
A Extended derivations ans proofs

Path-ordered Exponential Every element g ∈ G can be written as a product g =
∏
a exp[tiaLi]

using the matrix exponential (Hall, 2015). This can be done using a path γ connecting I to g on
the manifold of G. Here, ta will be segments of the path γ which add up as vectors to connect I to
g. This surjective map can be written as a “path-ordered” (or time-ordered in physics (Weinberg,
1995)) exponential (POE). In the simplest form, POE can be defined by breaking u =

∏
a exp[tiaLi]

down into infinitesimal steps of size ta = 1/N with N →∞. Choosing γ to be a differentiable path,
we can replace the sum over segments

∑
a ta with an integral along the path

∑
a ta =

∫
γ
dst(s)ds,

where t(s) = dγ/ds is the tangent vector to the path γ, where s ∈ [0, 1] parametrizes γ The POE is
then defined as the infinitesimal ta limit of g =

∏
a exp[tiaLi]. This can be written as

g = P exp

[∫
γ

ti(s)Lids

]
= lim
N→∞

N∏
a=1

(
I + δsγ′

i
(sa)Li

)
=

∫ s1

0

ds0γ
′i(s0)Li

∫ s2

0

ds1γ
′j(s1)Lj · · ·

∫ 1

0

dsNγ
′k(sN )Lk (24)

L-conv derivation Let us consider what happens if the kernel in G-conv equation 3 is localized
near identity. Let κI(u) = cδη(u), with constants c ∈ Rm′ ⊗ Rm and kernel δη(u) ∈ R which has
support only on on an η neighborhood of identity, meaning δη(I + εiLi)→ 0 if |ε| > η. This allows
us to expand G-conv in the Lie algebra of G to linear order. With vε = I + εiLi, we have

[δη ? f ](g) =

∫
G

dvδη(v)f(gv) =

∫
‖ε‖<η

dvεδη(vε)f(gvε)

=

∫
dεδη(I + εiLi)f(g(I + εiLi))

=

∫
dεδη(I + εiLi)f(g + εigLi)

=

∫
dεδη(I + εiLi)

[
f(g) + εigLi ·

d

dg
f(g) +O(ε2)

]
≈
∫
dεδη(I + εiLi)

[
I + εigLi ·

d

dg

]
f(g) = W 0

[
I + εigLi ·

d

dg

]
f(g) (25)

where dε is the integration measure on the Lie algebra induced by the Haar measure dv on G. In
matrix representations, gLi · dfdg = [gLi]

β
α
df

dgβα
= Tr

[
[gLi]

T df
dg

]
. Note that in g(I + εiLi)x0, the

gLix0 = L̂i(g)x come from the pushforward L̂i(g) = gLig
−1 ∈ TgG. Here

W 0 = c

∫
dεδη(I + εiLi) ∈ Rm

′
⊗ Rm, εi =

∫
dεδη(I + εiLi)ε

i ∈ Rm ⊗ Rm (26)

with ‖ε‖ < η. Note that with f(g) ∈ Rm, each εi ∈ Rm ⊗ Rm is a matrix. With indices, f(gvε) is
given by

[f(gvε)]
a =

∑
b

f b(g(δab + [εi]abLi)) (27)

Similarly, the integration measure dε, which is induced by the Haar measure dvε ≡ dµ(vε), is a
product

∫
dε =

∫
|J |
∏
d[εi]ab , with J = ∂vε/∂ε being the Jacobian.

Equation 25 is the core of the architecture we are proposing, the Lie algebra convolution or L-conv.

L-conv Layer In general, we define Lie algebra convolution (L-conv) as follows

Q[f ](g) = W 0

[
I + εigLi ·

d

dg

]
f(g)

= [W 0]bf
a
(
g
(
δba + [εi]baLi

))
+O(ε2) (28)
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Extended equivariance for L-conv From equation 28 we see that W 0 acts on the output feature
indices. Notice that the equivariance of L-conv is due to the way gvε = g(I + εiLi) appears in the
argument, since for u ∈ G

u ·Q[f ](g) = W 0f(u−1gvε) = W 0[u · f ](gvε) (29)

Because of this, replacing W 0 with a general neural network which acts on the feature indices
separately will not affect equivariance. For instance, if we pass L-conv through a neural network to
obtain a generalized L-conv Qσ , we have

Qσ[f ](g) = σ(Wf(gvε) + b)

u ·Qσ[f ](g) = Qσ[f ](u−1g) = σ(Wf(u−1gvε) + b)

= σ(W [u · f ](gvε) + b) = Qσ[u · f ](g) (30)

Thus, L-conv can be followed by any nonlinear neural network as long as it only acts on the feature
indices (i.e. a in fa(g)) and not on the spatial indices g in f(g).

A.1 Approximating G-conv using L-conv

We now show that G-conv equation 3 can be approximated by composing L-conv layers.

Universal approximation for kernels Using the same argument used for neural networks (Hornik
et al., 1989; Cybenko, 1989), we may approximate any kernel κ(v) as the sum of a number of kernels
κk with support only on a small η neighborhood of uk ∈ G to arbitrary accuracy. The local kernels
can be written as κk(v) = ckδη(u−1k v), with δη(u) as in equation 25 and constants ck ∈ Rm′ ⊗ Rm.
Using this, G-conv equation 3 becomes

[κ ? f ](g) =
∑
k

[κk ? f ](g) =
∑
k

ck

∫
dvδη(u−1k v)f(gv)

=
∑
k

ck

∫
dvδη(v)f(gukv) =

∑
k

ck[δη ? f ](guk). (31)

As we showed in equation 25, [δη ? f ](g) is the definition of L-conv. Next, we need to show
that [δη ? f ](guk) can also be approximated with [δη ? f ](g) and hence L-conv. For this we use
uk = vk(I + εikLi) to find vk ∈ G which are closer to I than uk. Taylor expanding Fη = δη ? f in ε
we obtain

Fη(guk) = Fη
(
gvk(I + εikLi)

)
= Fη(gvk) + εikuLi ·

dFη(u)

du

∣∣∣∣
u→gvk

+O(ε2)

[κ ? f ](g) =
∑
k

ckFη(guk) =
∑
k

[
ck + ckε

i
kuLi ·

d

du

]
Fη(u)

∣∣∣∣
u→gvk

=
∑
k

[
W 0
k +W i

kuLi ·
d

du

]
Fη(u)

∣∣∣∣
u→gvk

=
∑
k

Qk[Fη](gvk) (32)

Using equation 32 we can progressively remove the uk as Fη(guk) ≈ Qnk [. . . [Q1
k[Fη]]](g), i.e. an

n layer L-conv. Thus, we conclude that any G-conv equation 3 can be approximated by multilayer
L-conv.

A.2 Example of continuous L-conv

The gLi · df/dg in equation 6 can be written in terms of partial derivatives ∂αf(x) = ∂f/∂xα. In
general, using xρ = gρσx

σ
0 , we have

df(gx0)

dgαβ
=
d(gρσx

σ
0 )

dgαβ
∂ρf(x) = xβ0∂αf(x) (33)

gLi ·
df

dg
= [gLi]

α
βx

β
0∂αf(x) = [gLix0] · ∇f(x) = L̂if(x) (34)
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Hence, for each Li, the pushforward gLi generates a flow on S through the vector field L̂i ≡ gLi ·
d/dg = [gLix0]α∂α (Fig. 1). Being a vector field L̂i ∈ TS (i.e. 1-tensor), L̂i is basis independent,
meaning for v ∈ G, L̂i(vx) = L̂i. Its components transform as [L̂i(vx)]α = [vgLix0]α =

vαβ L̂i(x)β , while the partial transforms as ∂/∂[vx]α = [v−1]γα∂γ . Using this relation and Taylor
expanding equation 8, we obtain a second form for the group action on L-conv. For w ∈ G, with
y = w−1x we have

Q[f ](w−1gx0) = W 0

[
I + εi[L̂i]

α[w−1]βα
∂

∂yβ

]
f(y)

∣∣
y→w−1x

(35)

1D Translation: Let G = T1 = (R,+). A matrix representation for G is found by encoding x

as a a 2D vector (x, 1). The lift is given by x0 = (0, 1) as the origin and g =

(
1 x
0 1

)
. The

Lie algebra basis is L =

(
0 1
0 0

)
. It is easy to check that gg′x0 = (x + x′, 1). We also find

gL = L, meaning L looks the same in all TgG. Close to identity I = 0, vε = I + εL = ε. We have
gvεx0 = (g + εgL)x0 = (x + ε, 1). Thus, f(g(I + εL)x0) ≈ f(x) + εdf(x)/dx. This readily
generalizes to nD translations Tn (SI A.2.2), yielding f(x) + εα∂αf(x).

2D Rotation: Let G = SO(2). The space which SO(2) can lift is not the full R2, but a circle
of fixed radius r =

√
x2 + y2. Hence we choose S = S1 embedded in R2, with x = r cos θ and

y = r sin θ. For the lift, we use the standard 2D representation. We have x0 = (r, 0) and (see SI
A.2.1)

L =

(
0 −1
1 0

)
, g = exp[θL] =

1

r

(
x −y
y x

)
, gL · df

dg
= (x∂y − y∂x) f. (36)

Physicists will recognize L̂ ≡ (x∂y − y∂x) = ∂θ as the angular momentum operator in quantum
mechanics and field theories, which generates rotations around the z axis.

Rotation and scaling Let G = SO(2)×R+, where the R+ = [0,∞) is scaling. The infinitesimal
generator for scaling is identity L2 = I . This group is also Abelian, meaning [L2, L] = 0 (L ∈ so(2)
equation 36). R2/0 can be lifted to G by choosing x0 = (1, 0) in polar coordinates and x = gx0 =
rL2 exp[θL]x0. We again have gL · df/dg = ∂θf . We also have gL2 = g, so gL2x0 = (x, y) and
from equation 34, gL2 · df/dg = (x∂x + y∂y)f = r∂rf , which is the scaling operation.

A.2.1 Rotation SO(2)

With x0 = (r, 0)

g =

(
cos θ − sin θ
sin θ cos θ

)
,=

1

r

(
x −y
y x

)
, L =

(
0 −1
1 0

)
gL =

1

r

(
−y −x
x −y

)
(37)

gLx0 =

(
−y
x

)
=

(
− sin θ
cos θ

)
(38)

To calculate df/dg we note that even after the lift, the function f was defined on S. So we must
include the x0 in f(gx0). Using equation 10, we have

df(gx0)

dg
=

1

r
xT0

(
∂xf −∂yf
∂yf ∂xf

)
=

(
∂xf −∂yf

0 0

)
gL · df

dg
= Tr

(
x∂yf − y∂xf x∂xf + y∂yf

0 0

)
= (x∂yf − y∂xf) (39)

A.2.2 Translations Tn

Generalizing the T1 case, we add a dummy dimension 0 and x0 = (1, 0, . . . , 0). The generators are
[Li]

ν
µ = δiµδ

ν
0 and g = I + xiLi. Again, gLi = Li + xjLjLi = Li as LjLi = 0 for all i, j. Hence,

[L̂i]
α = [gLix0]α = δαi .
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A.3 Group invariant loss

Because G is the symmetry group, f and g · f should result in the same optimal parameters. Hence,
the minima of the loss function need to be group invariant. One way to satisfy this is for the loss itself
to be group invariant, which can be constructed by integrating over G (global pooling (Bronstein
et al., 2021)). A function I =

∫
G
dgF (g) is G-invariant as for w ∈ G

w · I =

∫
G

w · F (g)dg =

∫
F (w−1g)dg =

∫
G

F (g′)d(wg′) =

∫
G

F (g′)dg′ (40)

where we used the invariance of the Haar measure d(wg′) = dg′. We can change the integration to∫
S d

nx by change of variable dg/dx. Since we need S to be lifted to G, the lift: S → G is injective,
the a map G→ S need not be. S is homeomorphic to G/H , where H ⊂ G is the stabilizer of the
origin, i.e. hx0 = x0,∀h ∈ H . Since F (gx0) = F (ghx0), we have

I =

∫
G

F (g)dg =

∫
H

dh

∫
G/H

dg′F (g′) = VH

∫
G/H

dg′F (g′) (41)

Since G/H ∼ S, the volume forms dg′ = VHd
nx can be matched for some parametrization.

A.3.1 MSE Loss

The MSE is given by I =
∑
n

∫
G
dg‖Q[fn](g)‖2, where fn are data samples and Q[f ] is L-conv or

another G-equivariant function. In supervised learning the input is a pair fn, yn. G can also act on
the labels yn. We assme that yn are either also scalar features yn : S → Rmy with a group action
g · yn(x) = yn(g−1x) (e.g. fn and yn are both images), or that yn are categorical. In the latter case
g · yn = yn because the only representations of a continuous G on a discrete set are constant. We
can concatenate the inputs to φn ≡ [fn|yn] with a well-defined G action g · φn = [g · fn|g · yn]. The
collection of combined inputs Φ = (φ1, . . . , φN )T is an (m+my)×N matrix. Using equations 6
and 10, the MSE loss with parameters W = {W 0, ε} becomes

I[Φ;W ] =

∫
G

dgL[Φ;W ] =

∫
G

dg
∥∥∥W 0

[
I + εi[L̂i]

α∂α

]
Φ(g)

∥∥∥2
= 2

∫
G

dg

[
‖W 0Φ‖2 +

∥∥∥W i[L̂i]
α∂αΦ

∥∥∥2 + 2ΦTW 0TW i[L̂i]
α∂αΦ

]
(42)

=

∫
S

dnx∣∣∣∂x∂g ∣∣∣
[
ΦTm2Φ + ∂αΦThαβ∂βΦ + [L̂i]

α∂α
(
ΦTviΦ

)]
(43)

where
∣∣∣∂x∂g ∣∣∣ is the determinant of the Jacobian, W i = W 0εi and

m2 = W 0TW 0, hαβ(x) = εiTm2ε
j [L̂i]

α[L̂j ]
β , vi = m2ε

i. (44)

From equation 42 to 43 we used the fact that W 0 and W i do not depend on x (or g) to write

2ΦTW 0TW i[L̂i]
α∂αΦ = [L̂i]

α∂α
(
ΦTW 0TW iΦ

)
= [L̂i]

α∂α
(
ΦTm2ε

iΦ
)

(45)

Note that h has feature space indices via [εiTm2ε
j ]ab, with index symmetry hαβab = hβαba . When

F = R (i.e. f is a 1D scalar), hαβ becomes a a Riemannian metric for S. In general h combines a
2-tensor hab = hαβab ∂α∂β ∈ TS ⊗TS with an inner product hThαβf on the feature space F . Hence
h ∈ TS ⊗ TS ⊗ F∗ ⊗F∗ is a (2, 2)-tensor, with F∗ being the dual space of F .

Loss invariant metric transformation The metric h transforms equivariantly as a 2-tensor. As
discussed under equation 10, [L̂i(vx)]α = vαβ L̂i(x)β and

v · hαβ = hαβ(v−1x) = [v−1]αρ [v−1]βγh
ργ(x), (v ∈ G). (46)

Note that v ·m2 = m2 since fn and yn are scalars. For example, let G = SO(2) and R(ξ) ∈ SO(2)
be rotation by angle ξ. Since there is only one Li = L, the metric factorizes to

hαβab = [εTm2ε]ab ⊗ [L̂L̂T ]αβ (47)

17



To find R(ξ) · h we only need to calculate R(ξ)−1L̂. With g = R(θ), we have L̂(x) = R(θ)Lx0 =

(−y, x) = r(− sin θ, cos θ) from equation 38. Therefore, R(ξ)−1L̂ = R(θ − ξ) = L̂(R(ξ−1x).
Using equation 20 in equation 46, the transformed metric becomes

R(ξ) · hαβ(R(θ)x0) = εTm2ε⊗ [R(−ξ)L̂]α[R(−ξ)L̂]β = hαβ(R(θ − ξ)x0), (48)

A.3.2 Third term as a boundary term

Since terms in equation 19 are scalars, they can be evaluated in any basis. If S can be lifted to
multiple Lie groups, either group can be used to evaluate equation 19. For example Rn/0 can be
lifted to both Tn and SO(n) × R+. For the translation group G = Tn we have gLi = Li and
[L̂i]

α = δαi (SI A.2.2) and |∂g/∂x| = 1 and dg = dnx. Thus, the last term in equation 19 simplifies
to a complete divergence

∫
dnx∂i(Φ

TviΦ). Using the generalized Stoke’s theorem
∫
S dw =

∫
∂S w,

the last term in equation 19 becomes a boundary term. When S is non-compact, the last term is
I∂ =

∫
∂S dΣiΦ

TviΦ, where dΣi is the normal times the volume form of the (n− 1)D boundary ∂S
and is in the radial direction (e.g. for S = Rn the boundary is a hyper-sphere ∂S = Sn−1). Generally
we expect the features φn to be concentrated in a finite region of the space and that they go to zero as
r →∞ (if they don’t the loss term ΦTm2Φ will diverge). Thus, the last term in equation 19 generally
becomes a vanishing boundary term and does not matter.

A.3.3 MSE Loss for translation group Tn

We have gLi = Li and [L̂i]
α = δαi (SI A.2.2), the last term in equation 19 becomes a complete

divergence I∂ =
∫
dnx∂i(Φ

TviΦ). Using the generalized Stoke’s theorem
∫
S dw =

∫
∂S w, when

S is non-compact, I∂ =
∫
∂S dΣiΦ

TviΦ. Here dΣi is the normal times the volume form of the
(n− 1)D boundary ∂S (e.g. for S = Rn the boundary is a hyper-sphere ∂S = Sn−1). Generally we
expect the features φn to be concentrated in a finite region of the space and that they go to zero as
r →∞ (if they don’t the loss term ΦTm2Φ will diverge). Thus, the last term in equation 19 generally
becomes a vanishing boundary term and does not matter.

Next, the second term in equation 19 can be worked out as

L̂αi ∂αφ
T εiTm2ε

jL̂βj ∂βφ = ∂jφ
T εiTm2ε

j∂iφ = ∂jφ
Thji∂iφ (49)

where hji = εiTm2ε
j is a general, space-independent metric compatible with translation symmetry.

When the weights [W i]ab ∼ N (0, 1) are random Gaussian, we have W jTW i ≈ m2δij and we
recover the Euclidean metric. With the lst term vanishing, the loss function equation 19 has a striking
resemblance to a Lagrangian used in physics, as we discuss next.

A.3.4 Boundary term with spherical symmetry

When S ∼ Rn and G = Tn, the third term becomes a boundary term. But we can also have
G = SO(n)×R+ (spherial symmetry and scaling). The boundary ∂S ∼ Sn−1, which has an SO(n)
symmetry. The normal dΣ(x) is a vector pointing in the radial direction and g is the lift for x. Since
g ∈ SO(n), we have

dΣβ [gLαx0]β = dΣT gLαx0 = [gT dΣ]TLαx0 (50)

Since g ∈ SO(n), gT = g−1 and gT dΣ(gx0) = dΣ(x0) = Vn−1x0, meaning the normal vector is
rotated back toward x0. Here Vn−1 is the volume of the boundary Sn−1. Hence we have

dΣT gLix0 = xT0 Lix0 = 0 (51)

for all generators Li ∈ so(n) because Li = −LTi and hence diagonal entries like xT0 Lix0 are
zero. Only the scaling generator L0 = I we have xT0 L0x0 = 1. This means that the last term
in equation 19 can be nonzero at the boundary only if ΦviΦ is in the radial direction, meaning
ε0 = 0, and Φ does not vanish at the boundary. However, a non-vanishing Φ at the boundary results
in diverging loss unless the mass matrix m2 has eigenvalues equal to zero. This is what happens
relativistic theories where light rays can have nonzero Φ at infinity because they are massless.
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A.4 Generalization error

Equivariant neural networks are hoped to be more robust than others. Equivariance should improve
generalization. One way to check this is to see how the network would perform for an input
φ′ = φ + δφ which adds a small perturbation δφ to a real data point φ. Robustness to such
perturbation would mean that, for optimal parameters W ∗ , the loss function would not change, i.e.
I[φ′;W ∗] = I[φ;W ∗]. This can be cast as a variational equation, requiring I to be minimized around
real data points φ. Writing I[φ;W ] =

∫
dnxL[φ;W ], we have

δI[φ;W ∗] =

∫
S
dnx

[
∂L
∂φa

δφa +
∂L

∂(∂αφa)
∂α(δφa)

]
(52)

Doing a partial integration on the second term, we get

δI[φ;W ∗] =

∫
S
dnx

[
∂L
∂φb
− ∂α

∂L
∂(∂αφb)

]
δφb +

∫
S
dnx∂α

[
∂L

∂(∂αφb)
δφb
]

=

∫
S
dnx

[
∂L
∂φb
− ∂α

∂L
∂(∂αφb)

]
δφb +

∫
∂S
dn−1Σα

[
∂L

∂(∂αφb)
δφb
]

(53)

where we used the Stoke’s theorem again to change the last term to a boundary integral. We will
discuss this term further below, but since features φ have to finite in extent, φ(x)→ 0 as |x| → ∞,
and the boundary term vanishes. We will return to the boundary integral below. The first term in
equation 53 is the classic Euler-Lagrange (EL) equation. Thus, requiring good generalization, i.e.
δI[φ;W ∗]/δφ = 0 means for optimal parameters W ∗, the real data φ satisfies the EL equations

Generalization Error Minimization⇐⇒ EL:
∂L
∂φb
− ∂α

∂L
∂(∂αφb)

= 0 (54)

Applying this to the MSE loss equation 19, equation 54 becomes

m2φ− ∂α
(
|J |hαβ∂βφ

)
− ∂α

(
|J |vi[L̂i]α

)
φ = 0 (55)

where |J | = |∂g/∂x| is the determinant of the Jacobian. For the translation group, equation 55
becomes a Helmholtz equation

hij∂i∂jφ = εim2ε
j∂i∂jφ = m2φ (56)

where hij∂i∂j = ∇2 is the Laplace-Beltrami operator with h as the metric.

Conservation laws The equivariance condition equation 2 can be written for the integrand of the
loss L[φ,W ]. Since G is the symmetry of the system, transforming an input φ→ w ·φ by w ∈ G the
integrand changes equivariantly as L[w · φ] = w · L[φ]. Now, let w be an infinitesimal w ≈ I + ηiLi.
The action w · φ can be written as a Taylor expansion, similar to the one in L-conv, yielding

w · φ(x) = φ(w−1x) = φ((I − ηiLi)x) = φ(x)− ηi[Lix]α∂αφ(x)

= φ(x) + δxα∂αφ(x) = φ(x) + δφ(x) (57)

with δxα = −ηi[Lix]α and δφ = δxα∂αφ. Similarly, we have w · L = L+ δxα∂αL. Next, we can
use the chain rule to calculate L[w · φ].

L[w · φ] = L[φ(x) + δφ(x)] = L[φ] +
∂L
∂φb

δφb +
∂L

∂(∂αφb)
δ∂αφ

b

= L[φ] +

[
∂L
∂φb
− ∂α

∂L
∂(∂αφb)

]
δφb + ∂α

(
∂L

∂(∂αφb)
δφb
)

(58)

where we used the fact that δx = ηiLix can vary independently from x (because of ηi), and so
δ∂αφ

b = ∂αδφ
b. The same way, δxα∂αL = ∂α(δxαL). Now, if φ are the real data and the

parameters in L minimize generalization error, then L satisfies equation 55. This means that the first
term in equation 58 vanishes. Setting the second term equal to w · L we get

L[w · φ]− w · L[φ] = ∂α

[
∂L

∂(∂αφb)
δφb − δxαL

]
= 0 (59)
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Figure 5: Manifold vs. discretized Space While real systems can have a continuous manifold S0
as their base space, often the data collected from is a discrete array S . The discretization (coarsening)
will induce some of the topology of S0 on S as a graph. Graph neighborhoods < µ > on the discrete
S represent tangent spaces TxµS and approximate TxS0. The lift takes x ∈ S0 to g ∈ G, and maps
the tangent spaces TxS0 → TgG. Each Lie algebra basis Li ∈ g = TIG generates a vector field
on the tangent bundle TG via the pushforward as L(g) = gLig

−1. Due to the lift, each Li also
generates a vector field L̂αi (x)∂α = [gLix0]α∂α, with x = gx0. Analogously, on S we get a vector
field [L̂i]µ = gµLix0 on TS, with xµ = gµx0. Note that depicting S and S0 as 2D is only for
convenience. They may have any dimensions.

Thus, the terms in the brackets are divergence free. These terms are called a Noether conserved
current Jα. In summary

Noether current: Jα =
∂L

∂(∂αφb)
δφb − ∂L

∂xα
δxα, δI[φ;W ∗] = 0 ⇒ ∂αJ

α = 0 (60)

J captures the change of the LagrangianL along symmetry direction L̂i. Plugging δφ = δxα∂αφfrom
equation 57 we find

∂α

[
∂L

∂(∂αφb)
δφb − δxαL

]
= δxβ∂α

[
∂L

∂(∂αφb)
∂βφ

b − δαβL
]

= δxβ∂αT
α
β . (61)

Tαβ is known as the stress-energy tensor in physics (Landau, 2013). It is the Noether current associated
with space (or space-time) variations δx. It appears here because G acts on the space, as opposed to
acting on feature dimensions. For the MSE loss we have

Tαβ ≡
∂L

∂(∂αφb)
∂βφ

b − δαβL = ∂ρφ
T
(
δλβh

αρ − δαβhρλ
)
∂λφ− φTm2φ (62)

It would be interesting to see if the conserved currents can be used in practice as an alternative way
for identifying or discovering symmetries.

B Tensor notation details

If the dataset being analyzed is in the form of f(x) for some sample of points x, together with
derivatives ∇f(x), we can use the L-conv formulation above. However, in many datasets, such
as images, f(x) is given as a finite dimensional array or tensor, with x taking values over a grid.
Even though the space S is now discrete, the group which acts on it can still be continuous (e.g.
image rotations). Let S = {x0, . . .xd−1} contain d points. Each xµ represents a coordinate in
higher dimensional grid. For instance, on a 10 × 10 image, x0 is (x, y) = (0, 0) point and x99 is
(x, y) = (9, 9).

Feature maps To define features f(xµ) ∈ Rm for xµ ∈ S, we embed xµ ∈ Rd and encode
them as the canonical basis (one-hot) vectors with components [xµ]ν = δνµ (Kronecker delta), e.g.
x0 = (1, 0, . . . , 0). The feature space becomes F = Rd ⊗ Rm, meaning feature maps f ∈ F are
d×m tensors, with f(xµ) = xTµf = fµ.
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Group action Any subgroup G ⊆ GLd(R) of the general linear group (invertible d× d matrices)
acts on Rd and F . Since xµ ∈ Rd, g ∈ G also naturally act on xµ. The resulting y = gxµ is a linear
combination y = cνxν of elements of the discrete S , not a single element. The action of G on f and
x, can be defined in multiple equivalent ways. We define f(g · xµ) = xTµ g

Tf ,∀g ∈ G. For w ∈ G
we have

w · f(xµ) = f(w−1 · xµ) = xTµw
−1Tf = [w−1x]Tf (63)

Dropping the position xµ, the transformed features are matrix product w · f = w−1Tf .

G-conv and L-conv in tensor notation Writing G-conv equation 3 in the tensor notation we have

[κ ? f ](gx0) =

∫
G

κ(v)f(gvx0)dv = xT0

∫
G

vT gTfκT (v)dv ≡ xT0 [f ? κ](g) (64)

where we moved κT (v) ∈ Rm ⊗Rm′ to the right of f because it acts as a matrix on the output index
of f . The equivariance of equation 64 is readily checked with w ∈ G

w · [f ? κ](g) = [f ? κ](w−1g) =

∫
G

vT gTw−1TfκT (v)dv = [(w · f) ? κ](g) (65)

where we used [w−1g]Tf = gTw−1Tf . Similarly, we can rewrite L-conv equation 6 in the tensor
notation. Defining vε = I + εiLi

Q[f ](g) = W 0f
(
g
(
I + εiLi

))
= xT0

(
I + εiLi

)T
gTfW 0T

=
(
x0 + εi[gLix0]

)T
fW 0T . (66)

Here, L̂i = gLix0 is eactly the tensor analogue of pushforward vector field L̂i in equation 10. We
will make this analogy more precise below. The equivariance of L-conv in tensor notation is again
evident from the gTf , resulting in

Q[w · f ](g) = xT0 v
T
ε g

Tw−1TfW 0T = Q[f ](w−1g) = w ·Q[f ](g) (67)

Next, we will discuss how to implement equation 66 in practice and how to learn symmetries with
L-conv. We will also discuss the relation between L-conv and other neural architectures.

B.1 Constraints from topology on tensor L-conv

To implement equation 66 we need to specify the lift and the form of Li. We will now discuss the
mathematical details leading to and easy to implement form of equation 66.

Topology Although he discrete space S is a set of points, in many cases it has a topology. For
instance, S can be a discretization of a manifold S0, or vertices on a lattice or a general graph. We
encode this topology in an undirected graph (i.e. 1-simplex) with vertex set S edge set E . Instead of the
commonly used graph adjacency matrix A, we will use the incidence matrix B : S×E → {0, 1,−1}.
Bµ
α = 1 or −1 if edge α starts or ends at node µ, respectively, and Bµ

α = 0 otherwise (undirected
graphs have pairs of incoming and outgoing edges ). Similar to the continuous case we will denote
the topological space (S, E ,B) simply by S.

Figure 5 summarizes some of the aspects of the discretization as well as analogies between S0 and
S. Technically, the group G0 acting on S0 and G acting on S are different. But we can find a
group G which closely approximates G0 (see SI B.2). For instance, Rao & Ruderman (1999) used
Shannon-Whittaker interpolation theorem (Whitaker, 1915) to define continuous 1D translation and
2D rotation groups on discrete data. We return to this when expressing CNN as L-conv in 5.

Neighborhoods as discrete tangent bundle B is useful for extending differential geometry to
graphs (Schaub et al., 2020). Define the neighborhood < µ >=

{
α ∈ E

∣∣Bµ
α = −1

}
of xµ as the set

of outgoing edges. < µ > can be identified with TxµS as for α ∈< µ >, Bαf = fµ − fν ∼ ∂αf ,
where µ and ν are the endpoints of edge α. This relation becomes exact when S is an nD square
lattice with infinitesimal lattice spacing. The set of all neighborhoods is B itself and encodes the
approximate tangent bundle TS. For some operator C : S ⊗ F → F acting on f we will say
C ∈< µ > if its action remains within vertices connected to µ, meaning

C ∈< µ >: Cf =
∑

α∈<µ>
C̃αBν

αfν (68)
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Lift and group action Lie algebra elements Li by definition take the origin x0 to points close to it.
Thus, for small enough η, (I+ηLi)x0 ∈< 0 > and so [Lix0]Tf = [L̂i]

ρ
0fρ =

∑
α∈<0>[ˆ̀i]

α
0B

ρ
αfρ.

The coefficients [ˆ̀i]
α
0 ∈ R are in fact the discrete version of L̂i components from equation 10. For

the pushforward gLig−1, we define the lift via xµ = gµx0. We require the G-action to preserve
the topology of S, meaning points which are close remain close after the G-action. As a result,
< µ > can be reached by pushing forward elements in < 0 >. Thus, for each i, ∃η � 1 such that
gµ(I + ηLi)x0 ∈< µ >, meaning for a set of coefficients [L̂i]

ν
µ ∈ R we have

[gµ(I + ηLi)x0]Tf = fµ + η
∑

α∈<µ>
[ˆ̀i]

α
µB

ν
αfν (69)

where fµ = xTµf . Acting with [gµLix0]Txν and inserting I =
∑
ρ xρx

T
ρ we have

[L̂i]
ν
µ = [ˆ̀i]

α
µB

ν
α = [gµLix0]ν =

∑
ρ

[gµxρx
T
ρ Lix0]Txν

=
∑

ρ∈<0>

[Li]
ρ
0[xTν gµxρ]

T = [Li]
ρ
0[gµ]νρ = [ˆ̀i]

α
0B

ρ
α[gµ]νρ (70)

This L̂i ≡ ˆ̀α
i Bα is the discrete S version of the vector field L̂i(x) = [gLix0]α∂α in equation 10.

B.2 Approximating a symmetry and discretization error

Discretization error While systems such as crystalline solids are discrete in nature, many other
datasets such as images result from discretization of continuous data. The discretization (or “coars-
ening” (Bronstein et al., 2021)) will modify the groups that can act on the space. For example, first
rotating a shape by SO(2) then taking a picture is different from first taking a picture then rotating the
picture (i.e. group action and discretization do not commute). Nevertheless, in most cases in physics
and machine learning the symmetry group G0 of the space before discretization has a small Lie
algebra dimension n, (e.g. SO(3), SE(3), SO(3, 1) etc). Usually the resolution of the discretization
is d� n. In this case, there always exist someG ⊆ GLd(R) which approximatesG0 reasonably well.
The approximation means ∀g0 ∈ G0,∃g ∈ G such that the error LG = ‖g0 · f(xµ)−xTµ gf‖2 < η2

where η depends on the resolution of the discretization. Minimizing the error LG can be the process of
identifying theGwhich best approximatesG0. We will denote this approximate similarity asG ' G0.
For example, Rao & Ruderman (1999) used the Shannon-Whittaker Interpolation theorem (Whitaker,
1915) to translate discrete 1D signals (features) by arbitrary, continuous amounts. In this case the
transformed features are f ′µ = g(z)νµfν , where g(z)νµ = 1

d

∑d/2
p=−d/2 cos

(
2πp
d (z + µ− ν)

)
approx-

imates the shift operator for continuous z. The g(z) form a group because g(w)g(z) = g(w + z),
which is a representation for periodic 1D shifts. Rao & Ruderman (1999) also use a 2D version of the
interpolation theorem to approximate SO(2). In practice, we can assume the true symmetry to be G,
as we only have access to the discretized data and can’t measure G0 directly.

C Experiments

We conduct a set of experiments to see how well L-conv can extract infinitesimal generators.

Nonlinear activation As noted in Weiler et al. (2018a), an arbitrary nonlinear activation σ may not
keep the architecture equivariant under G. However, as we showed in SI A (Extended equivariance
for L-conv), the feature dimensions can pass through any nonlinear neural network without affecting
the equivariance of L-conv. This means that the weights of the nonlinear layer should act only on F
and not S .

Implementation The basic way to implement L-conv is as multiple parallel GCN units with
aggregation function f(A) being (propagation rule) being L̂i. We do not use Deep Graph Library
(DGL) or other libraries, as we want to make L̂i learnable for discovering symmetries. A more
detailed way to implement L-conv is to encode L̂i in the form of equation 17 (equation 70) to ensure
that there is an underlying shared generator ˆ̀

i for all µ which is pushed forward using gµ, shared
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Figure 6: 1D Translation: Using the Shannon-Whittaker Interpolation (SWI) one can generate
continuous shifts on discrete data. These include integer shifts (a, ground truth). (SWI) also yields
an infinitesimal generator L for shifts (b). This L can be used to approximate finite shifts using
g̃n(z) = (I + z/nL)n, with n→∞ yielding exp[zL]. (c) and (d) show the approximation of a shift
by two pixels using n = 8 and n = 16.

for all i. To implement L-conv this way, we need the lift gµ and the edge weights wαi = [ˆ̀i]
α
0 . With

known symmetries, the learnable parameters are W 0 and εi. When the topology and hence B is
known, we can encode it into the geometry and only learn the edge weights [ˆ̀i]

α
µ , similar to edge

features in message passing neural networks (MPNN) (Gilmer et al., 2017). In general each ˆ̀
i has |E|

(i.e. number of edges) components. We can further reduce these using equation 17, where instead of
n matrices ˆ̀

i, we learn one gµ shared for all, and a small set of elements [ˆ̀i]
α
0 . This is easiest when

the graph is a regular lattice and each vertex has the same number of neighbors. When the topology
of the underlying space is not known (e.g. point cloud or scrambled coordinates), we can learn L̂i as
d× d matrices. We do this for the scrambled image tests, where we encode L̂i as low-rank matrices.

Symmetry Discovery Literature In addition to simplifying the construction of equivariant archi-
tectures, our method can also learn the symmetry generators from data. Learning symmetries from
data has been studied before, but mostly in restricted settings. Examples include commutative Lie
groups as in Cohen & Welling (2014), 2D rotations and translations in Rao & Ruderman (1999), Sohl-
Dickstein et al. (2010) or permutations (Anselmi et al., 2019). Zhou et al. (2020) uses meta-learning
to automatically learn symmetries in the data. Yet their weight-sharing scheme and the encoding
of the symmetry generators is very different from ours. (Benton et al., 2020) propose Augerino, a
method to learn equivariance with neural networks, but restricted to a subgroup of the augmentation
transformations. Their Lie algebra is fixed to affine transformations in 2D (translations, rotations,
scaling and shearing). Our approach is more general. We learn the Li directly without restricting
to known symmetries. Additionally, we do not use the exponential map or matrix logarithm, hence,
our method is easy to implement. Lastly, Augerino uses sampling to effectively cover the space of
group transformations. Since we work with the Lie algebra rather the group itself, we do not require
sampling.

C.1 Approximating 1D CNN

As discussed in the text, Rao & Ruderman (1999, sec. 4) used the Shannon-Whittaker Interpolation
(SWI) (Whitaker, 1915) to define continuous translation on periodic 1D arrays as f ′ρ = g(z)νρfν .

Here g(z)νρ = 1
d

∑d/2
p=−d/2 cos

(
2πp
d (z + ρ− ν)

)
approximates the shift operator for continuous z.

These g(z) form a 1D translation group G as g(w)g(z) = g(w + z) with g(0)νρ = δνρ . For any
z = µ ∈ Z, gµ = g(z = µ) are circulant matrices that shift by µ as [gµ]ρν = δρν−µ. gµ can be
approximated using the Lie algebra and written as multi-layer L-conv as in sec. 3.1. Using g(0)νρ ≈
δ(ρ − ν), the single Lie algebra basis [L̂]0 = ∂zg(z)|z→0, acts as L̂f(z) ≈ −∂zf(z) (because∫
∂zδ(z − ν)f(z) = −∂νf(ν)). Its components are L̂νρ = L(ρ − ν) =

∑
p

2πp
d2 sin

(
2πp
d (ρ− ν)

)
,

which are also circulant due to the (ρ− ν) dependence. Hence, [L̂f ]ρ =
∑
ν L(ρ− ν)fν = [L? f ]ν

is a convolution. Rao & Ruderman (1999) already showed that this L̂ can reproduce finite discrete
shifts gµ used in CNN. They used a primitive version of L-conv with gµ = (I + εL̂)N . Thus, L-conv
can approximate 1D CNN. This result generalizes easily to higher dimensions.
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Figure 7: Learning the infinitesimal generator of SO(2) Left shows the architecture for learning
rotation angles between pairs of images. (a) shows the rotation generator calculated analytically using
Shannon-Whittaker interpolation. (b) is the L̂ learned using recursive L-conv learning rotation angle
between a pair of images. (c) is an L learned using a fixed small rotation angle θ = π/10, and (d)
shows L̂ found using the numeric linear regression solution from the fixed angle data. (b) has the
highest cosine correlation (0.70) with the ground truth, compared to 0.27 for L̂ extracted using small
angles.

Figure 6 shows how this approximation works. (b) shows the analytical form of L̂. (c) and (d) show
two approximations of g2 = g(z = 2), shift by two pixels, using g̃(z) = (I + z/nL̂)n with n = 8
and n = 16. We can evaluate the quality of these approximations using their cosine correlation
defined as Corr(g, g̃) = Tr

[
gT g̃

]
/(‖g‖‖g̃‖) where ‖A‖ =

√∑
i,j(A

i
j)

2 is the Frobenius L2 norm.
(c) shows 0.77 correlation and (d) has 0.93.

C.2 Extracting 2D rotation generator for fixed small rotations

Ground truth We can use the same SWI 1D translation generators discussed above for CNN as ∂x
and ∂y to construct the rotation generator Lθ = x∂y − y∂x (Fig. 7, a). We will use cosine correlation
with this Lθ to evaluate the quality of the learned L̂. As we will find below, the best outcome is from
L̂ learned using a recursive L-conv learning the angle of rotation between a pair of images (Fig. 7, b)
with 0.70 correlation.

Using fixed small angle In the first experiment we try to learn a small rotation with angle θ = π/10
using a single layer L-conv (Fig. 7,c). This experiment was already done in (Rao & Ruderman, 1999).
The input is a random 7 × 7 image f with pixels chosen in [−.5, 0.5). The output f ′ is the same
image rotated by θ using pytorch affine transform. Our training set contains 50,000 images., the test
set was 10,000 images, batch size was 64. The code was implemented in pytorch and we used the
Adam optimizer with learning rate 10−2. The experiments were run for 20 epochs. This problem is
simply a linear regression with f ′ = Rf = (I + εL̂)f . L-conv solves it using SGD and finds εL̂.
This problem can also be solved exactly using the solution to linear regression. Let X = (f1, . . .fN )
and Y = (f ′1, . . .f

′
N ) be the matrix of all inputs and outputs, respectively. The rotation equation is

Y T = RXT . Thus, the rotation matrix is given by R = (Y TX)(XTX)−1. Figure 7 (c, d) shows the
results of this experiment. The L found using L-conv with SGD is much cleaner than the numerical
linear regression solution LLR = (R− I)/θ. The loss becomes extremely small both on training and
test data.
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Figure 8: Learning L̂ via larger rotation angles for larger images. This time the correlation with
ground truth Lθ is much less, but accuracy is still very good.

C.3 Learning rotation angle

In this experiment we have a pair of input images (fn, R(θn)fn), withR(θ) ∈ SO(2) (approximating
2D rotations). The two inputs differ by a finite rotation with angle θn ∈ [0, π/8). Th task is to learn
the rotation angle θn. For this task we use a recursive L-conv. We set W 0 = I . The L-conv weight
ε is m×m. To be able to encode multiple angles, we set m = 10 and feed 10 copies of the fn as
input h0 = [fn]× 10. We pass this through the same L-conv layer t = 3 times as hi = Q[hi−1]. In
the final layer, we first take the dot product of the final output ht with the rotated input yn = R(θ)fn
to obtain g = tanh

(
yn

Tht
)
. We then pass the output g ∈ Rm through a fully-connected (FC) layer

with 5 nodes and tanh activation, and finally through a linear FC layer with one output to obtain the
angle. The batch size was 16, Adam optimizer, learning rate 10−3, rest were default.

Despite being a much harder task than fitting a fixed angle rotation, the learned L̂ of this experiment
has the highest (0.70) cosine correlation with the ground truth Lθ (Fig. 7, b). Even though the
architecture is rather complicated and L-conv is followed by two MLP layers, the L̂ in L-conv learns
the infinitesimal generator of rotations very well. We also conducted experiments with larger random
images (20× 20) and larger angles of rotation θn ∈ [0, π/4) (Fig. 8). While the accuracy of learning
the angles is still pretty good (Fig. 8, e,test loss 2.7× 10−4) the larger angles result in less correlation
between the learned L̂ and the ground truth Lθ (Fig. 8, b, correlation 0.12 with 8 times recurrence).
The learned L̂ is closer to a finite angle rotation. This may be because the with small number of
recurrences the network found small but finite rotations approximate larger rotations better than using
a true infinitesimal generator.

D Experiments on Images

To understand precisely how L-conv performs in comparison with CNN and other baselines, we
conduct a set of carefully designed experiments. Defining pooling for L-conv merits more research.
Without pooling, we cannot use L-conv in state-of-the-art models for problems such as image
classification. Therefore, we use the simplest possible models in our experiments: one or two L-conv,
or CNN, or FC layers, followed by a classification layer. We do not use any other operations such as
dropout or batch normalization in any of the experiments.

Test Datasets We use four datasets: MNIST, CIFAR10, CIFAR100, and FashionMNIST. To test
the efficiency of L-conv in dealing with hidden or unfamiliar symmetries, we conducted our tests
on two modified versions of each dataset: 1) Rotated: each image rotated by a random angle
(no augmentation); 2) Rotated and Scrambled: random rotations are followed by a fixed random
permutation (same for all images) of pixels. We used a 80-20 training test split on 60,000 MNIST
and FashionMNIST, and on 50,000 CIFAR10 and CIFAR100 images. Scrambling destroys the
correlations existing between values of neighboring pixels, removing the locality of features in
images. As a result, CNN need to encode more patterns, as each image patch has a different
correlation pattern.

Test Model Architectures We conduct controlled experiments, with one (Fig. 9) or two (Fig. 10)
hidden layers being either L-conv or a baseline, followed by a classification layer. For CNN, L-conv
and L-conv with random Li, we used nf = ml = 32 for number of output filters (i.e. output
dimension of W i). For CNN we used 3× 3 kernels and equivalently used nL = 9 for the number of
Li in L-conv and random L-conv. We also used “LieConv” Finzi et al. (2020) as a baseline (Fig. 10,
brown). We used the default k = 256 in LieConv, which yields comparable number of parameters
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Figure 9: Results on four datasets with two variant: “Rotated” and “Rotated and scrambled”. In all
cases L-conv performs best. On MNIST, FC and CNN come close, but using 5x more parameters.
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Figure 10: Comparison of one and two layer performance of L-conv (blue), CNN without pooling
(orange), CNN with Maxpooling after each layer (green), fully connected (FC) with structure similar
to L-conv (red), Lie-Conv (Finzi) Finzi et al. (2020) (brown), and shallow FC, which has a single
hidden layer with width such that the total number of parameters matches L-conv (purple). The labels
indicate number of layers, layer architecture and number of filters (e.g. “2 L-conv (32)” means two
layers of L-conv with 32 filters followed by one classification layer). Left and middle plots show test
accuracies on CIFAR100 with rotated and scrambled images, and on the original CIFAR100 dataset,
respectively. The plot on the right shows the number of parameters in each model, which is the same
for the two datasets.

to our other models. For the symmetry group in LieConv we used SE(3). We also used the default
ResNet architecture provided by Finzi et al. (2020) for both the one and two layer experiments. We
turned off batch normalization, consistent with other experiments. We encode Li as sparse matrices
Li = UiVi with hidden dimension dh = 16 in Fig. 9 and dh = 8 in Fig. 10, showing that very sparse
Li can perform well. The weights W i are each ml ×ml+1 dimensional. The output of the L-conv
layer is d×ml+1. As mentioned above, we use two FC baselines. The FC in Fig. 9 and FC(∼L-conv)
in Fig. 10 mimic L-conv, but lacks weight-sharing. The FC weights are W = ZV with V being
(nLdh)× d and Z being (ml+1 × d)× dh. For “FC (shallow)” in Fig. 10, we have one wide hidden
layer with u = nL−conv/(mdc), where nL−conv is the total number of parameters in the L-conv
model, m and c the input and output channels, and d is the input dimension. We experimented with
encoding Li as multi-layer perceptrons, but found that a single hidden layer with linear activation
works best. We also conduct tests with two layers of L-conv, CNN and FC (Fig. 10), with each
L-conv, CNN and FC layer as descried above, except that we reduced the hidden dimension in Li to
dh = 8.

Baselines We compare L-conv against four baselines: CNN, random Li, fully connected (FC) and
LieConv. Using CNN or SE(3) LieConv on scrambled images amounts to using poor inductive
bias in designing the architecture. Similarly, random, untrained Li is like using bad inductive biases.
Testing on random Li serves to verify that L-conv’s performance is not due to the structure of the
architecture, and that the Li in L-conv really learn patterns in the data. Finally, to verify that the
higher parameter count in L-conv is not responsible for the high performance, we construct two kinds
of FC models. The first type (“Fully Conn.” in Fig. 9 and “FC (∼ L-conv)” in Fig. 10) is a multilayer
FC network with the same input (d ×m0), hidden (k × nL for low-rank Li) and output (d ×m1)
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dimensions as L-conv, but lacking the weight-sharing, leading to much larger number parameters
than L-conv. The second type (“FC (shallow)” in Fig. 10) consists of a single hidden layer with a
width such that the total number of model parameters match L-conv.

Results Fig. 9 shows the results for single layer experiments. On all four datasets both in the
rotated and the rotated and scrambled case L-conv performed considerably better than CNN and the
baselines. Compared to CNN, L-conv naturally requires extra parameters to encode Li, but low-rank
encoding with rank dh � d only requires O(dhd) parameters, which can be negligible compared
to FC layers. We observe that FC layers consistently perform worse than L-conv, despite having
much more parameters than L-conv. We also find that not training the Li (“Rand L-conv”) leads to
significant performance drop. We ran tests on the unmodified images as well (Supp. Fig 12), where
CNN performed best, but L-conv trails closely behind CNN.

Additional experiments testing the effect of number of layers, number of parameters and pooling
are shown in Fig. 10. On CIFAR100, we find that both FC configurations, FC(∼L-conv) and
FC(shallow) consistently perform worse than L-conv, evidence that L-conv’s performance is not
due to its extra parameters. L-conv outperforms all other tested models on rotated and scrambled
CIFAR100, including LieConv. Without pooling, we observe that both L-conv and CNN do not
benefit from adding a second layer. On the default CIFAR100 dataset, one and two layer CNN with
max-pooling perform significantly better than L-Conv. Two Layer SE(3) LieConv (labelled “2 Finzi
(256)”) performs best on default CIFAR100, but not on the scrambled and rotated version. This is
expected, as the symmetries of the latter are masked by the scrambling. This is where the benefit of
our model becomes evident, namely cases where the data may have hidden or unfamiliar symmetries.
We also verified that the higher performance of L-conv compared to CNN is not due to higher number
number of parameters (Appendix D.2)

D.1 Details of experiments

Hardware and Implementation We implemented L-conv in Keras and Tensorflow 2.2 and ran
our tests on a system with a 6 core Intel Core i7 CPU, 32GB RAM, and NVIDIA Quadro P6000
(24GB RAM) GPU. The L-conv layer did not require significantly more resources than CNN and ran
only slightly slower.

D.1.1 Comparison with related models

Comparison with Meta-learning Symmetries by Reparameterization (MSR) Recently Zhou
et al. (2020) also introduced an architecture which can learn equivariances from data. We would like
to highlight the differences between their approach and ours, specifically Proposition 1 in Zhou et al.
(2020). Assuming a discrete group G = {g1, . . . , gn}, they decompose the weights W ∈ Rs×s of a
fully-connected layer, acting on x ∈ Rs as vec(W ) = UGv where UG ∈ Rs×s are the “symmetry
matrices” and v ∈ Rs are the “filter weights”. Then they use meta-learning to learn UG and during
the main training keep UG fixed and only learn v. We may compare MSR to our approach by setting
d = s. First, note that although the dimensionality of U ∈ Rnd×d seems similar to our L ∈ Rn×d×d,
the Li are n matrices of shape d × d, whereas U has shape (nd) × d with many more parameters
than L. Also, the weights of L-conv W ∈ Rn×ml×ml−1 , with ml being the number of channels, are
generally much fewer than MSR filters v ∈ Rd. Finally, the way in which Uv acts on data is different
from L-conv, as the dimensions reveal. The prohibitively high dimensionality of U requires MSR
to adopt a sparse-coding scheme, mainly Kronecker decomposition. Though not necessary, we too
choose to use a sparse format for Li, finding that very low-rank Li often perform best. A Kronecker
decomposition may bias the structure of UG as it introduces a block structure into it.

Contrast with Augerino In a concurrent work, (Benton et al., 2020) propose Augerino, a method
to learn invariances with neural networks. Augerino uses data augmentation to transform the input
data, which means it is restricting the group to be a subgroup of the augmentation transformations.
The data augmentation is written as gε = exp (

∑
i εiθiLi) (equation (9) in Benton et al. (2020)),

with randomly sampled εi ∈ [−1, 1]. θi are trainable weights which determine which Li helped
with the learning task. However, in Augerino, Li are fixed a priori to be the six generators of affine
transformations in 2D (translations, rotations, scaling and shearing). In contrast, our approach is more
general. We learn the generators Li directly without restricting them to be a known set of generators.
Additionally, we do not use the exponential map, hence, implementing L-conv is very straightforward.
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Figure 11: Matching number of parameters in CNN and L-conv, we observe that L-conv still performs
better on Rotated and Scrambled MNIST.

Lastly, Augerino uses sampling to effectively cover the space of group transformations. Since the
sum over Lie algebra generators is tractable, we do not need to use sampling.

D.2 Additional Experiments

Matching number of parameters in CNN To verify that the difference in the number of parameters
between CNN and L-conv was not responsible for the improved performance, we ran experiment
where we allowed the kernel-size of L-conv and CNN to differ and tried to match the number of
parameters between the two. Fig. 11 shows that on rotated and scrambled MNIST L-conv still
performs better than CNN even after the latter has been allowed to have the same or more number of
parameters than L-conv.

In Figure 13 we compare the performance of a single layer of L-conv on a classification task on
scrambled rotated MNIST, where pixels have been permuted randomly and images have been rotated
between −90 to +90 degrees. The models consisted of a final classification layer preceded by either
one L-conv (blue), or one CNN (orange), or multiple fully-connected (FC, green) layers with similar
number of neurons as the L-conv, but without weight sharing. We see that most L-conv configurations
had the highest performance without a too many trainable parameters. Note that, parameters in FC
layers are much higher than comparable L-conv, but yield worse results. The dots are labeled to
show the configurations, with L[32]h[6](k[6]) meaning k = 6 as number of Li, 32 output filters, and
h = 6 hidden dimensions for low-rank encoding of Li. The y-axis shows the test accuracy and the
x-axis the number of trainable parameters. The grey lines show the performance of L-conv with fixed
random Li, but trainable shared wights, showing that indeed the learned Li improve the performance
quite significantly.
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Figure 12: Test results on four datasets with three variant: “Default” (unmodified dataset), “Rotated”
and “Rotated and scrambled”. On the Default dataset, CNN performs best, but L-conv is always the
second best. For Rotated and Rot. & Scrambled, in all cases L-conv performed best. In MNIST, FC
and CNN layers come close, but using 5x more parameters.
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Figure 13: Training low-rank L-conv layer during training.
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