
There Is No Turning Back:
A Self-Supervised Approach for

Reversibility-Aware Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose to learn to distinguish reversible from irreversible actions for better1

informed decision-making in Reinforcement Learning (RL). From theoretical2

considerations, we show that approximate reversibility can be learned through a3

simple surrogate task: ranking randomly sampled trajectory events in chronological4

order. Intuitively, pairs of events that are always observed in the same order are5

likely to be separated by an irreversible sequence of actions. Conveniently, learning6

the temporal order of events can be done in a fully self-supervised way, which we7

use to estimate the reversibility of actions from experience, without any priors. We8

propose two different strategies that incorporate reversibility in RL agents, one9

strategy for exploration (RAE) and one strategy for control (RAC). We demonstrate10

the potential of reversibility-aware agents in several environments, including the11

challenging Sokoban game. In synthetic tasks, we show that we can learn control12

policies that never fail and reduce to zero the side-effects of interactions, even13

without access to the reward function.14

1 Introduction15

We address the problem of estimating if and how easily actions can be reversed in the Reinforcement16

Learning (RL) context. Irreversible outcomes are often not to be taken lightly when making decisions.17

As humans, we spend more time evaluating the outcomes of our actions when we know they are18

irreversible [28]. As such, irreversibility can be positive (i.e. takes risk away for good) or negative (i.e.19

leads to later regret). Also, decision-makers are more likely to anticipate regret for hard-to-reverse20

decisions [49]. All in all, irreversibility seems to be a good prior to exploit for more principled21

decision-making. In this work, we explore the option of using irreversibility to guide decision-making22

and confirm the following assertion: by estimating and factoring reversibility in the action selection23

process, safer behaviors emerge in environments with intrinsic risk factors. In addition to this, we24

show that exploiting reversibility leads to more efficient exploration in environments with undesirable25

irreversible behaviors, including the famously difficult Sokoban puzzle game.26

However, estimating the reversibility of actions is no easy feat. It seemingly requires a combination27

of planning and causal reasoning in large dimensional spaces. We instead opt for another, simpler28

approach (see Fig. 1): we propose to learn in which direction time flows between two observations,29

directly from the agents’ experience, and then consider irreversible the transitions that are assigned a30

temporal direction with high confidence. In fine, we reduce reversibility to a simple classification31

task that consists in predicting the temporal order of events.32

Our contributions are the following: 1) we formalize the link between reversibility and precedence es-33

timation, and show that reversibility can be approximated via temporal order, 2) we propose a practical34

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



algorithm to learn temporal order in a self-supervised way, through simple binary classification using35

sampled pairs of observations from trajectories, 3) we propose two novel exploration and control strate-36

gies that incorporate reversibility, and study their practical use for directed exploration and safe RL,37

illustrating their relative merits in synthetic as well as more involved tasks such as Sokoban puzzles.38

2 Related Work39

Is A → B reversible?

Yes, because 
B → A does not 

contradict the laws of 
physics!

Is A → B reversible?

Easy, since 
B → A is as likely 

as A → B!

Figure 1: High-level illustration of how reversibil-
ity can be estimated. Left: from an understanding
of physics. Right: ours, from experience.

To the best of our knowledge, this work is the40

first to explicitly model the reversibility of transi-41

tions and actions in the context of RL, using tem-42

poral ordering to learn from trajectories in a self-43

supervised way, in order to guide exploration44

and control. Yet, several aspects of the prob-45

lem we tackle were studied in different contexts,46

with other motivations; we review these here.47

Leveraging reversibility in RL. Kruusmaa48

et al. [25] estimate the reversibility of state-49

action couples so that robots avoid performing50

irreversible actions, since they are more likely51

to damage the robot itself or its environment. A52

shortcoming of their approach is that they need53

to collect explicit state-action pairs and their reversal actions, which makes it hard to scale to large54

environments. Several works [39, 5, 4] use reachability as a curiosity bonus for exploration: if the55

current state has a large estimated distance to previous states, it means that it is novel and the agent56

should be rewarded. Reachability and reversibility are related, in the sense that irreversible actions57

lead to states from which previous states are unreachable. Nevertheless, their motivations and ours58

diverge, and we learn reversibility through a less involved task than that of learning reachability.59

Nair et al. [32] learn to reverse trajectories that start from a goal state so as to generate realistic60

trajectories that reach similar goals. In contrast, we use reversibility to direct exploration and/or61

control, not for generating learning data. Closest to our work, Rahaman et al. [36] propose to learn62

a potential function of the states that increases with time, which can detect irreversibility to some63

extent. A drawback of the approach is that the potential function is learned using trajectories sampled64

from a random policy, which is a problem for many tasks where a random agent might fail to cover65

interesting parts of the state space. In comparison, our method does not use a potential function and66

learns jointly with the RL agent, which makes it a viable candidate for more complex tasks.67

Safe exploration. Safe exploration aims at making sure that the actions of RL agents do not lead68

to negative or unrecoverable effects that would outweigh the long-term value of exploration [2].69

Notably, previous works developed distinct approaches to avoid irreversible behavior: by incremental70

updates to safe policies [22, 17], which requires knowing such a policy in advance; by restricting71

policy search to ergodic policies [31] (i.e. that can always come back to any state visited), which72

is costly; and by active exploration [27], where the learner can ask for rollouts instead of exploring73

potentially unsafe areas of the state space itself.74

Self-supervision from the arrow of time. Self-supervision has become a central component75

of modern machine learning algorithms, be it for computer vision, natural language or signal76

processing. In particular, using temporal consistency as a source of self-supervision is now ubiquitous,77

be it to learn representations for downstream tasks [18, 37, 11], or to learn to detect temporal78

inconsistencies [46]. The closest analogies to our work are methods that specifically estimate some79

aspects of the arrow of time as self-supervision. Most are to be found in the video processing literature,80

and self-supervised tasks include predicting which way the time flows [34, 46], verifying the temporal81

order of a subset of frames [29], predicting which video clip has the wrong temporal order among a82

subset [16] as well as reordering shuffled frames or clips from the video [15, 13, 47]. Bai et al. [6]83

notably propose to combine several of these pretext tasks along with data augmentation for video84

classification. Using time as a means of supervision was also explored for image sequencing [8],85

audio [10] or EEG processing [38]. In RL, self-supervision also gained momentum in recent86

years [21, 43, 48], with temporal information being featured [1]. Notably, several works [3, 12, 20, 42]87

leverage temporal consistency to learn useful representations, effectively learning to discriminate88

2



between observations that are temporally close and observations that are temporally distant. In89

comparison to all these works, we estimate the arrow of time through temporal order prediction with90

the explicit goal of finding irreversible transitions or actions.91

3 Reversibility92

Degree of Reversibility. We start by introducing formally the notion of reversibility. Intuitively, an93

action is reversible if it can be undone, meaning that there is a sequence of actions that can bring us94

back to the original state.95

Definition 1. Given a state s, we call degree of reversibility within K steps of an action a96

φK(s, a) := sup
π
pπ(s ∈ τt+1:t+K+1 | st = s, at = a),

and the degree of reversibility of an action is defined as97

φ(s, a) := sup
π
pπ(s ∈ τt+1:∞ | st = s, at = a),

with τ = {si}i=1 ... T ∼ π corresponding to a trajectory, and τt:t′ the subset of the trajectory between98

the timesteps t and t′ (excluded). We omit their dependency on π for the sake of conciseness. Given s ∈99

S, the action a is reversible if and only if φ(s, a) = 1, and said irreversible if and only if φ(s, a) = 0.100

In deterministic environments, an action is either reversible or irreversible: given a state-action couple101

(s, a) and the unique resulting state s′, φK(s, a) is equal to 1 if there is a sequence of less than K102

actions which brings the agent from s′ to s, and is otherwise equal to zero. In stochastic environments,103

a given sequence of actions can only reverse a transition up to some probability, hence the need for104

the notion of degree of reversibility.105

Policy-Dependent Reversibility. In practice, it is useful to quantify the degree of reversibility of106

an action as the agent acts according to a fixed policy π, for which we extend the notions introduced107

above. We simply write :108

φπ,K(s, a) := pπ(s ∈ τt+1:t+K+1 | st = s, at = a) and φπ(s, a) := pπ(s ∈ τt+1:∞ | st = s, at = a).

It immediately follows that φK(s, a) = supπ φπ,K(s, a) and φ(s, a) = supπ φπ(s, a).109

4 Reversibility Estimation via Classification110

Quantifying the exact degree of reversibility of actions is generally hard. In this section, we show111

that reversibility can be approximated efficiently using simple binary classification.112

4.1 Precedence Estimation113

Supposing that a trajectory contains the states s and s′, we want to be able to establish precedence,114

that is predicting whether s or s′ comes first on average. It is a binary classification problem, which115

consists in estimating the quantity Est=s,st′=s′
[
1t′>t

]
. Accordingly, we introduce the precedence116

estimator which, using a set of trajectories, learns to predict which state of an arbitrary pair is most117

likely to come first.118

Definition 2. Given a fixed policy π, we define the finite-horizon precedence estimator between two119

states as follows:120

ψπ,T (s, s′) = Eτ∼π Est=s,st′=s′
t,t′<T

[
1t′>t

]
.

Conceptually, given two states s and s′, the precedence estimator gives an approximate probability of121

s′ being visited after s, given that both s and s′ are observed in a trajectory. The indices are sampled122

uniformly within the specified horizon T ∈ N, so that this quantity is well-defined even for infinite123

trajectories. Additional properties of ψ, regarding transitivity for instance, can be found in Appx. A.2.124

Remark 1. The quantity ψπ,T (s, s′) is only defined for pairs of states which can be found in the125

same trajectory, and is otherwise irrelevant. In what follows, we implicitly impose this condition126

when considering state pairs.127

3



Theorem 1. For every policy π and s, s′ ∈ S, ψπ,T (s, s′) converges when T goes to infinity. We128

refer to the limit as the precedence estimator, written ψπ(s, s′).129

The proof of this theorem is developed in Appendix A.3. This result is key to ground theoretically130

the notion of empirical reversibility φ̄, which we introduce in the next definition. It simply consists in131

extending the notion of precedence to a state-action pair.132

Definition 3. We finally define the empirical reversibility using the precedence estimator:133

φ̄π(s, a) = Es′∼P (s,a)

[
ψπ(s′, s)

]
.

In a nutshell, given that we start in s and take the action a, the empirical reversibility φ̄π(s, a)134

measures the probability that we go back to s, starting from a state s′ that follows (s, a). We now135

show that our empirical reversibility is linked with the notion of reversibility defined in the previous136

section, and can behave as a useful proxy.137

4.2 Estimating Reversibility from Precedence138

We present here our main theoretical result which relates reversibility and empirical reversibility:139

Theorem 2. Given a policy π, a state s and an action a, we have: φ̄π(s, a) ≥ φπ(s,a)
2 .140

The full proof of the theorem is given in Appendix A.3.141

This result theoretically justifies the name of empirical reversibility. From a practical perspective, it142

provides a way of using φ̄ to detect actions which are irreversible or hardly reversible: φ̄π(s, a)� 1143

implies φπ(s, a)� 1 and thus provides a sufficient condition to detect actions with low degrees of144

reversibility. This result gives a way to detect actions that are irreversible given a specific policy145

followed by the agent. Nevertheless, we are generally interested in knowing if these actions are146

irreversible for any policy, meaning φ(s, a)� 1 with the definition of Section 3. The next proposition147

makes an explicit connection between φ̄π and φ, under the assumption that the policy π is stochastic.148

Proposition 1. We suppose that we are given a state s, an action a such that a is reversible in K149

steps, and a policy π. Under the assumption that π is stochastic enough, meaning that there exists150

ρ > 0 such that for every state and action s, a, π(a | s) > ρ, we have: φ̄π(s, a) ≥ ρK

2 . Moreover, we151

have for all K ∈ N: φ̄π(s, a) ≥ ρK

2 φK(s, a).152

The proof is given in Appendix A.4. As before, this proposition gives a practical way of detecting153

irreversible moves. If for example φ̄π(s, a) < ρk/2 for some k ∈ N, we can be sure that action a is154

not reversible in k steps. The quantity ρ can be understood as a minimal probability of taking any155

action in any state. This condition is not very restrictive: ε-greedy strategies for example satisfy this156

hypothesis with ρ = ε
|A| .157

In practice, it can also be useful to limit the maximum number of time steps between two sampled158

states. That is why we also define the windowed precedence estimator as follows:159

Definition 4. Given a fixed policy π, we define the windowed precedence estimator between two160

states as follows:161

ψπ,T,w(s, s′) = Eτ∼πEst=s,st′=s′
t,t′<T
|t−t′|≤w

[
1t′>t

]
.

Intuitively, compared to previous precedence estimators, ψπ,T,w is restricted to short-term dynamics,162

which is a desirable property in tasks where distinguishing the far future from the present is either163

trivial or impossible.164

5 Reversibility-Aware Reinforcement Learning165

Leveraging the theoretically-grounded bridge between precedence and reversibility established in the166

previous section, we now explain how reversibility can be learned from the agent’s experience and167

used in a practical setting.168

4



Observation

Shuffle

Embedding

Concat

Joint 
Embedding

Temporal 
Order 

Probability

= random order from shuffle, acts as target

Figure 2: The proposed self-supervised procedure for precedence estimation.

Learning to rank events chronologically. Learning which observation comes first in a trajectory169

is achieved by binary supervised classification, from pairs of observations sampled uniformly in170

a sliding window on observed trajectories. This can be done fully offline, i.e. using a previously171

collected dataset of trajectories for instance, or fully online, i.e. jointly with the learning of the RL172

agent; but also anywhere on the spectrum by leveraging variable amounts of offline and online data.173

This procedure is not without caveats. In particular, we want to avoid overfitting to the particularities174

of the behavior of the agent, so that we can learn meaningful, generalizable statistics about the order175

of events in the task at hand. Indeed, if an agent always visits the state sa before sb, the classifier176

will probably assign a close-to-one probability that sa precedes sb. This might not be accurate with177

other agents equipped with different policies, unless transitioning from sb to sa is hard due to the178

dynamics of the environment, which is in fact exactly the cases we want to uncover. We make179

several assumptions about the agents we apply our method to: 1) agents are learning and thus, have a180

policy that changes through interactions in the environment, 2) agents have an incentive not to be too181

deterministic. For this second assumption, we typically use an entropic regularization in the chosen182

RL loss, which is a common design choice in modern RL methods. These assumptions, when put183

together, alleviate the risk of overfitting to the idiosyncrasies of a single, non-representative policy.184

We illustrate the precedence classification procedure in Fig. 2. A temporally-ordered pair of observa-185

tions, distant of no more than w timesteps, is sampled from a trajectory and uniformly shuffled. The186

result of the shuffling operation is memorized and used as a target for the binary classification task. A187

Siamese network creates separate embeddings for the pair of observations, which are concatenated188

and fed to a separate feed-forward network, whose output is passed through a sigmoid to obtain a189

probability of precedence. This probability is updated via negative log-likelihood against the result of190

the shuffle, so that it matches the actual temporal order.191

Then, a transition (and its implicit sequence of actions) represented by a starting observation x and192

a resulting observation x′ is deemed irreversible if the estimated precedence probability ψ(x, x′)193

is superior to a chosen threshold β. Note that we do not have to take into account the temporal194

proximity of these two observations here, which is a by-product of sampling observations uniformly195

in a window in trajectories. Also, depending on the threshold β, we cover a wide range of scenarios,196

from pure irreversibility (β close to 1) to soft irreversibility (β > 0.5, the bigger β, the harder the197

transition is to reverse). This is useful because different tasks call for different levels of tolerance198

for irreversible behavior: while a robot getting stuck and leading to an early experiment failure is to199

be avoided when possible, tasks involving human safety might call for absolute zero tolerance for200

irreversible decision-making. We elaborate on these aspects in Sec. 6.201

Reversibility-Aware Exploration and Control. We propose two different algorithms based on202

reversibility estimation: Reversibility-Aware Exploration (RAE) and Reversibility-Aware Control203

(RAC). We give a high-level representation of how the two methods operate in Fig. 3.204

In a nutshell, RAE consists in using the estimated reversibility of a pair of consecutive observations205

to create an auxiliary reward function. In our experiments, the reward function is a piecewise linear206

function of the estimated reversibility and a fixed threshold, as in Fig. 3: it grants the agent a negative207

reward if the transition is deemed too hard to reverse. The agent optimizes the sum of the extrinsic208

5



Degree
of

Reversibility
. Rejection

sampling

(a) RAE penalizes irreversible transitions

Concat

Temporal 
Order 

Probability

(b)   RAC hijacks irreversible actions

Figure 3: Our proposed methods for reversibility-aware RL. (a): RAE encourages reversible behavior
via auxiliary rewards. (b): RAC avoids irreversible behavior by rejecting actions whose estimated
reversibility is inferior to a threshold.

and auxiliary rewards. Note that the specific function we use penalizes irreversible transitions but209

could encourage such transitions instead, if the task calls for it.210

RAC can be seen as the action-conditioned counterpart of RAE. From a single observation, RAC211

estimates the degree of reversibility of all available actions, and “takes control” if the action sampled212

from the policy is not reversible enough (i.e. has a reversibility inferior to a threshold β). “Taking213

control” can have many forms. In practice, we opt for rejection sampling: we sample from the policy214

until an action that is reversible enough is sampled. This strategy has the advantage of avoiding215

irreversible actions entirely, while trading-off pure reversibility for performance when possible. RAC216

is more involved than RAE, since the action-conditioned reversibility is learned from the supervision217

of a standard, also learned precedence estimator. Nevertheless, our experiments show that it is218

possible to learn both estimators jointly, at the cost of little overhead.219

We now discuss the relative merits of the two methods. In terms of applications, we argue that220

RAE is more suitable for directed exploration, as it only encourages reversible behavior. As a result,221

irreversible behavior is permitted if the benefits (i.e. rewards) outweigh the costs (i.e. irreversibility222

penalties). In contrast, RAC shines in safety-first, real-world scenarios, where irreversible behavior is223

to be banned entirely. With an optimal precedence estimator and task-dependent threshold, RAC will224

indeed hijack all irreversible sampled actions. RAC can be especially effective when pre-trained on225

offline trajectories: it is then possible to generate fully-reversible, safe behavior from the very first226

online interaction in the environment. We explore these possibilities experimentally in Sec. 6.2.227

Both algorithms can be used online or offline with small modifications to their overall logic. The228

pseudo-code for the online version of RAE and RAC can be found in Appendix B.2.229

The self-supervised precedence classification task could have applications beyond estimating the230

reversibility of actions: it could be used as a means of getting additional learning signal or repre-231

sentational priors for the RL algorithm. Nevertheless, we opt for a clear separation between the232

reversibility and the RL components so that we can precisely attribute improvements to the former,233

and leave aforementioned studies for future work.234

6 Experiments235

The following experiments aim at demonstrating that the estimated precedence ψ is a good proxy236

for reversibility, and at illustrating how beneficial reversibility can be in various practical cases. We237

benchmark RAE and RAC on a diverse set of environments, with various types of observations238

(tabular, pixel-based), using neural networks for function approximation. See Appendix C for details.239

6.1 Reward-Free Reinforcement Learning240

We illustrate the ability of RAE to learn sensible policies without access to rewards. We use the241

classic pole balancing task Cartpole [7], using the OpenAI Gym [9] implementation. In the usual242

6



0 2 4
timesteps (1e5)

50

100

150

200

ep
iso

de
 le

ng
th

2

0

2

in
tri

ns
ic 

re
wa

rd

(a) Training curves

0.2 0.0 0.2
x

0.97

0.98

0.99

1.00

y

  - 0.9
  - 0.7
  - 0.3
  - 0.1
  - 0.01
  - 0.001

(b) Relative pole coordinates

0.2 0.1 0.0 0.1 0.2
2

1

0

1

2

d
/d

t

(c) Random trajectories

Figure 4: (a): Training curves of a PPO+RAE agent in reward-free Cartpole. Orange: episode length.
Pink: intrinsic reward. A 95% confidence interval over 10 random seeds is shown. (b): The x and y
axes are the coordinates of the end of the pole relatively to the cart position. The color denotes the
online reversibility estimation between two consecutive states (logit scale). (c): The representation of
three random trajectories according to θ (angle of the pole) and dθ

dt . Arrows are colored according to
the learned reversibility of the transitions they correspond to.

setting, the agent gets a reward of 1 at every time step, such that the total undiscounted episode reward243

is equal to the episode length, and incentivizes the agent to learn a policy that stabilizes the pole.244

Here, instead, we remove this reward signal and give a PPO agent [41] an intrinsic reward based245

on the estimated reversibility, which is learned online from agent trajectories. The reward function246

penalizes irreversibility, as shown in Fig. 3. Note that creating insightful rewards is quite difficult: too247

frequent negative rewards could lead the agent to try and terminate the episode as soon as possible.248

We display our results in Fig. 4. Fig. 4a confirms the claim that RAE can be used to learn meaningful249

rewards. Looking at the intrinsic reward, we discern three phases. Initially, both the policy and the250

reversibility classifier are untrained (and intrinsic rewards are 0). In the second phase, the classifier is251

fully trained but the agent still explores randomly (intrinsic rewards become negative). Finally, the252

agent adapts its behavior to avoid penalties (intrinsic rewards go to 0, and the length of trajectories253

increases). Our reward-free agent reaches the score of 200, which is the highest possible score.254

To further assess the quality of the learned reversibility, we freeze the classifier after 300k timesteps255

and display its predicted probabilities according to the relative coordinates of the end of the pole256

(Fig. 4b) and the dynamics of the angle of the pole θ (Fig. 4c). In both cases, the empirical reversibility257

matches our intuition: the reversibility should decrease as the angle or angular momentum increase,258

since these coincide with an increasing difficulty to go back to the equilibrium.259

6.2 Learning Reversible Policies260

In this section, we investigate how RAE can be used to learn reversible policies. When we train261

an agent to achieve a goal, we usually want it to achieve that goal following implicit safety con-262

straints. Handcrafting such safety constraints would be time-consuming, difficult to scale for complex263

problems, and might lead to reward hacking; so a reasonable proxy consists in limiting irreversible264

side-effects in the environment [26].265

To quantify side-effects, we propose Turf, a new synthetic environment. As depicted in Fig. 5a,5b,266

the agent (blue) is rewarded when reaching the goal (pink). Stepping on grass (green) will spoil it,267

causing it to turn brown. Stepping on the stone path (grey) does not induce any side-effect.268

In Fig. 5c,5d, we compare the behaviors of a trained PPO agent with and without RAE. The baseline269

agent is indifferent to the path to the goal, while the agent benefitting from RAE learns to follow the270

road, avoiding irreversible consequences.271

6.3 Sokoban272

Sokoban is a popular puzzle game where a warehouse keeper (controlled by the player) must move273

boxes around and place them in dedicated places. Each level is unique and involves planning, since274

there are many ways to get stuck. For instance, pushing a box against a wall is often un-undoable,275

and prevents the completion of the level unless actually required to place the box on a specific276

target. Sokoban is a challenge to current model-free RL algorithms, as advanced agents require277

7



(a) Initial state (b) A trajectory (c) PPO (500k) (d) PPO+RAE (500k)

Figure 5: (a): The Turf environment. The agent can walk on grass, but the grass then turns brown.
(b): An illustrative trajectory where the agent stepped on grass pixels. (c): State visitation heatmap
for PPO. (d): State visitation heatmap for PPO+RAE. It coincides with the stone path (red).

push

move

move

push

move

➀

➁
➂

➃
➄

Figure 6: (a): Non-trivial reversibility: pushing the box against the wall can be reversed by pushing
it to the left, going around, pushing it down and going back to start. A minimum of 17 moves is
required to go back to the starting state. (b): Performances of IMPALA and IMPALA+RAE on 1k
levels of Sokoban (5 seeds average). (c): Evolution of the estimated reversibility along one episode.

millions of interactions to reliably solve a fraction of levels [45, 19]. One of the reasons for this is278

tied to exploration: since agents learn from scratch, there is a long preliminary phase where they279

act randomly in order to explore the different levels. During this phase, the agent will lock itself280

in unrecoverable states many times, and further exploration is wasted. It is worth recalling that281

contrary to human players, the agent does not have the option to reset the game when stuck. In these282

regards, Sokoban is a great testbed for reversibility-aware approaches, as we expect them to make283

the exploration phase more efficient, by incorporating the prior that irreversible transitions are to be284

avoided if possible, and by providing tools to identify such transitions.285

We benchmark performance on a set of 1k levels. Results are displayed in Fig. 6. Equipping an286

IMPALA agent [14] with RAE leads to a visible performance increase, and the resulting agent287

consistently solves all levels from the set. We take a closer look at the reversibility estimates and show288

that they match the ground truth with high accuracy, despite the high imbalance of the distribution289

(i.e. few irreversible transitions, see Fig. 6c) and complex reversibility estim ation (see Fig. 6a).290

6.4 Safe Control291

In this section, we put an emphasis on RAC, which is particularly suited for safety related tasks.292

Cartpole+. We use the standard Cartpole environment, except that we change the maximum293

number of steps from 200 to 50k to study long-term policy stability. We name this new environment294

Cartpole+. It is substantially more difficult than the initial setting. We learn reversibility offline, using295

trajectories collected from a random policy. Fig. 7a shows that a random policy augmented with RAC296

achieves seemingly infinite scores. For the sake of comparison, we indicate that a DQN [30] and297

the state-of-the-art M-DQN [44] achieve a maximum score of respectively 1152 and 2801 under a298

standard training procedure, described in Appendix C.5. This can be surprising, since RAC was only299

trained on random thus short trajectories (mean length of 20). We illustrate the predictions of our300

learned estimator in Fig. 7b,7c. When the pole leans to the left (x < 0), we can see that moving the301

8



0.1 0.15 0.2 0.25 0.3 0.35 0.4
 threshold 

102

103

104

sc
or

e

(a) Trajectory lengths

0.2 0.0 0.2
x

0.97

0.98

0.99

1.00

y

  - 0.5
  - 0.1
  - 0.01
  - 0.001

(b) Coordinates: action 0

0.2 0.0 0.2
x

0.97

0.98

0.99

1.00

y

  - 0.5
  - 0.1
  - 0.01
  - 0.001

(c) Coordinates: action 1

Figure 7: (a): Mean score of a random policy augmented with RAC on Cartpole+ for several threshold
values, with 95% confidence intervals over 10 random seeds (log scale). (b) and (c): The x and y
axes are the coordinates of the end of the pole relatively to the cart position. The color indicates the
estimated reversibility values.

cart to the left is perceived as more reversible than moving it to the right. This is key to the good302

performance of RAC and perfectly on par with our understanding of physics: when the pole is leaning303

in a direction, agents must move the cart in the same direction to stabilize it.304

0 2 4 6 8
timesteps (1e4)

0

5

10

15

sp
oi

le
d 

gr
as

s

PPO + RAC
PPO 0.5

0.6

0.7

0.8

0.9

1.0

re
wa

rd

Figure 8: PPO and RAC (solid
lines) vs PPO (dashed lines).
At the cost of slower learning
(brown), our approach prevents
the agent from producing a single
irreversible side-effect (green)
during the learning phase. Curves
are averaged over 10 runs.

Turf. We now illustrate how RAC can be used for safe online305

learning: the implicitly safe constraints provided by RAC306

prevent policies from deviating from safe trajectories. This307

ensures for example that agents stay in recoverable zones308

during exploration.309

We learn the reversibility estimator offline, using the trajectories310

of a random policy. We reject actions whose reversibility is311

deemed inferior to β = 0.2, and train a PPO agent with RAC.312

As displayed in Fig. 8, PPO with RAC learns to reach the goal313

without causing any irreversible side-effect (i.e. stepping on314

grass) during the whole training process.315

The threshold β is a very important parameter of the algo-316

rithm. Too low a threshold could lead to overlooking some317

irreversible actions, while a high threshold could prevent the318

agent from learning the new task at hand. We discuss this319

performance/safety trade-off in more details in Appendix. C.7.320

7 Conclusion321

In this work, we formalized the link between the reversibility of transitions and their temporal order,322

which inspired a self-supervised procedure to learn the reversibility of actions from experience. In323

combination with two novel reversibility-aware exploration strategies, RAE for directed exploration324

and RAC for directed control, we showed the empirical benefits of our approach in various scenarios,325

ranging from safe RL to risk-averse exploration. Notably, we demonstrated increased performance in326

procedurally-generated Sokoban puzzles, which we tied to more efficient exploration.327

Broader impact and ethical considerations. The presented work aims at estimating and con-328

trolling potentially irreversible behaviors in RL agents. We think it has interesting applications in329

safety-first scenarios, where irreversible behavior or side-effects are to be avoided. The societal330

implication of these effects would be safer interactions with RL-powered components (e.g. robots,331

virtual assistants, recommender systems) which, though rare today, could become the norm. We332

argue that further research and applications should verify that the induced reversible behavior holds333

in almost all situations and does not lead to unintended effects.334

9



References335

[1] A. Amiranashvili, A. Dosovitskiy, V. Koltun, and T. Brox. Motion perception in reinforcement336

learning with dynamic objects. In Conference on Robot Learning, 2018.337

[2] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D. Mané. Concrete338

problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.339

[3] Y. Aytar, T. Pfaff, D. Budden, T. L. Paine, Z. Wang, and N. de Freitas. Playing hard exploration340

games by watching youtube. In Advances in Neural Information Processing Systems, 2018.341

[4] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. D. Guo, and C. Blundell.342

Agent57: Outperforming the atari human benchmark. In International Conference on Machine343

Learning, 2020.344

[5] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kapturowski, O. Tieleman,345

M. Arjovsky, A. Pritzel, A. Bolt, et al. Never give up: Learning directed exploration strategies.346

In International Conference on Learning Representations, 2020.347

[6] Y. Bai, H. Fan, I. Misra, G. Venkatesh, Y. Lu, Y. Zhou, Q. Yu, V. Chandra, and A. Yuille.348

Can temporal information help with contrastive self-supervised learning? arXiv preprint349

arXiv:2011.13046, 2020.350

[7] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve351

difficult learning control problems. In IEEE Transactions on Systems, Man, and Cybernetics,352

1983.353

[8] T. Basha, Y. Moses, and S. Avidan. Photo sequencing. In European Conference on Computer354

Vision, 2012.355

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.356

Openai gym, 2016. URL http://arxiv.org/abs/1606.01540.357

[10] A. N. Carr, Q. Berthet, M. Blondel, O. Teboul, and N. Zeghidour. Self-supervised learning of358

audio representations from permutations with differentiable ranking. In IEEE Signal Processing359

Letters, 2021.360

[11] R. Dadashi, L. Hussenot, M. Geist, and O. Pietquin. Primal wasserstein imitation learning. In361

International Conference on Learning Representations, 2020.362

[12] D. Dwibedi, J. Tompson, C. Lynch, and P. Sermanet. Learning actionable representations from363

visual observations. In International Conference on Intelligent Robots and Systems, 2018.364

[13] A. El-Nouby, S. Zhai, G. W. Taylor, and J. M. Susskind. Skip-clip: Self-supervised spatiotem-365

poral representation learning by future clip order ranking. arXiv preprint arXiv:1910.12770,366

2019.367

[14] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,368

I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner369

architectures. In International Conference on Machine Learning, 2018.370

[15] B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars. Modeling video371

evolution for action recognition. In Conference on Computer Vision and Pattern Recognition,372

2015.373

[16] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-supervised video representation learning374

with odd-one-out networks. In Conference on Computer Vision and Pattern Recognition, 2017.375

[17] J. García and F. Fernández. Safe exploration of state and action spaces in reinforcement learning.376

Journal of Artificial Intelligence Research, 2012.377

[18] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised learning of378

spatiotemporally coherent metrics. In International Conference on Computer Vision, 2015.379

[19] A. Guez, M. Mirza, K. Gregor, et al. An investigation of model-free planning. In International380

Conference on Machine Learning, 2019.381

[20] Z. D. Guo, M. G. Azar, B. Piot, B. A. Pires, and R. Munos. Neural predictive belief representa-382

tions. arXiv preprint arXiv:1811.06407, 2018.383

[21] Z. D. Guo, B. A. Pires, B. Piot, J.-B. Grill, F. Altché, R. Munos, and M. G. Azar. Bootstrap latent-384

predictive representations for multitask reinforcement learning. In International Conference on385

Machine Learning, 2020.386

10

http://arxiv.org/abs/1606.01540


[22] A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft. Safe exploration for reinforcement387

learning. In European Symposium on Artificial Neural Networks, 2008.388

[23] M. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, et al. Acme: A research framework389

for distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2020.390

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International391

Conference on Learning Representations, 2015.392

[25] M. Kruusmaa, Y. Gavshin, and A. Eppendahl. Don’t do things you can’t undo: Reversibility393

models for generating safe behaviours. In International Conference on Robotics and Automation,394

2007.395

[26] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq, L. Orseau, and S. Legg.396

AI safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.397

[27] O.-A. Maillard, T. Mann, R. Ortner, and S. Mannor. Active Rollouts in MDP with Irreversible398

Dynamics. Hal preprint hal-02177808, 2019.399

[28] D. W. McAllister, T. R. Mitchell, and L. R. Beach. The contingency model for the selection400

of decision strategies: An empirical test of the effects of significance, accountability, and401

reversibility. In Organizational Behavior and Human Performance, 1979.402

[29] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: unsupervised learning using temporal403

order verification. In European Conference on Computer Vision, 2016.404

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,405

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,406

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through407

deep reinforcement learning. Nature, 2015.408

[31] T. M. Moldovan and P. Abbeel. Safe exploration in markov decision processes. In International409

Conference on Machine Learning, 2012.410

[32] S. Nair, M. Babaeizadeh, C. Finn, S. Levine, and V. Kumar. Time reversal as self-supervision.411

In International Conference on Robotics and Automation, 2020.412

[33] J. R. Norris. Markov chains. Cambridge series in statistical and probabilistic mathematics.413

Cambridge University Press, 1998. ISBN 978-0-521-48181-6.414

[34] L. C. Pickup, Z. Pan, D. Wei, Y. C. Shih, C. Zhang, A. Zisserman, B. Scholkopf, and W. T.415

Freeman. Seeing the arrow of time. In Conference on Computer Vision and Pattern Recognition,416

2014.417

[35] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable baselines3.418

https://github.com/DLR-RM/stable-baselines3, 2019.419

[36] N. Rahaman, S. Wolf, A. Goyal, R. Remme, and Y. Bengio. Learning the arrow of time for420

problems in reinforcement learning. In International Conference on Learning Representations,421

2020.422

[37] V. Ramanathan, K. Tang, G. Mori, and L. Fei-Fei. Learning temporal embeddings for complex423

video analysis. In International Conference on Computer Vision, 2015.424

[38] A. Saeed, D. Grangier, O. Pietquin, and N. Zeghidour. Learning from heterogeneous eeg signals425

with differentiable channel reordering. In International Conference on Acoustics, Speech and426

Signal Processing, 2020.427

[39] N. Savinov, A. Raichuk, R. Marinier, D. Vincent, M. Pollefeys, T. Lillicrap, and S. Gelly.428

Episodic curiosity through reachability. In International Conference on Learning Representa-429

tions, 2019.430

[40] M.-P. B. Schrader. gym-sokoban. https://github.com/mpSchrader/gym-sokoban, 2018.431

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization432

algorithms. arXiv preprint arXiv:1707.06347, 2017.433

[42] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain. Time-434

contrastive networks: Self-supervised learning from video. In International Conference on435

Robotics and Automation, 2018.436

[43] A. Srinivas, M. Laskin, and P. Abbeel. Curl: Contrastive unsupervised representations for437

reinforcement learning. In International Conference on Machine Learning, 2020.438

11

https://github.com/DLR-RM/stable-baselines3
https://github.com/mpSchrader/gym-sokoban


[44] N. Vieillard, O. Pietquin, and M. Geist. Munchausen reinforcement learning. In Advances in439

Neural Information Processing Systems, 2020.440

[45] T. Weber, S. Racanière, D. P. Reichert, L. Buesing, A. Guez, D. J. Rezende, A. P. Badia,441

O. Vinyals, N. Heess, Y. Li, et al. Imagination-augmented agents for deep reinforcement442

learning. In Advances in Neural Information Processing Systems, 2017.443

[46] D. Wei, J. J. Lim, A. Zisserman, and W. T. Freeman. Learning and using the arrow of time. In444

Conference on Computer Vision and Pattern Recognition, 2018.445

[47] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang. Self-supervised spatiotemporal learning446

via video clip order prediction. In Conference on Computer Vision and Pattern Recognition,447

2019.448

[48] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Reinforcement learning with prototypical449

representations. In International Conference on Machine Learning, 2021.450

[49] M. Zeelenberg. Anticipated regret, expected feedback and behavioral decision making. In451

Journal of Behavioral Decision Making, 1999.452

12



Checklist453

1. For all authors...454

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s455

contributions and scope? [Yes]456

(b) Did you describe the limitations of your work? [Yes] Practical caveats and limitations457

are discussed at the beginning of Sec. 5 and in Sec. 7.458

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Sec. 7.459

(d) Have you read the ethics review guidelines and ensured that your paper conforms to460

them? [Yes]461

2. If you are including theoretical results...462

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Theoretical463

assumptions are described along the propositions and theorems in Sec. 4.464

(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs are465

given in Appendix A.466

3. If you ran experiments...467

(a) Did you include the code, data, and instructions needed to reproduce the main experi-468

mental results (either in the supplemental material or as a URL)? [Yes] We released the469

code for every experiments except Sokoban (Sec. 6.3) as some components are propri-470

etary. Additionally, the pseudo-code for the proposed methods is given in Appendix B.471

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they472

were chosen)? [Yes] See Appendix C.473

(c) Did you report error bars (e.g., with respect to the random seed after running experi-474

ments multiple times)? [Yes]475

(d) Did you include the total amount of compute and the type of resources used (e.g., type476

of GPUs, internal cluster, or cloud provider)? [No]477

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...478

(a) If your work uses existing assets, did you cite the creators? [Yes]479

(b) Did you mention the license of the assets? [No]480

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]481

(d) Did you discuss whether and how consent was obtained from people whose data you’re482

using/curating? [N/A]483

(e) Did you discuss whether the data you are using/curating contains personally identifiable484

information or offensive content? [N/A]485

5. If you used crowdsourcing or conducted research with human subjects...486

(a) Did you include the full text of instructions given to participants and screenshots, if487

applicable? [N/A]488

(b) Did you describe any potential participant risks, with links to Institutional Review489

Board (IRB) approvals, if applicable? [N/A]490

(c) Did you include the estimated hourly wage paid to participants and the total amount491

spent on participant compensation? [N/A]492

13



We organize the supplementary material as follows: in Appendix A, we include the proofs of results493

from the main text, as well as additional formalism; in Appendix B, we provide additional details494

about the proposed algorithms, including pseudo-code and figures that did not fit in the main text; and495

in Appendix C, we detail our experimental procedure, including hyperparameters for all methods/496

A Mathematical Elements and Proofs497

A.1 Possible Definitions of Reversibility498

In this section, we present several intuitive definitions of reversibility in MDPs. We chose the third499

definition as our reference, which we argue presents several advantages over the others, although500

they can be interesting in specific contexts. Indeed, Eq. (3) is simpler than Eq. (1), as it does not501

depends on the discount factor, and more general than Eq. (2), as it does not enforce a fixed number502

of timesteps for going back to the starting state.503

Discounted Reward.

φπ,K(s, a) :=

K∑
k>t

γk−tpπ(st+k = s | st = s, at = a) , (1)

φπ(s, a) :=

∞∑
k>t

γk−tpπ(st+k = s | st = s, at = a).

Fixed Time Step.
φπ,K(s, a) := sup

k≤K
pπ(st+k = s | st = s, at = a) , (2)

φπ(s, a) := sup
k∈N

pπ(st+k = s | st = s, at = a).

Undiscounted Reward.

φπ,K(s, a) :=

K∑
k=1

pπ(st+k = s, st+k−1 6= s, . . . , st+1 6= s | st = s, at = a) ,

= pπ(s ∈ τt+1:t+K+1 | st = s, at = a) . (3)

φπ(s, a) :=

∞∑
k=1

pπ(st+k = s, st+k−1 6= s, . . . , st+1 6= s | st = s, at = a) ,

= pπ(s ∈ τt+1:∞ | st = s, at = a).

A.2 Additional Properties504

1

2

3

0.1
0.1

0.1
0.9

0.9

0.9

Figure 9: Counter-
example for propo-
sition 4. The ini-
tial state is sampled
uniformly amongst
{0, 1, 2}.

We write s→ s′ if ψπ(s, s′) ≥ 0.5 ("it is more likely to go from s to s′ than505

to go from s′ to s") and s ⇒ s′ if ψπ(s, s′) = 1 ("it is possible to go from s506

to s′, but it is not possible to come back to s from s′").507

1. ψπ(s, s′) + ψπ(s′, s) = 1508

2. if s0 ⇒ s1 ⇒ s2 then s0 ⇒ s2 (transitivity for⇒)509

3. if s0 → s1 → · · · → si ⇒ si+1 → · · · → st then s0 ⇒ st510

4. in general s1 → s2 and s2 → s3 doesn’t imply s1 → s3511

Proofs:512

(1) ψπ(s, s′) + ψπ(s′, s) = Eτ∼πEt 6=t′|st=s,st′=s′
[
1t′>t + 1t′<t

]
=513

Eτ∼πEt6=t′|st=s,st′=s′
[
1
]

= 1.514

(2) and (3): As (3) is stronger than (2), we only prove (3). If it is possible to have s0 after st in a515

trajectory, then it is possible to have si after st. As we have a positive probability of seeing st after516

si+1, we have a positive probability of seeing si after si+1, which contradicts si ⇒ si+1.517

14



(4) A counter example can be found in Fig. 9. In this case we clearly have s1 → s2, s2 → s3 and518

s3 → s1.519

A.3 Proofs of Theorem 1 and Theorem 2520

In the following, we prove simultaneously Theorem 1 and Theorem 2. We begin by two lemmas.521

Lemma 1. Given a trajectory τ , we denote by #T (s→ s′) the number of pairs (s, s′) in τ1:T such522

that s appears before s′. We present a simple formula for ψ(s′, s) according to the structure of the523

state trajectory:524

ψπ,T (s, s′) =
Eτ∼π

[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] .
Proof. In order to simplify the notations, we leave implicit the fact that indices are always sampled525

within [0, T ].526

ψπ,T (s, s′) = EπEt6=t′|st=s,st′=s′
[
1t′>t

]
,

=
EπEt 6=t′

[
1t′>t1st=s1st′=s′

]
EπEt6=t′

[
1st=s1st′=s′

] .

Similarly, we have:527

EπEt′>t
[
1st=s1st′=s′

]
=

EπEt 6=t′
[
1t′>t1st=s1st′=s′

]
Et6=t′

[
1t′>t

] .

Combining it with our previous equation:528

ψπ,T (s, s′) =
EπEt′>t

[
1st=s1st′=s′

]
Et6=t′

[
1t′>t

]
EπEt6=t′ ,

[
1st=s1st′=s′

] ,

=
1

2

EπEt′>t
[
1st=s1st′=s′

]
EπEt 6=t′

[
1st=s1st′=s′

] .
Looking at the denominator, we can notice:529

EπEt 6=t′
[
1st=s1st′=s′

]
=

1

2
EπEt<t′

[
1st=s1st′=s′

]
+

1

2
EπEt′<t

[
1st=s1st′=s′

]
,

=
1

2
EπEt<t′

[
1st=s1st′=s′ + 1st=s′1st′=s

]
,

which comes from the fact that t and t′ play a symmetrical role. Thus,530

ψπ,T (s, s′) =
Eτ∼πEtEt′>t

[
1st=s1st′=s′

]
Eτ∼πEtEt′>t

[
1st=s1st′=s′ + 1st=s′1st′=s

] .
Since531

Eτ∼π
[
#T (s→ s′)

]
=
∑
i<j≤T

1si=s1sj=s′ ,

=

(
T

2

) ∑
i<j≤T

1(
T
2

)1si=s1sj=s′ ,

=

(
T

2

)
Eτ∼πEtEt′>t

[
1st=s1st′=s′

]
,

15



we get:532

ψπ,T (s, s′) =

(
T
2

)
Eτ∼π

[
#T (s→ s′)

](
T
2

)
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] ,
ψπ,T (s, s′) =

Eτ∼π
[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] .
533

Lemma 2. Assume that we are given a fixed trajectory where s appears k ∈ N times, in the form of :534

s0 −→︸︷︷︸
n0(s′)

s −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

. . . −→︸︷︷︸
nk−1(s′)

s −→︸︷︷︸
nk(s′)

,

where ni(s′) denotes the number of times s′ appears between the ith and the (i + 1)th occurrence535

of s. In this case,536

#T (s→ s′) =

k∑
i=0

i× ni(s′) . (4)

If we suppose that n1(s′) = n2(s′) = · · · = nk−1(s′), we also have537

#T (s→ s′)−#T (s′ → s) = k
(
nk(s′)− n0(s′)

)
. (5)

Proof. Eq. (4) comes directly from #T (s→ s′) =
∑k
i=1

∑k
j=i nj(s

′) =
∑k
i=0 i×ni(s′). To prove538

Equ. (5), we first notice that #T (s→ s′) + #T (s′ → s) = k ×
∑k
i=0 ni(s

′). Thus539

#T (s→ s′)−#T (s′ → s) = 2×#T (s→ s′)−
(
#T (s→ s′) + #T (s′ → s)

)
,

= 2

(
k nk(s′) + n1(s′)

k−1∑
i=0

i

)
−
(
k nk(s′) + k n0(s′) + k (k − 1)n1(s′)

)
,

= k nk(s′)− k n0(s′) .

540

Theorem 1. For every policy π and s, s′ ∈ S, ψπ,T (s, s′) converges when T goes to infinity.541

Theorem 2. Given a policy π, a state s, and an action a, we can link reversibility and empirical542

reversibility with the inequality: φ̄π(s, a) ≥ φπ(s,a)
2 .543

Proof. For a policy π and s, s′ ∈ S, we define φ̂π(s, s′) the quantity pπ(s ∈ τt+1:∞ | st = s′) such544

that φπ(s, a) = Es′∼P (s,a)

[
φ̂π(s, s′)

]
In order to prove the theorem, we first prove that ψT (s′, s)545

converges to a quantity denoted by ψ(s′, s), and that:546

∀s, s′ ∈ S, φ̂
π(s, s′)

2
≤ ψ(s′, s) . (6)

We subdivide our problem into four cases, depending on whether s and s′ are recurrent or transient.547

Case 1: pπ(s ∈ τt+1:∞ | st = s) < 1 and pπ(s′ ∈ τt+1:∞ | st = s′) = 1 (s is transient and s′548

is recurrent for the Markov chain induced by π). Informally, this means that if a trajectory contains549

the state s′ we tend to see s′ an infinite number of times, and we only see s a finite number of times550

in a given trajectory.551

This implies φ̂π(s, s′) = pπ(s ∈ τt+1:∞ | st = s′) = 0, as recurrent states can only be linked552

to other recurrent states [33]. It is not possible to find trajectories where s appears after s′, thus553

ψT (s′, s) = 0 = ψ(s′, s). Equ. (6) becomes "0 ≤ 0".554

16



Case 2: pπ(s ∈ τt+1:∞ | st = s) = 1 and pπ(s′ ∈ τt+1:∞ | st = s′) < 1 (s is recurrent and s′555

is transient for the Markov chain induced by π).556

As before, this implies φ̂π(s′, s) = pπ(s′ ∈ τt+1:∞ | st = s) = 0, and thus it is not possible to see557

in a trajectory s after s′. It implies ψT (s′, s) = 1 = ψ(s′, s), so Equ. (6) is verified.558

Case 3: pπ(s ∈ τt+1:∞ | st = s) = 1 and pπ(s′ ∈ τt+1:∞ | st = s′) = 1 (s is recurrent and s′ is559

recurrent for the Markov chain induced by π). We denote by Tk the random variable corresponding560

to the time of the kth visit to s. A trajectory can be represented as follows:561

s0 −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

s −→︸︷︷︸
n4(s′)

. . . −→︸︷︷︸
nk(s′)

s = sTk −→︸︷︷︸
nk+1(s′)

,

where, writing ∼ the equality in distribution, n2(s′) ∼ n3(s′) ∼ · · · ∼ nk(s′) and562

Eτn2(s′) = Eτn3(s′) = · · · = Eτnk(s′) using the strong Markov property. From Lemma 1 we get:563

ψπ,T (s, s′) =
Eτ∼π

[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] ,
=

1

2

Eτ∼π
[
#T (s→ s′) + #T (s′ → s) + #T (s→ s′)−#T (s′ → s)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] ,

=
1

2
+

Eτ∼π
[
#T (s→ s′)−#T (s′ → s)

]
2 Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] .
We can see from Lemma 2 :564

Eτ
[
#Tk(s→ s′)−#Tk(s′ → s)

]
= −k Eτn1(s′) .

Thus,565

Eτ
[
#Tk(s→ s′)−#Tk(s′ → s)

]
Eτ∼π

[
#Tk(s→ s′) + #Tk(s′ → s)

] =
−k Eτn1(s′)

k Eτn1(s′) + k2 Eτn2(s′)
(7)

−−−−→
k→∞

0.

Given t ∈ N and a trajectory τ , we denote #T (s) the random variable corresponding to the number566

of times when s appear before t, such that a trajectory has the following structure :567

s0 −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

s −→︸︷︷︸
n4(s′)

. . . −→︸︷︷︸
nk(s′)

s = sT#T (s)
−→ st −→︸ ︷︷ ︸
nk+1(s′)

s = sT#T (s)+1
.

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] ≤ Eτ
[
##T (s)(s→ s′)−##T (s)(s

′ → s)
]

+ Eτ#T (s)nk+1(s′)

Eτ##T (s)(s→ s′) + Eτ##T (s)(s
′ → s)

,

−−−−→
T→∞

0 as in Equ. (7).

And,568

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] ≥ Eτ
[
##T (s)(s→ s′)−##T (s)(s

′ → s)
]
− Eτ

∑#T (s)+1
i=1 ni(s

′)

Eτ
[
##T (s)(s→ s′) + ##T (s)(s

′ → s)
] ,

−−−−→
T→∞

0

17



Therefore,569

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

0 , and finally,

ψπ,T (s, s′) =
1

2
+

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
2Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

1

2
.

As φ̂π(s, s′) = 1 here, we immediately have φ̂π(s,s
′)

2 = ψ(s′, s). We can notice that the inequality570

is tight in this case.571

Case 4: pπ(s ∈ τt+1:∞ | st = s) < 1 and pπ(s′ ∈ τt+1:∞ | st = s′) < 1 (s is transient and s′572

is transient for the Markov chain induced by π). To simplify the following formulas, we will write573

α = pπ(s ∈ τt+1:∞ | st = s′). Here, we denote by #(s) the random variable corresponding to the574

total number of visits of the state s, and #(s→ s′) the number of pairs such that s appears before575

s′. #(s) follows the geometric distribution G (1− pπ(s ∈ τt+1:∞ | st = s)).576

#T (s→ s′) converges almost surely to #(s→ s′), and we have #T (s→ s′) ≤ #(s→ s′). There-577

fore, using the dominated convergence theorem, Eτ
[
#T (s→ s′)

]
−−−−→
T→∞

Eτ
[
#(s→ s′)

]
, and thus:578

ψπ,T (s′, s) =
Eτ
[
#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

Eτ#(s′ → s)

Eτ
[
#(s→ s′) + #(s′ → s)

] = ψπ(s′, s) .

This time, we consider a trajectory τ where s appears k times after s′, such that it is of the form:579

s′ . . . s′

n0(s′)≥0

−→ s . . . s
n1(s)>0

−→ s′ . . . s′

n1(s′)>0

−→ s . . . s
n2(s)>0

−→ · · · −→ s′ . . . s′

nk−1(s′)>0

−→ s . . . s
nk(s)>0

−→ s′ . . . s′

nk(s′)≥0

−→

Here, n0(s′) is the number of times when s′ appears in the trajectory before the first appearance580

of s′, ni(s) is the number of times when s appears between two occurrences of s′, and nk(s′) the581

number of times when s′ appears after the last appearance of s. From the strong Markov property,582

n1(s′) ∼ n2(s′) ∼ · · · ∼ nk−1(s′) and n1(s) ∼ n2(s) ∼ · · · ∼ nk(s). Note also that these variables583

are all independent. Here k is a random variable following the geometric distributionG(α) where α =584

p(s ∈ τt:∞ | st = s′). Notice that when nk(s′) > 0, we have nk(s) ∼ n1(s) and nk(s′) ∼ n1(s′).585

Using these two simplifications, one can write:586

Eτ
[
#(s′ → s)−#(s→ s′)

∣∣∣k] ≥ Eτ
[
#(s′ → s)−#(s→ s′)

∣∣∣k, nk(s′) > 0
]
,

≥ Eτ
[
n0(s′)

[
n1(s) + (k − 1)n1(s) + nk(s)

]
− n1(s)

[
kn1(s′) + nk(s′)

]
+

nk(s)
[
kn1(s′)− nk(s′)

]
− nk(s′)(k − 1)n1(s)

∣∣∣k, nk(s′) > 0
]
,

≥ −kEτ
[
n1(s)

∣∣∣k]Eτ[nk(s′)
∣∣∣k, nk(s′) > 0

]
as in Lemma 2 ,

≥ −kEτ (n1(s))Eτ (n1(s′)) .

Likewise,587

Eτ
[
#(s′ → s) + #(s→ s′)

∣∣ k] = Eτ
[
k n1(s)nk(s′) + k n0(s′)n1(s) + k (k − 1)n1(s)n1(s′)

∣∣∣k] ,
= k

[
Eτ
[
n1(s)

]
Eτ
[
n1(s′)

]
+ Eτ

[
n1(s)

]
Eτ
[
n0(s′)

]]
+ k(k − 1)Eτ

[
n1(s)

]
Eτ
[
n1(s′)

]
.

18



Thus,588

Eτ
[
#(s′ → s)−#(s→ s′)

]
Eτ
[
#(s→ s′) + #(s′ → s)

] =

∑∞
i=1 p(k = i)Eτ [#(s′ → s)−#(s→ s′) | k = i]∑∞
i=1 p(k = i)Eτ [#(s→ s′) + #(s′ → s) | k = i]

,

≥ −
∑∞
i=1 α

i−1(1− α) iEτ
[
n1(s)

]
Eτ
[
n1(s′)

]∑∞
i=1 α

i−1(1− α)
[
i
(
Eτ
[
n1(s)

]
Eτ
[
n1(s′)

]
+ Eτ

[
n1(s)

]
Eτ
[
n0(s′)

])
+ i (i− 1)Eτ

[
n1(s)

]
Eτ
[
n1(s′)

]] ,

≥ −
∑∞
i=1 α

i−1(1− α)iEτ
[
n1(s)

]
Eτ
[
n1(s′)

]∑∞
i=1 α

i−1(1− α)
[
iEτ

[
n1(s)

]
Eτ
[
n1(s′)

]
+ i (i− 1)Eτ

[
n1(s)

]
Eτ
[
n1(s′)

]] ,
≥ −

∑∞
i=1 α

i−1(1− α) i∑∞
i=1 α

i−1(1− α)
[
i+ i (i− 1)

] ,
≥ −

∑∞
i=1 α

i−1(1− α) i∑∞
i=1 α

i−1(1− α) i2
,

≥ −
1

1−α
1+α

(1−α)2
,

≥ −1− α
1 + α

.

From Lemma 1,589

ψπ(s′, s) =
1

2

(
1 +

Eτ
[
#(s′ → s)−#(s→ s′)

]
Eτ∼π

[
#(s→ s′) + #(s′ → s)

]) ,

≥ 1

2

(
1− 1− α

1 + α

)
,

≥ α

1 + α
,

≥ α

2
=
φ̂π(s, s′)

2
.

As a quick summary, we divided our problem in 4 cases, and proved that in each case, for every590

pair of states s, s′, we have ψπ(s′, s) ≥ φ̂π(s,s
′)

2 .591

To end the proof, we simply take the expectation over the distribution of the next states:592

Es′∼P (s,a)ψπ(s′, s) ≥ 1

2
Es′∼P (s,a)φ̂π(s, s′) ,

φ̄π(s, a) ≥ φπ(s, a)

2
.

593

A.4 Proof of proposition 1594

Proposition 1. We suppose that we are given a state s, an action a such that a is reversible in K595

steps, a policy π and ρ > 0. Then, φ̄π(s, a) ≥ ρK

2 , where A denotes the number of actions. Moreover,596

we have for all K ∈ N: φ̄π(s, a) ≥ ρK

2 φK(s, a).597

Proof. We first prove the second part of the proposition, which is more general. From Definition 1,598

and as the set of policies is closed, there is a policy π∗ such that φK(s, a) = pπ∗(s ∈ τt+1:t+K+1 |599

19



Observation
Embedding

Concat

Joint 
Embedding

Degree of 
Reversibility

Temporal Order 
Probability

Figure 10: The training procedure for the reversibility estimator used in RAC.

st = s, at = a). We begin by noticing that π has a probability at least equal to ρ to copy the policy600

π∗ in every state.601

It can be stated more formally:602

∀s ∈ S,Ea∼π(s),a∗∼π∗(s)(1a=a′) =
∑
a∈A

pπ(a | s)pπ∗(a | s) ≥ ρ
(∑
a∈A

pπ∗(a | s)
)

= ρ .

Then, we have:603

φπ,K(s, a) = pπ(s ∈ τt+1:t+K+1 | st = s, at = a) ,

= Eπ
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

= Est+2,...,st+K+1∼πEst+1∼p(st,at)
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

= Est+3,...,st+K+1∼πE at+1∼π(st+1)
st+2∼p(st+1,at+1)

Est+1∼p(st,at)
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

= Est+3,...,st+K+1∼πEat+1∼π(st+1),a
′
t+1∼π

∗(st+1)

st+2∼p(st+1,at+1)

Est+1∼p(st,at)
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

≥ Est+3,...,st+K+1∼πEat+1∼π(st+1),a
∗
t+1∼π

∗(st+1)

st+2∼p(st+1,at+1)
st+1∼p(st,at)

[
1s∈τt+1:t+K+1

| st = s, at = a, at+1 = a∗t+1

]
1at+1=a∗t+1

,

≥ ρEst+3,...,st+K+1∼πEst+1,st+2∼π∗
[
1s∈τt+1:t+K+1

| st = s, at = a
]

, and iterating the same process, ,

≥ ρKEst+1,st+2,...,st+K+1∼π∗
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

≥ ρKφK(s, a) .

We can conclude using Theorem 2: φ̄π(s, a) ≥ φπ(s,a)
2 ≥ φπ,K(s,a)

2 ≥ ρK

2 φK(s, a).604

605

B Additional Details About Reversibility-Aware RL606

B.1 Learning a reversibility estimator607

We illustrate how the reversibility estimator is trained in Fig. 10. We remind the reader that it is a608

component that is specific to RAC. See Algorithm 2 for the detailed procedure of how to train it609

jointly with the standard precedence estimator and the RL agent.610

20



Algorithm 1: RAE: Reversibility-Aware Exploration (online)
Initialize the agent weights Θ and number of RL updates per trajectory k;
Initialize the precedence classifier weights θ, ξ, window size w, threshold β and learning rate η;
Initialize the replay buffer B;
for each iteration do

/* Collect interaction data and train the agent. */
Sample a trajectory τ = {xi, ai, ri}i=1...T with the current policy;
Incorporate irreversibility penalties τ ′ =

{
xi, ai, ri + rβ

(
ψθ,ξ(xi, xi+1)

)}
i=1...T

;
Store the trajectory in the replay buffer B ← B ∪ τ ;
Do k RL steps and update Θ;
/* Update the precedence classifier. */
for each training step do

Sample a minibatch Dbatch from B;
/* Self-supervised precedence classification, loss in Eq.(9). */
θ ← θ − η∇θLSSL(Dbatch);
ξ ← ξ − η∇ξLSSL(Dbatch);

end
end

Algorithm 2: RAC: Reversibility-Aware Control (online)
Initialize the agent weights Θ and number of RL updates per trajectory k;
Initialize the precedence classifier weights θ, ξ, window size w, threshold β and learning rate η;
Initialize the reversibility estimator weights ζ;
Initialize the replay buffer B;
for each iteration do

/* Collect interaction data with the modified control policy and train
the agent. */

Sample a trajectory τ under the rejection sampling policy π̄ from eq.(8) ;
Store the trajectory in the replay buffer B ← B ∪ τ ;
Do k RL steps and update Θ;
/* Update the precedence classifier. */
for each training step do

Sample a minibatch Dbatch from B;
/* Self-supervised precedence classification, loss in Eq.(9). */
θ ← θ − η∇θLSSL(Dbatch);
ξ ← ξ − η∇ξLSSL(Dbatch);

end
/* Update the reversibility estimator, loss in Eq.(10). */
for each training step do

Sample a minibatch Dbatch from B;
/* Regression of the precedence classifier probabilities. */
ζ ← ζ − η∇ζLL2(Dbatch, ψθ,ξ);

end
end

21



B.2 Pseudo-code for RAE and RAC611

We give the pseudo-code for the online versions of RAE (Algorithm 1) and RAC (Algorithm 2).612

The rejection sampling policy π̄ under approximate reversibility φ and threshold β is expressed as613

follows:614

π̄(a|x) =

{
0 if φ(x, a) < β

π(a|x)/Z otherwise, with Z =
∑
a′∈A 1{φ(x, a′) ≥ β}π(a′|x)

. (8)

This is equivalent, on average, to sampling from the policy π until an action that is reversible enough615

is found.616

The loss we use to train the precedence estimator has the expression:617

LSSL(Dbatch) =
1

|Dbatch|
∑

(x,x′,y)∈Dbatch

−y log
(
ψθ,ξ(x, x

′)
)

+(1−y) log
(
1−ψθ,ξ(x, x′)

)
, (9)

where y is the binary result of the shuffle, with value 1 if observations were not shuffled (thus in the618

correct temporal order), and 0 otherwise. Pairs of observations (x, x′) can be separated by up to w619

timesteps.620

The loss we use to train the reversibility estimator (in RAC only) has the expression:621

LL2(Dbatch, ψθ,ξ) =
1

2 |Dbatch|
∑

(x,a,x′)∈Dbatch

(
ψθ,ξ(x, x

′)− φζ(x, a)
)2
, (10)

where (x, a, x′) are triples of state, action and next state sampled from the collected trajectories.622

The offline versions of both RAE and RAC can be derived by separating each online algorithm into623

two parts: 1) training the precedence classifier (and the reversibility estimator for RAC), which is624

achieved by removing the data collection and RL steps and by using a fixed replay buffer; and 2)625

training the RL agent, which is the standard RL procedure augmented with modified rewards for626

RAE, and modified control for RAC, using the classifiers learned in the first part without fine-tuning.627

C Experimental Details628

C.1 Reward-Free Reinforcement Learning629

Cartpole. The observation space is a tabular 4-dimensional vector: (cart position x, cart velocity ẋ,630

pole angle θ, pole velocity θ̇). The discrete action space consists of applying a force left or right. The631

episode terminates if the pole angle is more than ±12° (|θ| ≤ 0.209 radians), if the cart position is632

more than ±2.4, or after 200 time-steps. It is considered solved when the average return is greater633

than or equal to 195.0 over 100 consecutive trials.634

Architecture and hyperparameters. The reversibility network inputs a pair of observations and635

produces an embedding by passing each one into 2 fully connected layers of size 64 followed by ReLU.636

The two embeddings are concatenated, and projected into a scalar followed by a sigmoid activation.637

We trained this network doing 1 gradient step every 500 time steps, using the Adam optimizer [24]638

and a learning rate of 0.01. We used batches of 128 samples, that we collected from a replay buffer639

of size 1 million. The penalization threshold β was fine-tuned over the set [0.5, 0.6, 0.7, 0.8, 0.9]640

and eventually set to 0.7. We notice informally that it was an important parameter. A low threshold641

could lead to over penalizing the agent leading the agent to terminate the episode as soon as possible,642

whereas a high threshold could slow down the learning.643

Regarding PPO, both the policy network and the value network are composed of two hidden layers644

of size 64. Training was done using Adam and a learning rate of 0.01. Other PPO hyperparameters645

were defaults in Raffin et al. [35], except that we add an entropy cost of 0.05.646

C.2 Learning Reversible Policies647

Environment. The environment consists of a 10 × 10 pixel grid. It contains an agent, represented648

by a single blue pixel, which can move in four directions: up, down, left, right. The pink pixel649

22



represents the goal, green pixels grass and grey pixels a stone path. Stepping on grass spoils it and650

the corresponding pixel turns brown, as shown in Fig. 5b. A level terminates after getting to the goal,651

or after 120 timesteps. Upon reaching the goal, the agent receives a reward of +1, every other action652

being associated with 0 reward.653

Architecture and hyperparameters. The reversibility network takes a pair of observations as654

input and produces an embedding by passing each observation through 3 identical convolutional655

layers of kernel size 3, with respectively 32, 64 and 64 channels. The convolutional outputs are656

flattened, linearly projected onto 64 dimensional vectors and concatenated. The resulting vector is657

projected into a scalar, which goes through a final sigmoid activation.658

As done for Cartpole, we trained this network doing 1 gradient step every 500 time steps, using the659

Adam optimizer with a learning rate of 0.01. We used minibatches of 128 samples, that we collected660

from a replay buffer of size 1M. The penalization threshold β was set to 0.8, and the intrinsic reward661

was weighted by 0.1, such that the intrinsic reward was equal to −0.1 1ψ(st,st+1)>0.8 ψ(st, st+1).662

For PPO, both the policy network and the value network are composed of 3 convolutional layers of663

size 32, 64, 64. The output is flattened and passed through a hidden layer of size 512. Each layers are664

followed by a ReLU activation. Policy logits (size 4) and baseline function (size 1) were produced by665

a linear projection. Other PPO hyperparameters were defaults in Raffin et al. [35], except that we add666

an entropy cost of 0.05.667

C.3 Sokoban668

We use the Sokoban implementation from Schrader [40]. The environment is a 10x10 grid with a669

unique layout for each level. The agent receives a -0.1 reward at each timestep, a +1 reward when670

placing a box on a target, a -1 reward when removing a box from a target, and a +10 reward when671

completing a level. Observations are of size (10, 10, 3). Episodes have a maximal length of 120, and672

terminate upon placing the last box on the remaining target. At the beginning of each episode, a673

level is sampled uniformly from a set of 1000 levels, which prevents agents from memorizing puzzle674

solutions. The set is obtained by applying random permutations to the positions of the boxes and the675

position of the agent, and is pre-computed for efficiency. All levels feature four boxes and targets.676

We use the distributed IMPALA implementation from the Acme framework [23] as our baseline677

agent in these experiments. The architecture and hyperparameters were obtained by optimizing for678

sample-efficiency on a single held-out level. Specifically, the agent network consists of three 3x3679

convolutional layers with 8, 16 and 16 filters and strides 2, 1, and 1 respectively; each followed by a680

ReLU nonlinearity except the last one. The outputs are flattened and fed to a 2-layer feed-forward681

network with 64 hidden units and ReLU nonlinearities. The policy and the value network share682

all previous layers, and each have a separate final one-layer feed-forward network with 64 hidden683

units and ReLU nonlinearities as well. Regarding agent hyperparameters, we use 64 actors running684

in parallel, a batch size of 256, an unroll length of 20, and a maximum gradient norm of 40. The685

coefficient of the loss on the value is 0.5, and that of the entropic regularization 0.01. We use the686

Adam optimizer with a learning rate of 0.0005, a momentum decay of 0 and a variance decay of 0.99.687

The precedence estimator network is quite similar: it consists of two 3x3 convolutional layers with 8688

filters each and strides 2 and 1 respectively; each followed by a ReLU nonlinearity except the last689

one. The outputs are flattened and fed to a 3-layer feed-forward network with 64 hidden units and690

ReLU nonlinearities, and a final layer with a single neuron. We use dropout in the feed-forward691

network, with a probability of 0.1. Precedence probabilities are obtained by applying the sigmoid692

function to the outputs of the last feed-forward layer. The precedence estimator is trained offline on693

100k trajectories collected from a random agent. It is trained on a total of 20M pairs of observations694

sampled with a window of size 15, although we observed identical performance with larger sizes (up695

to 120, which is the maximal window size). We use the Adam optimizer with a learning rate of 0.0005,696

a momentum decay of 0.9, a variance decay of 0.999. We also use weight decay, with a coefficient697

of 0.0001. We use a threshold β of 0.9. We selected hyperparameters based on performance on698

validation data.699

23



C.4 Reversibility-Aware Control in Cartpole+700

Learning ψ. The model architecture is the same as described in Appendix C.1. The training is701

done offline using a buffer of 100k trajectories collected using a random policy. State pairs are fed702

to the classifier in batches of size 128, for a total of 3M pairs. We use the Adam optimizer with a703

learning rate of 0.01. We use a window w equal to 200, which is the maximum number of timesteps704

in our environment.705

Learning φ. We use a shallow feed-forward network with a single hidden layer of size 64 followed706

by a ReLU activation. From the same buffer of trajectories used for ψ, we sample 100k transitions707

and feed them to φ in batches of size 128. As before, training is done using Adam and a learning708

rate of 0.01.709

C.5 DQN and M-DQN in Cartpole+710

We use the same architecture for DQN and M-DQN. The network is a feed-forward network composed711

of two hidden layers of size 512 followed by ReLU activation. In both cases, we update the online712

network every 4 timesteps, and the target network every 400 timesteps. We use a replay buffer of size713

50k, and sample batches of size 128. We use the Adam optimizer with a learning rate of 0.001.714

We train both algorithms for 2M timesteps. We run an evaluation episode every 1000 timesteps, and715

report the maximum performance encountered during the training process. We perform a grid search716

for the discount factor γ ∈ [0.99, 0.999, 0.9997], and for M-DQN parameters α ∈ [0.7, 0.9, 0.99] and717

τ ∈ [0.008, 0.03, 0.1]. The best performances were obtained for α = 0.9, τ = 0.03, and γ = 0.99.718

C.6 Reversibility-Aware Control in Turf719

Learning ψ. We use the same model architecture as in RAE (Appendix C.2), and the same offline720

training procedure that was used for Cartpole+ (Appendix C.4). The window w was set to 120, which721

is the maximum number of steps in Turf.722

Learning φ. The architecture is similar to ψ, except for the last linear layers: the output of the723

convolutional layers is flattened and fed to a feed-forward network with one hidden layer of size 64724

followed by a ReLU. Again, we used the exact same training procedure as in the case of Cartpole+725

(Appendix C.4).726

C.7 Safety and Performance Trade-off in Turf727

We investigate the performance-to-safety trade-off induced by reversibility-awareness in Turf. In728

Fig. 11a, we see that the agent is not able to reach the goal when the threshold is greater than 0.4:729

with too high a threshold, every action leading to the goal could be rejected. We also see that it730

solves the task under lower threshold values, and that lowering β results in faster learning. On the731

other hand, Fig. 11b shows that achieving zero irreversible side-effects during the learning is only732

possible when β is greater than 0.2. In this setting, the optimal thresholds are thus between 0.2 and733

0.3, allowing the agent to learn the new task while eradicating every side-effect.734

This experiment gives some insights on how to tune β in new environments. It should be initialized735

at 0.5 and decreased progressively, until the desired agent behaviour is reached. This would ensure736

that the chosen threshold is the maximal threshold such that the environment can be solved, while737

having the greatest safety guarantees.738

24



0 2 4 6 8
timesteps (1e4)

0.0

0.2

0.4

0.6

0.8

1.0

re
wa

rd 0.0
0.1
0.2
0.3
0.4

(a)

0 2 4 6 8
timesteps (1e4)

0

5

10

15

20
gr

as
s s

po
ile

d

(b)

Figure 11: (a): Reward learning curve for PPO+RAC and several thresholds β (average over 10
random seeds). A threshold of 0 means actions are never rejected, and corresponds to the standard
PPO. (b): Number of irreversible side-effects (grass pixels stepped on). For β between 0.2 and 0.4, 0
side-effects are induced during the whole learning.

25


	Introduction
	Related Work
	Reversibility
	Reversibility Estimation via Classification
	Precedence Estimation
	Estimating Reversibility from Precedence

	Reversibility-Aware Reinforcement Learning
	Experiments
	Reward-Free Reinforcement Learning
	Learning Reversible Policies
	Sokoban
	Safe Control

	Conclusion
	Mathematical Elements and Proofs
	Possible Definitions of Reversibility
	Additional Properties
	Proofs of Theorem 1 and Theorem 2
	Proof of proposition 1

	Additional Details About Reversibility-Aware RL
	Learning a reversibility estimator
	Pseudo-code for RAE and RAC

	Experimental Details
	Reward-Free Reinforcement Learning
	Learning Reversible Policies
	Sokoban
	Reversibility-Aware Control in Cartpole+
	DQN and M-DQN in Cartpole+
	Reversibility-Aware Control in Turf
	Safety and Performance Trade-off in Turf


