfortunately, this intuition starts to break53

down when the training problem is overparameterized, which is a common practice in deep learn-54

ing: in essence, for large capacity deep nets, the training process can perfectly fit to the data, and55

training loss is no longer indicative of test error. In fact, recent works [8, 40] show that weighted56

cross-entropy has minimal benefit to balanced accuracy, and instead alternative methods based on57

margin adjustment can be effective (namely, by ensuring that minority classes are further away from58

decision boundary). These ideas led to the development of a parametric cross-entropy function59

`(y, f(x)) = wy log
(

1 +
∑
k 6=y e

lk−ly · e∆kfk(x)−∆yfy(x)
)

, which allows for a personalized treat-60

ment of the individual classes via the design parameters (wk, lk,∆k)Kk=1 [8, 40, 56, 37, 71]. Here, wk61

is the classical weighting term whereas lk and ∆k are additive and multiplicative logit adjustments.62

However, despite these developments, it is unclear how such parametric cross-entropy functions can63

be tuned for use for different fairness objectives, for example to tackle class or group imbalances. The64

works by [8, 56] provide theoretically-motivated choices for (wk, lk), while [40] argues that (wk, lk)65

is not as effective as ∆k in the interpolating regime of zero training error. However, these works66

do not provide an optimized loss function that can be systematically tailored for different fairness67

objectives, such as balanced accuracy common in class imbalanced scenarios, or equal opportunity68

[24, 18] which is relevant in group-sensitive settings.69

In this work, we address these shortcomings by designing the loss function within the optimization in70

a principled fashion, to handle different fairness-seeking objectives. Our main idea is to use bi-level71

optimization, where the model weights are optimized over the training data, and the loss function is72

automatically tuned by monitoring the validation loss. Our core intuition is that unlike training data,73

the validation data is difficult to fit and will provide a consistent estimator of the test objective.74

Contributions. Based on this high-level idea, this paper takes a step towards a systematic treatment75

of imbalanced learning problems with contributions along several fronts: state-of-the-art performance,76

data augmentation, applications to different imbalance types, and theoretical intuitions. Specifically:77

•We introduce AutoBalance —a bilevel optimization framework— that designs a fairness-seeking78

loss function by jointly training the model and the loss function hyperparameters in a systematic79

way (Figure 1b, Section 4). To further improve the test performance, our design also incorporates80

data augmentation policies personalized to subpopulations (classes or groups). We demonstrate the81

benefits of AutoBalance when optimizing various fairness-seeking objectives over the state-of-the-art,82

such as logit-adjustment (LA) [56] and label-distribution-aware margin (LDAM) [8] losses.83

• Extensive experiments provide several takeaways (Section 5). First, the impact of individual design84

parameters in the loss function is revealed, with the additive adjustment lk and multiplicative adjust-85

ment ∆k synergistically improving the fairness objective. Second, personalized data augmentation86

can further improve the performance over a single generic augmentation policy. Third, the loss87

functions designed by AutoBalance are transferable across datasets.88
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Figure 1: (a) Example group-imbalance on the Waterbirds dataset [67, 78]. Groups correspond to the distinct
background types, while classes are distinct bird types. (b) Framework overview. The search phase conducts
a bilevel optimization to design the optimal training loss function parameterized by α? by minimizing the
validation loss, using a train-validation split (e.g. 80%-20%). The retrain phase uses the original training data
and α? to obtain the optimal model parameters θ?. The evaluation phase predicts the test data using θ?.

• Beyond class imbalance, we consider applications of loss function design to the group-sensitive89

setting (Section 6). Our experiments show that AutoBalance consistently outperforms various90

baselines, leading to a more efficient Pareto-frontier of accuracy-fairness tradeoffs.91

2 Related Work92

Our work relates to imbalanced classification, fairness, bilevel optimization, and data augmentation.93

Below we focus on the former three and defer the extended discussion to the supplementary.94

Long-tailed learning. Learning with long-tailed data has received substantial interest historically,95

with classical methods focusing on designing sampling strategies, such as over- or under-sampling [42,96

63, 9, 43, 1, 59, 72, 5, 53]. Several loss re-weighting schemes [57, 55, 28, 13, 6, 36] have been97

proposed to adjust weights of different classes or samples during training. Another line of work [76,98

39, 56] focuses on post-hoc correction. More recently, several works [47, 37, 17, 36, 8, 13, 56, 71]99

develop more refined class-balanced loss functions (e.g. (4.1)) that better adapt to the training data.100

In addition, several works [32, 79] point out that separating the representation learning and class101

balancing can lead to improvements. In this work, our approach is in the vein of class-balanced102

losses; however, rather than fixing a balanced loss function (e.g. based on the class probabilities in103

the training dataset), we employ our Algorithm 1 to automatically guide the loss design.104

Group-sensitive and Fair Learning. The group-sensitive learning aims to ensure the fairness of the105

classifier under setups where there exists under-represented groups (e.g., gender, race). [7, 24, 74, 68]106

propose several fairness metrics as well as insightful methodologies. A line of research [4, 20]107

optimize the worst-case loss over the test distribution and further applications motivate (label, group)108

metrics such as equality of opportunity [24, 18] (also recall DEO (3.1)). [61] discusses group-sensitive109

learning in an over-parameterized regime and proposes that strong regularization ensures fairness.110

Closer to our work, [61, 40] also study Waterbirds dataset. Compared to the regularization-based111

approach of [61], we explore a parametric loss design (which is inspired from [40]) to optimize112

fairness-risk over validation. [18] proposes methods and statistical guarantees for fair empirical113

risk minimization. A key observation of our work is that, such guarantees based on training-only114

optimization can be vacuous in the overparameterized regime. Thus, using train-validation split115

(e.g. our Algo 1) is critical for optimizing fairness metrics more reliably. This is verified by the116

effectiveness of our approach in the evaluations of Section 6.117

Bilevel Optimization. Classical approaches [65] for hyper-parameter optimization are typically based118

on derivative-free schemes, including random search [69] and reinforcement learning [81, 3, 70, 77].119

Recently, a growing line of works focus on differentiable algorithms that are often faster and can120

scale up to millions of parameters [49, 52, 62, 30, 51]. These techniques [48, 38, 80, 50] with121

continuous relaxations have shown significant success in neural architecture search, learning rate122

scheduling, regularization, etc. These methods are typically formulated as a bilevel optimization123

problem: the upper and lower optimizations minimize the validation and training losses, respectively.124

Some theoretical guarantees (albeit restrictive) are also available [11, 22, 2, 58]. Different from125

these, our work focuses on principled design of training loss function to optimize fairness-seeking126

objectives for imbalanced data. Here, a key algorithmic distinction (e.g. compared to architecture127

search) is that, our loss function design is only used during optimization and not during inference.128
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This leads to a more sophisticated hyper-gradient and necessitates additional measures to ensure129

stability of our approach (see Algo 1).130

3 Problem Setup131

Let [K] denote the set {1, . . . ,K}. Let 1E be the indicator function of event E. Suppose we have a132

dataset S = (xi, yi, gi)
n
i=1 sampled i.i.d. from a distribution D with input space X , K classes and G133

groups. For an example (x, y, g), x ∈ X is the input features, y ∈ [K] is the output label, and g ∈ [G]134

is the group membership. Let f : X → RK be a model that outputs a distribution over classes and let135

ŷf (x) = arg maxi∈[K] f(x). Standard classification error is defined as E(f) = PD[y 6= ŷf (x)]. Let136

`(y, ŷ) be a differentiable proxy for 0-1 loss (specifically cross-entropy). We similarly denote137

Population risk: L(f) = ED[`(y, ŷf (x))], Empirical risk: LS(f) =
1

n

n∑
i=1

`(yi, ŷf (xi)).

For (x, y, g) ∼ D, define the class, group, and (class, group) frequencies as follows138

πk = PD(y = k), π̄j = PD(g = j), and πk,j = PD(y = k, g = j), for (k, j) ∈ [K]× [G].

Similarly, given sample (x, y, g) fromD, letDk be the distribution conditioned on class y = k, let D̄j139

be the distribution conditioned on group g = j, let Dk,j be the distribution of (x, y, g) conditioned140

on y = k and g = j. We say that a problem has class (or group) imbalance if majority class (or141

group) is substantially more frequent than minority. We introduce142

Class-conditional risk: Lk(f) = EDk [`(y, ŷf (x))], Balanced risk: Lbal(f) =
1

K

K∑
k=1

Lk(f).

Similarly, group and (class, group)-conditional risks are denoted via L̄j(f) and Lk,j(f) respectively.143

We restrict our attention to the following applications that can benefit from our approach.144

X Setting A: Imbalanced classes. This occurs when class frequencies differ, i.e., maxi∈[K] πi �145

mini∈[K] πi. In this setting, we ignore group membership and focus on classes. Instead of standard146

accuracy, we will optimize a class-balanced error Ebal(f) by designing a class-personalized loss.147

X Setting B: Imbalanced groups. This occurs when group or (class, group) frequencies differ,148

i.e., maxj∈[G] π̄j � minj∈[G] π̄j or max(k,j) πk,j � min(k,j) πk,j . Specifically, in the fairness149

literature, groups represent sensitive or protected attributes. A typical goal is ensuring that the150

prediction of the model is independent of these attributes. While many fairness metrics exist, in this151

work, we focus on the Difference of Equal Opportunity (DEO) [24, 18]. Our evaluations also focus152

on binary classification (with labels denoted via ±) and two groups (K = G = 2). With this setup,153

the DEO risk is defined as LDEO(f) = |L+,1(f)− L+,2(f)|. When both classes are equally relevant154

(rather than y = +1 implying a semantically positive outcome), we use the following definition:155

LDEO(f) = |L+,1(f)− L+,2(f)|+ |L−,1(f)− L−,2(f)|. (3.1)

4 Loss Function Design and Proposed Method156

Our main goal in this paper is automatically designing loss functions to optimize target objectives157

for imbalanced learning (e.g., Settings A and B). We will employ a parametrizable family of loss158

functions that can be tailored to the needs of different classes or groups. Cross-entropy variations159

have been proposed by [47, 37, 17] to optimize balanced objectives. Our design space will utilize160

recent works by [40, 71], who introduce Vector Scaling (VS)-loss and Class-Dependent Temperatures161

(CDT). Specifically, for Setting A1 we build on the following loss function parametrized by three162

vectors w, l,∆ ∈ RK :163

`(y, f(x)) = wy log

1 +
∑
k 6=y

elk−ly · e∆kfk(x)−∆yfy(x)

 . (4.1)

This loss is same as VS-loss of [40], which also contains w, l,∆ ∈ RK . However, the denominator164

of VS-loss uses ∆y whereas we use ∆k similar to CDT of [71]. Here, wy enables conventional165

weighted CE and ly is the additive adjustment to the logits. Recently [56] proposed a Fisher consistent166

logit adjustment (LA) loss parameterized by wy and ly; we make the following related observation.167

1Discussion of Setting B (group-imbalance) is deferred to Section 6, however the main ideas are similar.
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Algorithm 1: Bilevel Optimization for AutoBalance
Input: Model fθ with weights θ, dataset S = ST ∪ SV , step sizes ηα & ηθ , # iterations t2 > t1

1 Initialize α with `UP(·) = `LOW(·;α) // Consistent initialization
2 Train θ for t1 iterations (α is fixed) // Warm-up training
3 for i← t1 to t2 do
4 Sample training batch BT from ST ;

// Apply class-personalized augmentation BT ← A(BT ) (implicitly)
5 θ ← θ − ηθ∇θLBTLOW(fθ;α)
6 Sample validation batch BV from SV ;
7 Compute hyper-gradient∇αLBVUP (fθ) //via Implicit Differentiation e.g. [49]
8 α← α− ηα∇LBVUP (fθ) // Update loss function hyper-parameters
9 end

10 Set α? ← α, ST ← S, reset weights θ
11 Train θ for t2 iterations using α? // Final training over full S using α?

Result: The final model θ? ← θ and hyper-parameters α?

Lemma 1 Parametric loss function (4.1) is not consistent for standard or balanced errors if there168

are distinct multiplicative adjustments i.e. ∆i 6= ∆j for some i, j ∈ [K].169

While consistency is a desirable property, it is intuitively more critical during the earlier phase of170

the training where the training risk is more indicative of the test risk. In the interpolating regime of171

zero-training error, [40] shows that w, l can be ineffective and multiplicative ∆-adjustment can be172

more favorable. Our algorithm will be initialized with a consistent weighted-CE; however, we will173

allow the algorithm to automatically adapt to the interpolating regime by tuning l and ∆.174

Proposed training loss function. For our algorithm, we will augment (4.1) with data augmentation175

that can be personalized to distinct classes. Let us denote the data augmentation policies by A =176

(Ay)Ky=1 where each Ay stochastically augments an input example with label y. Additionally, we177

clamp ∆i with the sigmoid function σ to limit its range to (0,1) to ensure non-negativity. To this end,178

our loss function for the lower-level optimization (over training data) is as follows:179

`LOW(y,x, f ;α) = −EA

[
wy log

(
eσ(∆y)fy(Ay(x))+ly∑
i∈[K] e

σ(∆i)fi(Ay(x))+li

)]
. (4.2)

Here, α is the set of hyperparameters of the loss function that we wish to optimize, specifically180

α = [w, l,∆, param(A)]. param(A) is the parameterization of the augmentation policies (Ay)y∈[K].181

Equal Augmentation
Decision boundary is
same as max-margin

Minority-Favored Augmentation
Decision boundary shifts

to protect minority

Figure 2: Data augmentation can shift the de-
cision boundary to benefit the minority class by
providing a larger margin. Lemma 2 establishes an
equivalence between spherical data augmentation
and parametric cross-entropy loss.

Personalized data augmentation (PDA). Remark-182

able benefits of data augmentation techniques183

provide a natural motivation to investigate whether184

one can benefit from learning class-personalized185

augmentation policies. To explain our intuition,186

consider a spherical augmentation strategy where187

Ay(x) samples a vector uniformly from an `2-ball of188

radius εy around x. As visualized in Figure 2 for a189

linear classifier, if the augmentation strengths of both190

classes are equal, the max-margin classifier is not191

affected by the application of the data augmentation192

and remains identical. Thus, augmentation has no193

benefit. However by applying a stronger augmenta-194

tion on minority, the decision boundary is shifted to protect minority which can provably benefit the195

balanced accuracy [40, 8]. The following intuitive observation links the PDA to parametric loss (4.1).196

Lemma 2 Consider a binary classification task with labels 0 and 1 and a linearly separable training197

dataset. For any parametric loss (4.1) choices of (li,∆i, wi)
1
i=0, there exists spherical augmentation198

strengths for minority/majority classes so that, without regularization, optimizing the logistic loss199

with personalized augmentations returns the same classifier as optimizing (4.1).200

This Lemma is similar in flavor to the result of [33], which considers a larger uncertainty set201

around the minority class. As discussed in the supplementary materials, Lemma 2 is relevant for202
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Figure 3: (a) Visualizing class clustering and train-validation split. (b), (c), (d) Evolution of loss
function parameters l,∆ over epochs for CIFAR-100-LT where solid curves and dashed curves
corresponds to ∆ and l respectively. We display average value of 20 classes for better visualization.
Based on theory, the minority classes should be assigned a larger margin. During the initial 120
epochs, we use weighted cross-entropy training and AutoBalance kicks in after epoch 120. Observe
that, AutoBalance does indeed learn larger parameters (ly,∆y) for minority class clusters (each
containing 20 classes) consistent with theoretical intuition. In all Figures (b), (c), (d), by the end of
training, the colors are ordered according to the class frequency. However, when ∆y is trained jointly
with ly (Fig (d)), the training is more stable compared to training ∆y alone (Fig (b)). Thus, besides
its accuracy benefits in Table 1, ly also seems to have optimization benefits.

the overparameterized regime whereas the approach of [33] is ineffective for separable data [54].203

Algorithmically, the augmentations that we consider are much more flexible than the `p-balls of204

[33] and our experiments showcase the value of our approach in state-of-the-art multiclass settings.205

Finally, we note that, the (theoretical) benefits of PDA can go well-beyond Lemma 2 by leveraging206

the invariances [10, 14] (via rotation, translation).207

4.1 Proposed Bilevel Optimization Method208

We formulate the loss function design as a bilevel optimization over α and a hypothesis set F .209

Split the dataset S into training ST and validation SV sets with nT and nV examples respectively.210

The upper-level variable α aims to minimize a desired fairness-seeking objective `UP(y, ŷ), and the211

lower-level hypothesis f ∈ F aims to minimize the training loss (4.2) as follows:212

min
α
LSVUP (fα) WHERE fα = arg min

f∈F
LSTLOW(f ;α) :=

1

nT

nT∑
i=1

`LOW(yi,xi, f ;α). (4.3)

Here, LUP is obtained as the empirical average of `UP. The function `UP is weighted cross-entropy,213

chosen to be a consistent proxy for the desired accuracy objective EUP. For instance, if EUP is214

a superposition of standard and balanced errors EUP = (1 − λ)E + λEbal, then similarly LUP =215

(1− λ)L+ λLbal. Algorithm 1 summarizes our approach and highlights the key components. The216

training loss `LOW(·;α) is also initialized as a consistent proxy for EUP (e.g. same as `UP).217

Implicit Differentiation and Warm-up training. For a loss function parameter α, the hyper-218

gradient can be written via the chain-rule ∂LUP(θ?)
∂α = ∂LUP(θ?)

∂θ?
∂θ?

∂α Here, θ? is the solution of the219

lower-level problem. We note that ∂LUP/∂α = 0 since α does not appear within the upper-level220

loss. Also observe that ∂LUP(θ?)/∂θ? can be directly computed by taking the gradient. To compute221

∂θ?/∂α, we follow the recent work by [49] and employ the Implicit Function Theorem (IFT). If222

there exists a fixed point (θ?,α?) that satisfies ∂LLOW(θ?,α?)/∂θ = 0 and regularity conditions223

are satisfied, then around α?, there exists a function θ(α) such that θ(α?) = θ? and we also224

have ∂θ
∂α = (∂

2LLOW
∂θ2 )−1 ∂

2LLOW
∂θ∂α . However, directly computing inverse Hessian (∂

2LLOW
∂θ2 )−1 is usually225

time consuming or even impossible for modern neural networks which have millions of parameters.226

To compute the hyper-gradient while avoiding extensive computation, we approximate the inverse227

Hessian via the Neumann series, which is widely used for inverse Hessian estimation [45, 49]. Finally,228

the warm-up phase of our method (Line 2 of Algo. 1) is essential to guarantee that the IFT assumption229
∂LLOW(θ?,α?)

∂θ = 0 is approximately satisfied.230

Why is train-validation split critical? It is well-understood that large capacity neural networks231

can perfectly fit and achieve 100% training accuracy [19, 82, 31]. This also implies that over the232

training data, different accuracy metrics or fairness constraints can be perfectly satisfied (e.g. 100%233

balanced accuracy, and 0% DEO). To truly find a model that lies on the Pareto-front of the (accuracy,234
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Method CIFAR-10-LT CIFAR100-LT ImageNet-LT iNaturalist

Cross-Entropy 30.33 62.69 60.81 39.76
LDAM loss [8] 26.45 59.40 58.14 35.42
LA loss (τ = 1) [56] 23.32 58.92 55.60 34.37

Algo. 1: α← τ of LA loss 21.75 58.76 55.16 34.18
Algo. 1: α← l 22.86 58.73 55.39 34.42
Algo. 1: α←∆ 22.52 58.49 54.72 34.14
Algo. 1: α←∆&l 21.39 56.77 52.90 33.16
Algo. 1: α←∆&l, LA init 21.16 56.71 51.96 33.09

Table 1: Evaluations of balanced accuracy on long-tailed data. Algo. 1 with ∆&l design space and
LA initialization (bottom row) outperforms other baselines, across various datasets.

fairness) tradeoff, the optimization procedure should (approximately) evaluate on the population loss.235

To this end, the validation phase provides this crucial population loss-proxy in the overparameterized236

setting where training error can be vacuous. Following the literature [34, 35], the intuition is that,237

as the dimensionality of the hyper-parameter α is typically smaller than the validation size nV ,238

validation loss will not overfit and will be indicative of the test even if the training loss is zero. In239

the supplementary materials, we formalize this intuition with emphasis on multi-objective tradeoffs;240

namely, under intuitive stability conditions, we show that a small amount of validation data is241

sufficient to ensure that the Pareto-front of the validation risk uniformly approximates that of the test-242

risk. Concretely, for two objectives (L1,L2), uniformly over all λ, the α minimizing the validation243

risk LSVUP (f) = (1− λ)LSV1 + λLSV2 in (4.3) also approximately minimizes the test risk LUP(f).244

5 Evaluations for Imbalanced Classes245

In this section, we present our experiments on various datasets (CIFAR-10, CIFAR-100, iNaturalist-246

2018 and ImageNet) when the classes are imbalanced. The goal is to understand whether our bilevel247

optimization can design effective loss functions that improve balanced error Ebal on the test set. The248

setup is as follows. Ebal is the test objective. The validation loss LUP is the balanced cross-entropy249

CEbal. We consider various designs for `LOW such as individually tuning w, l,∆ and augmentation.250

We report the average result of 3 random experiments under this setup.251

Datasets. We follow previous works [56, 13, 8] to construct long-tailed versions of the datasets.252

Specifically, for a K-class dataset, we create a long-tailed dataset by reducing the number of253

examples per class according to the exponential function n′i = niµ
i, where ni is the original number254

of examples for class i, n′i is the new number of examples per class, and µ < 1 is a scaling factor.255

Then, we define the imbalance factor ρ = n′0/n
′
K , which is the ratio of the number of examples in the256

largest class (n′0) to the smallest class (n′K ). For the CIFAR-10-LT and CIFAR-100-LT dataset, we257

construct long-tailed versions of the datasets with imbalance factor ρ = 100. ImageNet-LT contains258

115,846 training examples and 1,000 classes, with imbalance factor ρ = 256. iNaturalist-2018259

contains 435,713 images from 8,142 classes, and the imbalance factor is ρ = 500. These choices260

follow that of [56]. For all datasets, we split the long-tailed training set into 80% training and 20%261

validation during the search phase (Figure 1b).262

Implementation. In both CIFAR datasets, the lower-level optimization trains a ResNet-32 model263

with standard mini-batch stochastic gradient decent (SGD) using learning rate 0.1, momentum 0.9,264

and weight decay 1e− 4, over 300 epochs. The learning rate decays at epochs 220 and 260 with a265

factor 0.1. The upper-level hyper-parameter optimization computes the hyper-gradients via implicit266

differentiation. Because the hyper-gradient is mostly meaningful when the network achieves near zero267

loss (Thm 1 of [49]), we start the upper optimization after 120 epochs of the lower-level optimization,268

using SGD with initial learning rate 0.01, momentum 0.9, and weight decay 1e− 4. For CIFAR-LT,269

20 hyper-parameters are trained, corresponding to l and ∆ for all classes. For CIFAR-100, because270

the size of validation data in minority classes can be too small (e.g., only one example in a tail class),271

as visualized in Figure 3(a), we gather classes of similar frequencies into clusters of size 10 to share272

the same hyper-parameters (i.e., the values and updates of (ly,∆y)’s). Similarly, for ImageNet-LT,273

we gather classes into clusters of size 10, and for iNaturalist, we gather classes into clusters of size274

40. For ImageNet-LT and iNaturalist, following previous work [56], we use ResNet-50 and SGD for275

the lower and upper optimizations, and the same learning rate as CIFAR-LT over 150 epochs. We276
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Method CIFAR-10-LT CIFAR100-LT ImageNet-LT

MADAO [26] 24.39 59.10 59.92
Algo. 1: α←PDA 22.53 58.55 58.77
Algo. 1: α←PDA, ∆&l 20.76 56.49 52.11

Table 2: The result of personalized data optimization.

Source\Target CIFAR-10-LT CIFAR100-LT ImageNet-LT

CIFAR-10-LT 21.39 58.12 56.13
CIFAR100-LT 22.32 56.77 55.89
ImageNet-LT 23.85 59.17 52.90

Table 3: The results of hyper-parameter transfer.

train the network for 40 epochs to warm up before the loss function design starts. The learning rate277

decays by a factor 0.1 at epochs 80 and 120.278

Personalized Data Augmentation (PDA). For PDA, we utilize the AutoAugment [12] policy space279

and apply a bilevel search for the augmentation policy. Our approach follows existing differentiable280

augmentation strategies (e.g, [26]); however, we train separate policies for each class cluster to281

ensure that the resulting policies can adjust to class frequencies. Due to space limitations, please see282

supplementary materials for further details.283

Results and discussion. We compared our methods with the state-of-the-art long-tail learning284

methods. Table 1 shows the results of our experiments where the design space is parametric CE285

(4.1). In the first part of the table, we conduct experiments for three baseline methods: normal CE,286

LDAM [8] and Logit Adjustment loss with temperature parameter τ = 1 [56]. The latter choice287

guarantees Fisher consistency. In the second part of the Table 1, we study Algo. 1 with design spaces288

l, ∆, and l&∆. The first version of Algo. 1 in Table 1 tunes the LA loss parameter τ where l is289

parameterized by a single scalar τ as ly = τ log(πy). The next three versions of Algo. 1 consider290

tuning l, ∆, l&∆ respectively (Figure 3b-d shows the evolution of the l and ∆ parameters during the291

optimization). Finally, in last version of Algo. 1, the loss design is initialized with LA loss with τ = 1292

(rather than balanced CE). The takeaway from these results is that our approach consistently leads to293

a superior balanced accuracy objective. That said, tuning the LA loss alone is highly competitive with294

optimizing ∆ and l alone (in fact, strictly better for CIFAR-10-LT, indicating Algo. 1 does not always295

converge to the optimal design). Importantly, when combining l&∆, our algorithm is able to design296

a better loss function and outperform all rows across all benchmarks. Finally, when the algorithm297

further is initialized with LA loss, the performance further improves accuracy, demonstrating that298

warm-starting with good designs improves performance.299

In Table 2, we study the benefits of data augmentation, following our intuitions from Lemma 2. We300

compare to the differentiable augmentation baseline of MADAO [26] which trains a single policy for301

the full dataset. PDA is a personalized variation of MADAO and leads to noticeable improvement302

across all benchmarks (most noticeably in CIFAR-10-LT). More importantly, the last line of the table303

demonstrates that PDA can be synergistically combined with the parametric CE (4.1) which leads304

to further improvements. Finally, in Table 3, we investigate the transferability of our loss design305

(including augmentation). Here, a class within the new dataset uses the loss function designed for the306

closest class from the old dataset, where closest means the most similar class frequency in terms of307

percentile (when all classes of both datasets are sorted). These results demonstrate that AutoBalance308

designs transferable loss functions; e.g., loss functions transferred from CIFAR-LT to ImageNet have309

only slight performance degradation, compared to training the loss from scratch (the diagonals).310

6 Approaches and Evaluations for Imbalanced Groups311

While Section 5 focuses on the fundamental challenge of balanced error minimization, a more ambi-312

tious goal is optimizing generic fairness-seeking objectives. In this section, we study accuracy-fairness313

tradeoffs by examining the pareto-frontiers of the DEO (3.1), group-balanced error, and standard314

error. We also investigate group-balanced risk defined as LGbal(f) = 1
KG

∑K
k=1

∑G
j=1 Lk,j(f). Note315

that this definition treats each (class, group) pair as its own (sub)group. Throughout, we explicitly set316

the loss to cross-entropy for clarity, thus we use CE, CEGbal, CEDEO to refer to L, LGbal, LDEO.317

Validation (upper-level) loss function. In Algo. 1, we set LUP = (1 − λ) · CE + λ · CEDEO for318

varying 0 ≤ λ ≤ 1. The parameter λ enables a trade-off between accuracy and fairness.319

Group-sensitive training loss design. The parametric cross-entropy (CE) can be extended to (class,320

group) imbalance by extending hyper-parameter α to [K] × [G] variables w, l,∆ ∈ R[K]×[G]321

generalizing (4.1), (4.2). This leads us to the following design:322

`low(y, g, f(x);α) = −wyg log

(
eσ(∆yg)fy(x)+ιyg∑

k∈[K] e
σ(∆kg)fk(x)+ιkg

)
. (6.1)
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Loss function Balanced Error Worst (class, group) error DEO
Cross entropy (CE) 23.38 43.25 33.75
CEbal 20.83 36.67 20.25
Group-LA loss 22.83 40.50 29.33
CEDEO 19.29 35.17 25.25
0.1 · CE + 0.9 · CEDEO (λ = 0.1) 20.06 31.67 26.25
Algo. 1: with λ = 0.1 15.13 30.33 4.25

Table 4: Comparison of fairness metrics for group-imbalanced experiments. The first five rows are
different training loss choices, where CEbal, Group-LA, and CEDEO promote group fairness. The last
row is Algo. 1, which designs training loss for the validation loss choice of 0.1 · CE + 0.9 · CEDEO.
We note that, DEO can be trivially minimized by always predicting the same class. To avoid this, we
use a mild amount of CE loss with λ = 0.1 in Algo. 1.

Here, wyg applies weighted CE, while ∆yg and ιyg are logit adjustments for different (class, groups).323

Note that a similar group-sensitive loss is proposed in [40] for binary classification.324

Baselines. We will compare Algo. 1 with training loss functions parameterized via (1−λ)·CE+λ·Lreg.325

Here Lreg is a fairness-promoting regularization. Specifically, as displayed in Table 4 and Figure 4,326

we will set Lreg to be CEGbal, CEDEO and Group LA. “Group LA” is a natural generalization of the327

LA loss to group-sensitive setting; it chooses weights wg = 1/π̄g to balance group frequencies and328

then applies logit-adjustment with τ = 1 over the classes conditioned on the group-membership:329

`(y, g, f(x)) = − 1
Gπ̄g

log

(
efy(x)+τ log πyg∑

k∈[K] e
fk(x)+τ log πkg

)
.330

Datasets. We experiment with the modified Waterbird dataset [61]. The goal is to correctly classify331

the bird type despite the spurious correlations due to the image background. The distribution of the332

original data is as follows. The binary classes k ∈ {−,+} correspond to {waterbird, landbird}, and333

the groups [G] = {1, 2} correspond to {land background,water background}. The fraction of data334

in each (class, group) pair is π−,2 = 0.22, π−,1 = 0.012, π+,2 = 0.038, and π+,1 = 0.73. The335

landbird on the water background ({+, 2}) and the waterbird on the land background ({−, 1}) are336

minority sub-groups within their respective classes. The test set, following [61], has equally allocated337

bird types on different backgrounds, i.e., π±,j = 0.25. As the test dataset is balanced, the standard338

classification error E(f) is defined to be the weighted error E(f) = πy,gEy,g(f).339

Implementation. We follow the feature extraction method from [61], where xi are 512-dimensional340

ResNet18 features. When using Algo. 1, we split the original training data into 50% training and341

50% validation. The search phase uses 150 epochs of warm up followed by 350 epochs of bilevel342

optimization. The remaining implementation details are similar to Section 5.343
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Figure 4: Waterbirds fairness-accuracy tradeoffs for
parametrized loss designs (1 − λ) · CE + λ · Lreg, for
different Lreg choices. Group-balanced error EG(f) (left)
and DEO EDEO(f) (right) are plotted as a function of the
misclassification error E(f). Algo. 1 exhibits a noticeably
better tradeoff curve as it uses a DEO-based validation
objective to design an optimized training loss function.

Results and discussion. We consider various344

fairness-related metrics, including the worst345

(class, group) error, DEO EDEO(f) and the346

balanced error EGbal(f).We seek to understand347

whether AutoBalance algorithm can improve348

performance on the test set compared to the349

baseline training loss functions of the form350

(1− λ) · CE + λ · Lreg. In Figure 4, we show351

the influence of the parameter λ where Lreg352

is chosen to be CEDEO, CEbal, or Group-LA353

(each point on the plot represents a different354

λ value). As we sweep across values of λ,355

there arises a tradeoff between standard clas-356

sification error E(f) and the fairness metrics.357

We observe that Algo. 1 significantly Pareto-358

dominates alternative approaches, for example359

achieving lower DEO or balanced error for the same standard error. This demonstrates the value of360

automatic loss function design for a rich class of fairness-seeking objectives.361

Next, in Table 4, we solely focus on optimizing the fairness objectives (rather than standard error).362

Thus, we simply set λ = 0 and compare against CEDEO, CEbal, Group-LA as the baseline approaches363

(without blending CE). We also display the outcome of Algo. 1 with λ = 0.1. Similar too Figure 4,364
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our approach outperforms all baselines for all metrics. The performance gap is particularly noticeable365

when it comes to DEO (4.25% for Algo. 1, vs 20.25% for the best baseline).366

7 Conclusions and Future Directions367

This work provides an optimization-based approach to automatically design loss functions to address368

imbalanced learning problems. Our algorithm consistently outperforms, or is at least competitive369

with, the state-of-the-art approaches for optimizing balanced accuracy. Importantly, our approach is370

not restricted to imbalanced classes or specific objectives, and can achieve good tradeoffs between371

(accuracy, fairness) on the Pareto frontier. We also provide theoretical insights on certain algorithmic372

aspects including loss function design, data augmentation, and train-validation split.373

Potential Limitations, Negative Societal Impacts, & Precautions: Our algorithmic approach can374

be considered within the realm of automated machine learning literature (AutoML) [29]. AutoML375

algorithms often optimize the model performance, thus reducing the need for engineering expertise at376

the expense of increased computational cost and increased carbon footprint. For instance, our proce-377

dure is computationally more intensive compared to the theory-inspired loss function prescriptions of378

[56, 8]. A related limitation is that Algo. 1 can be brittle in extremely imbalanced scenarios with very379

few samples per class. We took the several steps to help mitigate such issues: first, our algorithm is380

initialized with a Bayes consistent loss function to provide a warm-start (such as the proposal of [56]).381

Second, we reduce the hyper-parameter search space by grouping classes with similar frequencies (to382

help with brittleness). Finally, evaluations show that the designed loss functions are transferable, and383

hence our algorithm does does not have to train from scratch for a new dataset.384
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A Extended related works601

Below we include the related work on data augmentation which was omitted from Section 2 due to602

space considerations.603

Data Augmentation. Data augmentation techniques have been studied for decades, and many604

approaches such as random crop, flip, rotation, Mixup [75], Cutout [16], CutMix [73] have been605

applied in model training. Recently, researchers focus on automatically finding data augmentation606

policies to achieve better performance. Some methods [44, 64] obtain augmentation policies through607

an additional network or GAN. Inspired by neural architecture search, AutoAugment [12] and its608

folloup works [27, 46, 25, 26] formulate data augmentation as a hyper-parameter search problem.609

[25, 26] propose optimizing the augmentation policy using bi-level optimization by conducting610

differentiable relaxation on policies. Different from the above works that perform a bi-level search for611

an augmentation policy on a balanced dataset, our approach employs personalized data augmentation612

for different classes on long-tailed datasets, which leads to a better result in long-tailed learning613

problems.614

Algorithm 2: Hyper gradient computation [49]
Input: Model fθ with weights θ, hyper-parameter α , dataset S = ST ∪ SV , step sizes η, order

of Neumann appximation i

1 v1 =
∂LSVUP
∂θ

2 p = v1

3 for j ← 1 to i do
// Compute approximate Hessian inverse using Neumann series

4 v1 = v1(I − η ∂
2LSTLOW
∂θ∂θT

)
5 p+ = v1

6 end

7 v2 = −p∂
2LSTLOW
∂θ∂αT

Result: The hyper gradient v2 // v2 = ∂LUP
∂θ

[
∂2LLOW
∂θ∂θT

]−1
∂2LLOW
∂θ∂αT

B Extended experiments615

In this section, we conduct additional experiments to extend the results from Sections 5 and 6.616

Importantly, for the experiments in Section 5 (imbalanced classes) and Section 6 (imbalanced groups),617

we conduct more trials (for a total of 5 trials per method) and we also provide standard error bounds618

in the tables. We also included additional baselines for Section 6.619

Tables 5, 6, and 7 display the updated results of Section 5 for the balanced accuracy, personalized620

data optimization, and hyper-parameter transfer evaluation scenarios, respectively. These correspond621

to the original Tables 1, 2, and 3, respectively. The additional trials are generally consistent with the622

results and insights in the main body of the paper and demonstrates the validity of our approach.623

For Section 6, we evalute two additional baselines: Distributionally Robust Optimization (DRO) [61],624

and a post-hoc model – described below – that tries to address group imbalance. The resuts are shown625

in Table 8. Overall, the results show that our Algo. 1 with λ = 0.1 consistently outperforms the other626

baselines. Below, we describe these two baselines in more detail.627

DRO baseline: We follow the work of [61] where we optimize the DRO loss as an additional baseline.628

For consistency, we use a slight variation where we change the network to ResNet-18. Table 8 shows629

that although DRO achieves a lot better performance compared to the other baselines, our Algo. 1630

with λ = 0.1 still performs noticeably better across all performance metrics.631

Post-hoc baseline: We first train a ResNet-18 model with training dataset using simple CE loss. As632

the training dataset is imbalanced, the error of worst group is quite high at this intermediate point,633

more than 45%. As our posthoc model, we use vector scaling [23] which adjusts the logits. Vector634

scaling is essentially a generalization of Platt scaling where each logit gets its own weights in a635
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Method CIFAR-10-LT CIFAR100-LT ImageNet-LT iNaturalist

Cross-Entropy 30.45± 0.45 62.69± 0.16 60.82± 0.24 39.72± 0.22
LDAM loss [8] 26.37± 0.33 59.47± 0.38 58.14± 0.20 35.63± 0.21
LA loss (τ = 1) [56] 23.13± 0.35 58.96± 0.20 55.57± 0.23 34.37± 0.18

Algo. 1: α← τ of LA loss 21.82± 0.13 58.68± 0.20 55.15± 0.25 34.19± 0.19
Algo. 1: α← l 23.02± 0.43 58.71± 0.25 55.30± 0.29 34.35± 0.21
Algo. 1: α←∆ 22.59± 0.26 58.40± 0.22 54.55± 0.17 34.37± 0.22
Algo. 1: α←∆&l 21.39± 0.18 56.84± 0.17 53.16± 0.17 33.41± 0.30
Algo. 1: α←∆&l, LA init 21.15± 0.22 56.70± 0.18 52.11± 0.12 33.16± 0.13

Table 5: Evaluations of balanced accuracy on long-tailed data with 5 trials. Algo. 1 with ∆&l design
space and LA initialization (bottom row) outperforms other baselines, across various datasets.

Method CIFAR-10-LT CIFAR100-LT ImageNet-LT

MADAO [26] 24.42± 0.28 59.10± 0.21 59.56± 0.41
Algo. 1: α←PDA 22.55± 0.38 58.52± 0.56 58.73± 0.51
Algo. 1: α←PDA, ∆&l 20.69± 0.17 56.47± 0.23 52.18± 0.22

Table 6: Personalized data optimization with 5 trials.

similar fashion to the parametric cross-entropy loss. The inputs to the vector scaling post-hoc model636

are the output logits (2×N ) from ResNet-18 where N is the sample size. We use w (2× 1) and b637

(2× 1) to adjust it fposthoc(x) = wx+ b. As there are only 4 parameters to tune, we use grid search to638

find the parameters that can mimimize loss (DEO or balanced error Ebal(f)) on the test dataset2. Note639

that, optimizing over the test data, intuitively, makes this baseline stronger than it actually is. The640

posthoc model uses just 4 parameters, which can aid in balancing the result; however, as it can only641

adjust per class instead of per (class, group), the performance is limited compared to our approach.642

We note that, intuitively, our approach (or in general choosing an intelligent loss function) can be643

perceived as applying a posthoc adjustment during training rather than after training.644

C Theoretical Insights into Pareto-Efficiency with Validation Data645

In Section 4.1, we provided theoretical intuitions on why validation is necessary to build models646

that optimize multiple learning objectives. Within the context of this work, these objectives can be a647

blend of accuracy and fairness. To recap, our main intuition is that large capacity neural networks can648

perfectly maximize different accuracy metrics or satisfy fairness constraints such as DOE by simply649

fitting training data perfectly and achieving 100% training accuracy. To truly find a model that lie on650

the multi-objective pareto-front, the optimization procedure should (approximately) evaluate on the651

population landscape. Validation phase enables this as the dimensionality of the validation parameter652

is typically much smaller than the sample size and prevents overfitting. Below, we formalize this in653

a general constrained multiobjective learning setting. Suppose there are R objectives to optimize.654

Let (`i)
R
i=1 be R loss functions and set the corresponding Li(f) = E[`i(y, f(x))]. These can be655

accuracy or fairness objectives or it can even be class- or group-conditional risks (i.e. R = K, every656

class gets its own loss function).657

Split S = T ∪ V where T and V are training and validation respectively. During the training658

phase, we assume that, there is an algorithm (e.g. SGD, Adam, convex optimization, etc) A that659

optimizes over the training data T (e.g. by minimizing ERM with gradient descent). A admits the660

hyper-parameters α (e.g., parameterization of the loss function) as input and returns a hypothesis661

fα = A(T ,α)

For the discussion in this section, we useH to denote the hyperparameter search space i.e. the values662

the hyperparameter α can take. Let LVi (f) be the empirical version of Li(f) computed over V . Fix663

penalties λ = (λi)
R
i=1 which govern the combination of the loss functions (e.g. blending accuracy and664

fairness or weighing individual classes). The validation phase then optimizes θ via a Multi-objective665

2This is in contrast to using differentiable proxies based on cross-entropy.
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Source\Target CIFAR-10-LT CIFAR100-LT ImageNet-LT

CIFAR-10-LT 21.39± 0.18 58.10± 0.28 56.13± 0.29
CIFAR100-LT 22.40± 0.23 56.84± 0.17 55.72± 0.35
ImageNet-LT 23.70± 0.29 59.24± 0.23 53.16± 0.17

Table 7: Hyper-parameter transfer with 5 trials.

Loss function Balanced Error Worst (class, group) error DEO
Cross entropy (CE) 25.37(±0.31) 46.69(±4.18) 33.75(±1.86)
CEbal 21.09(±0.27) 36.63(±4.82) 20.61(±1.52)
Group-LA loss 22.91(±0.36) 40.27(±5.23) 29.34(±1.46)
CEDEO 19.32(±0.31) 33.04(±5.46) 25.33(±1.35)
0.9 · CE + 0.1 · CEDEO (λ = 0.1) 20.38(±0.27) 33.36(±6.00) 26.42(±1.39)
DRO [61] 16.47(±0.23) 32.67(±3.06) 6.91(±1.30)
Posthoc: Ebal(f) 21.15(±0.39) 42.83(±6.43) 32.30(±1.60)
Posthoc: 0.9 · Ebal(f) + 0.1 · EDEO 21.56(±0.53) 44.13(±9.39) 29.37(±2.45)
Algo. 1: with λ = 0.1 15.50(±0.18) 30.33(±2.47) 4.25(±0.94)

Table 8: Comparison of fairness metrics for group-imbalanced experiments, with 5 trials. Two
additional baselines, DRO and post-hoc model, are evaluated.

ERM problem3666

min
α∈H
LVλ(fα) WHERE LVλ(f) =

R∑
i=1

λiLVi (fα). (M-ERM)

Our theoretical analysis (provided below) of this setting is similar to the model-selection and cross-667

validation literature [34, 35, 58]. However, these works focus on a single objective. Unlike these,668

we will show that, small amount of validation data is enough to guarantee the pareto-efficiency of669

the train-validation split for all choices of λ ∈ Λ. The following assumption is used by earlier work670

and useful for studying continuous hyperparameter spaces. The basic idea is ensuring stability of the671

training algorithms. This has been verified for different hyperparameter types (e.g., ridge regression672

parameter, continuous parameterization of the neural architecture) under proper settings [58]. We673

remind that, our setting is also continuous as we use differentiable optimization to determine the best674

loss function.675

Assumption 1 (Training algorithm is stable) Suppose H ⊂ Rh. There exists a partitioning of H676

into at most 2h sets (Hi)i≥1 such that, over each set, the training algorithm A is locally-Lipschitz.677

That is, for all i and some L > 0, all pairsα1,α2 ∈ Hi and inputs x (over the support ofD) satisfies678

that |fα1
(x)− fα2

(x)| ≤ L‖α1 −α2‖`2 .679

Here the Lipschitz constant L governs the stability level of the training algorithm. Note that, the680

partitioning is optional and it is included to account for discrete and discontinuous hyperparameter681

spaces. The following theorem shows that, if the training algorithm A satisfies stability conditions682

over H and if the validation sample size nV is larger than R and the effective dimension of H,683

then (M-ERM) does return an approximately pareto-optimal solution uniformly over all choices of684

(λi, γi)
R
i=1.685

Theorem 1 (Multi-objective generalization) Suppose Assumption 1 holds. Let penalties λ take686

values over the sets Λ ⊂ RR. Assume the elements of the setsH,Λ have bounded `2 norm. Suppose687

the loss functions have bounded derivatives (in absolute value) and, for some Ξ > 0, they are bounded688

as follows689

sup
λ∈Λ

∣∣∣∣∣
R∑
i=1

λi`i(y, ŷ)

∣∣∣∣∣ ≤ Ξ.

3We believe the results can be stated for a mixture of regularizations and constraints (e.g. enforcing the
condition LV

i (fα) ≤ τi). We opted to restrict our attention to regularization in consistence with the general
setting of the paper.

17



Given λ, define the corresponding α̂ = arg minα∈H LVλ(fα) solving (M-ERM). Then, with proba-690

bility 1− 2e−t, for all penalties λ ∈ Λ, the associated α̂λ achieves the population multi-objective691

risk692

Lλ(fα̂) ≤ arg min
α∈H
Lλ(fα̂) + Ξ

√
Õ(h+R+ t)

nV
. (C.1)

Here Õ(·) hides logarithmic terms. Specifically, the sample size grows only logarithmically in the693

stability parameter of Assumption 1 (i.e. logL factor).694

Interpretation: In words, this result shows that, as soon as the validation sample size is larger695

than O(h + R), train-validation split selects a model that is as good as the optimal model whose696

hyperparameter is tuned over the test data. That is, as nV grows, the multi-objective risk of fα̂697

converges to risk of training with the optimal hyperparameter. In our context, it means the ability to698

select the optimal loss function via validation. An important remark is that, this selection happens699

regardless of the training phase and whether training risk overfits or not. That is, even if training700

returns poor models, validation phase selects the best one (out of poor options). Importantly, h+R is701

a small number in practice. For instance, for imbalanced loss function design, h is at most O(K) as702

we use three parameters for each class. If we cluster the classes, then h is in the order of clusters. R703

is typically 1 (e.g. balanced accuracy in Sec 5) or 2 (e.g. DEO/accuracy tradeoffs in Sec 6). However,704

in the extreme case of optimizing a general combination of class-conditional risks, R can be as705

large as number of classes K. A remarkable aspect of this result is that, we get multi-objective706

pareto-efficiency of the validation-based optimization by using an extra O(R) samples (compared to707

single-loss scenario which requires O(h) samples [58]).708

Proof The strategy is based on applying a covering argument over all variables namely α,λ and709

can be seen as a multi-objective generalization of Theorem 1 of [58]. LetHε,Λε be ε-covers with710

respect to `2-norm of the corresponding setsH,Λ. The size of these sets obey log |Hε| ≤ Nh(ε) =711

h log(B/ε) and log |Λε| ≤ NR(ε) = R log(B/ε) where B > 0 depends on the radius of Λ,H.712

To proceed, pick a pair α,λ from the coverHε,Λε. Define the loss function `λ =
∑R
i=1 λi`i(y, ŷ).713

Since this is bounded by Ξ, we can apply Hoeffding bound for the individual cover elements. Union714

bounding these Hoeffding (or Ξ-sub-gaussian) concentration bounds over all cover elements, with715

probability 1− 2e−t, we have that716

|LVλ(fα)− Lλ(fα)| . Ξ

√
(h+R) log(B/ε) + t

nV
. (C.2)

Perturbation analysis: To proceed, given (α,λ) fromH,Λ, choose an ε-neighboring point (α′,λ′)717

from the cover Hε,Λε. Let Γ > 0 be the Lipschitz constant of the loss `λ (specifically over worst718

case λ) and Ξ̄ = sup1≤r≤R |`i(y, ŷ). We note that dependence on Γ, Ξ̄ will be only logarithmic.719

Applying triangle inequalities, we find that720

|`λ(y, fα(x))− `λ′(y, fα′(x))| ≤ |`λ(y, fα(x))− `λ(y, fα′(x))|+ |`λ(y, fα′(x))− `λ′(y, fα′(x))|

≤ Γ|fα′(x)− fα(x)|+ |
R∑
r=1

(λi − λ′i)`i(y, fα′(x))|

≤ ΓL‖α′ −α‖`2 + Ξ̄
√
R‖λ− λ′‖`2

≤ (ΓL+ Ξ̄
√
R)ε.

This also implies that |Lλ(fα)−Lλ′(f ′α)|, |LVλ(fα)−LVλ′(f ′α)| ≤ (ΓL+ Ξ̄
√
R)ε. Combining this721

with (C.2), for all λ,α, we obtained the uniform convergence guarantee722

|LVλ(fα)− Lλ(fα)| . Ξ

√
(h+R) log(B/ε) + t

nV
+ 2(ΓL+ Ξ̄

√
R)ε.
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Setting ε→ Ξ
2(ΓL+Ξ̄

√
R)
√
nV

, we find that723

|LVλ(fα)− Lλ(fα)| . Ξ

√
(h+R) log(B(ΓL+ Ξ̄

√
R)
√
nV/Ξ) + t

nV
(C.3)

≤ Ξ

√
Õ(h+R+ t)

nV
, (C.4)

where we dropped the logarithmic terms. To proceed, let α? be an optimal hyperparameter for the724

population risk of the validation phase i.e. arg minα∈H Lα(fα). We find the generalization risk of725

the optimal α̂ via726

LVα̂(fα) ≤ LVα?(fα) ≤ Lα?(fα) + Ξ

√
Õ(h+R+ t)

nV
,

concluding with the advertised result.727

D Proof of Lemma 1728

Let us recall the parametric cross-entropy loss function729

`(y, f(x)) = wy log

1 +
∑
k 6=y

elk−ly · e∆kfk(x)−∆yfy(x)

 = −wy log

(
e∆yfy(x)+ly∑
i∈[K] e

∆ifi(x)+li

)
.

Denote the labeling likelihood ηy(x) = P(y
∣∣ x). When the weights wy are not all ones, the class730

frequencies are effectively adjusted as π′y ∝ wyπy. Let η̄y(x) be the corresponding likelihood731

function. The optimal score function minimizing the cross-entropy loss is given by ∆yf
∗
y (x) +732

ly = log η̄y(x). This choice is determined by minimizing the expected loss (given x) which sets733

the KL divergence between η̄y(x) and softmax output to zero. This leads to the decision rule734

f∗y (x) = ∆̄y log
η̄y(x)

ely
where ∆̄y = ∆−1

y (to simplify the subsequent notation). Equivalently, the735

classification rule becomes736

f∗y (x) = log

(
η̄y(x)

ely

)∆̄y

⇐⇒ rule(x) = arg max
y∈[K]

αy η̄
∆̄y
y (x),

where αy = e−∆̄yly . For standard accuracy, Bayes-optimal decision rule is arg maxy∈[K] η̄y(x)737

and for balanced accuracy, it is arg maxy∈[K]
η̄y(x)
πy

. In both cases, it can be written as738

arg maxy∈[K] cy η̄y(x) where cy are adjustments.739

We complete the proof by constructing a simple distribution that shows the rule(x) is sub-optimal.740

Without losing generality, we may assume ∆1 6= ∆2 i.e., multiplicative adjustments of the first741

two classes differ. Given this multiplicative adjustment choice of ∆, we will construct a simple742

distribution for which minimizing parametric CE don’t result in Bayes-optimal decision. Specifically,743

we construct input features x1 and x2 so that the first two classes (labels y ∈ {1, 2}) have the highest744

score cy η̄y(x) and the top two scores are close. That is, for some arbitrarily small scalars ε, ε′ we745

have c1η̄1(x1) = c2η̄2(x1) + ε and c1η̄1(x2) = c2η̄2(x2) + ε′. Additionally, set η̄i(x1) = Γη̄i(x2)746

for i = 1, 2 and Γ 6= 1 an arbitrary scalar.4 Since ε ≶ 0 dictates the Bayes-optimal class decision747

(y = 1 vs y = 2), we need the score function f∗ to satisfy748

η̄1(x1)∆̄1

η̄2(x1)∆̄2
≷
α2

α1
,

η̄1(x2)∆̄1

η̄2(x2)∆̄2
≷
α2

α1
.

Letting ε, ε′ → 0, this implies that η̄1(x1)∆̄1

η̄2(x1)∆̄2
= η̄1(x2)∆̄1

η̄2(x2)∆̄2
. However, this contradicts with the initial749

assumption of Γ 6= 1 via750

η̄1(x1)∆̄1

η̄2(x1)∆̄2
=

Γ∆̄1 η̄1(x2)∆̄1

Γ∆̄2 η̄2(x2)∆̄2
=
η̄1(x2)∆̄1

η̄2(x2)∆̄2
⇐⇒ Γ∆̄1−∆̄2 = 1 ⇐⇒ Γ = 1.

4Scaling the likelihoods by Γ doesn’t affect arg maxy cy η̄y(x) as the other classes are assigned small
probabilities.
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E Proof of Lemma 2751

This lemma considers the solution of the binary parametric loss defined as752

`(y, fθ(x)) = wy · log
(

1 + ely · e−∆yyfθ(x)
)
.

Consider the ridge-constrained problem753

θR = arg min
θ

n∑
i=1

`(yi, fθ(xi)) subject to ‖θ‖`2 ≤ R. (E.1)

The ridgeless model described in Lemma 2 obtained by minimizing the parametric loss is given by754

the limit θ∞ = limR→∞ θR/R. Here, we focus on linear models fθ(x) = θTx. The result will755

be established by connecting the above loss to Cost Sensitive (CS)-SVM which enforces different756

margins on classes. Fix δ > 0. Define the CS-SVM problem as757

ŵδ := arg min ‖w‖2 subject to
{
wTxi ≥ δ , yi = 1

wTxi ≤ −1 , yi = −1
, i ∈ [n]. (E.2)

Assume the spherical data-augmentation with radii ε± for the two classes. Then, standard SVM on758

the augmented data solves759

min ‖w‖2 subject to
{
wTxi − ε+‖w‖2 ≥ 1 , yi = +1

wTxi + ε−‖w‖2 ≤ −1 , yi = −1
, i ∈ [n]. (E.3)

Here, the first observation is that, since ridgeless logistic loss is equivalent to SVM5 [60], ridgeless760

logistic loss with the augmented data also converges to the solution of (E.3).761

For the loss function above, fix δ = ∆−/∆+ > 0. Applying Proposition 1 of [40], θ∞ coincides762

with the (`2 normalized) solution of the CS-SVM i.e.763

ŵδ := arg min ‖w‖2 subject to
{
wTxi ≥ 1/∆+ , yi = 1

wTxi ≤ −1/∆− , yi = −1
, i ∈ [n]. (E.4)

for ∆+,∆− > 0. Note that, without losing generality, we can assume ∆± < 1 by preserving the
ratio to δ as it doesn’t change the classification rule. We will prove that ŵδ is optimal in (E.3) for the
following choice of ε±:

ε± :=
1/∆± − 1

‖ŵδ‖2
.

This will in turn conclude that ridgeless augmented logistic regression is equivalent to ridgeless764

regression with parameteric cross-entropy.765

Proof of optimality of ŵδ for (E.3). To prove the claim let α̂i, i ∈ [n] be the dual variables associated766

with (E.4) corresponding to the minimizer ŵδ . By KKT conditions it holds that ({α̂i}i∈[n], ŵδ) is a767

solution to:768 ∑
i∈[n]

αiyixi = w/‖w‖2, αi ≥ 0, αix
T
i w =

{
αi
∆+

, yi = +1

− αi
∆−

, yi = −1
, i ∈ [n] (E.5)

Set
β̂i =

( 1

1− ε+

∑
i:yi=+1 α̂i − ε−

∑
i:yi=−1 α̂i

)
α̂i

With these it only takes a few algebra steps to verify that ({β̂i}i∈[n], ŵδ) is a solution to:769

w

‖w‖2
−
∑
i

βiyixi + ε+

( ∑
i:yi=+1

βi

) w

‖w‖2
+ ε−

( ∑
i:yi=−1

βi

) w

‖w‖2
= 0 (E.6)

βi ≥ 0, βix
T
i w =

{
βi
(
1 + ε+‖w‖2

)
, yi = +1

βi
(
− 1− ε−‖w‖2

)
, yi = −1.

(E.7)

5In the sense that `2 normalized solution of logistic regression with infinitesimal ridge is equal to the `2
normalized SVM solution.
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In particular, to verify β̂i ≥ 0, i ∈ [n] we used that from the optimality of the primal-dual pair
({α̂i}i∈[n], ŵδ): ∑

i:yi=+1

α̂i
∆+

+
∑

i:yi=−1

α̂i
∆−

= ‖ŵδ‖2,

and the definition of ε+, εi. This completes the proof as it can be checked that the above corresponds770

exactly to the KKT conditions of (E.3).771
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