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Abstract

This paper considers the problem of estimating the unknown intervention targets
in a causal directed acyclic graph from observational and interventional data. The
focus is on soft interventions in linear structural equation models (SEMs). Current
approaches to causal structure learning either work with known intervention targets
or use hypothesis testing to discover the unknown intervention targets even for
linear SEMs. This severely limits their scalability and sample complexity. This
paper proposes a scalable and efficient algorithm that consistently identifies all
intervention targets. The pivotal idea is to estimate the intervention sites from the
difference between the precision matrices associated with the observational and
interventional datasets. It involves repeatedly estimating such sites in different
subsets of variables. The proposed algorithm can be used to also update a given
observational Markov equivalence class into the interventional Markov equivalence
class. Consistency, Markov equivalency, and sample complexity are established an-
alytically. Finally, simulation results on both real and synthetic data demonstrate the
gains of the proposed approach for scalable causal structure recovery. Implementa-
tion of the algorithm and the code to reproduce the simulation results are available
at https://github.com/bvarici/intervention-estimation.

1 Introduction

Directed acyclic graphs (DAG) are commonly used for encoding the cause-effect relationships among
random variables. Extensive research has been dedicated to learning the structure of DAGs from their
associated observational data. Structure learning from the observational data relies on uncovering
conditional independence (CI) among the random variables. Since structurally distinct DAGs can
encode the same set of CI relations, a DAG is identifiable only up to its Markov equivalence class
(MEC) from the observational data. Subsequently, interventional data can be used to further refine
the MEC obtained from the observational data and learn specific causal effects.

This paper is motivated by addressing two significant independent challenges in causal discovery.
First, most of the existing approaches for learning with interventional datasets require the intervention
target set to be known, which can be a strong assumption. For instance, gene-editing technologies are
known to perform cleavage at off-target genome sites [1]. Therefore, identifying the intervened nodes
alone is a critical problem in structure learning, and despite its significance, it remains uninvestigated.
Secondly, besides learning the structures of single DAGs, there exist application domains in which
the goal is learning the structural changes between two related networks and their associated DAGs,
or learning the sites of interventions. For instance, structural differences between the gene regulatory
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networks of different subtypes of cancers can help to identify the roles of specific genes [2]. In
electroencephalography analysis, the objective is to detect different brain regions that have different
interactions when the subject is performing various tasks [3]. These brain regions correspond to
intervened nodes in a causal graph representation. Another application area is fault detection in
large-scale Internet of things and cloud applications [4]. Faulty nodes in the system can be considered
as intervened nodes, and they are localized through intervention target estimation.

In practice, fixing the target variable at a specific value or removing its causal dependencies is often
difficult, while disturbing the distribution of a target variable is easier [5]. The type of interventions
that do not remove the causal effects are commonly observed in the real world. For example, elements
of an advertising system can be modified without removing the causal effects [6]. In another example,
consider molecular biology, in which the effects of infused chemicals to the cell are not set to specific
values nor are they known precisely [7,8]. Therefore, we consider a soft intervention setting, in which
we assume the conditional distributions of the target variables are changed, but no assumption is
made on the causal effects. Finally, we assume that the topological ordering remains the same after
the intervention procedure.

Under the soft intervention model, we propose an algorithm for estimating the intervention targets
given the data from two linear SEMs associated with the observational and interventional data.
Motivated by the fact that the difference of the precision matrices associated with these two models is
sparse, we focus on estimating the sparse difference between precision matrices to avoid extensive
conditional independence testing. This leads to a significant improvement in the computational com-
plexity compared to those of the alternative methods. This facilitates scaling up to high-dimensional
settings. Furthermore, we show that this algorithm can be used in conjunction with an observa-
tional DAG learning procedure to refine the MEC to interventional-MEC (I-MEC). Besides being
consistent in the population setting, we provide the finite-sample guarantees for linear SEM with
Gaussian noise when the soft interventional changes between the two models are sparse. Our main
contributions are as follows:

• We propose an algorithm that identifies intervention targets under the intervention-
faithfulness assumption. We show that our algorithm identifies I-MEC given the ob-
servational MEC.

• We provide the sample complexity of our algorithm under linear SEM with Gaussian noise.

• We perform experiments on both real biological and synthetic datasets to illustrate the ability
to work in the high-dimensional settings and the gains compared to the relevant methods.

2 Related work

Among the broad range of approaches to intervention recovery, there exist two methods that are
closely related to the scope of this paper: (i) estimating the difference between two DAGs, and (ii)
learning from a combination of observational and interventional datasets.

Direct estimation of differences: Direct estimation of differences in linear SEMs has been studied
recently. The study in [9] proposes a PC-style algorithm for learning changes in the edge weights
by testing invariances of regression coefficients and noise variances. Even though the differences can
be sparse, individual models can be dense, and estimating these variables through regression can be
inaccurate. Furthermore, the number of hypothesis tests is exponential in the number of nodes that are
affected by the changes, which can be prohibitive even under sparse changes in the hub nodes. Esti-
mating the difference of two precision matrices is a relatively easier task and has received attention re-
cently [10–13], providing finite-sample guarantees in the high-dimensional regime when such a differ-
ence is sparse. An existing study closest to the scope of our work is [14], which proposes re-estimating
precision difference to progressively eliminate nodes and estimate the difference DAG. This approach
critically hinges on the assumption that the noise variance is invariant, rendering limited applicability
to intervention settings. In contrast, our algorithm builds on the changes in noise variances and esti-
mates the intervention targets efficiently. We demonstrate the effect of this difference in Appendix B.1.

Learning interventional-MEC: There is a growing number of studies on causal structure learning
from both observational and interventional data. Score-based greedy interventional equivalence
search (GIES) [15] and hybrid interventional greedy sparsest permutation (IGSP) [16] algorithms
are proposed for settings in which there are no latent confounders. Both of these algorithms assume
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that the intervention targets are known. However, knowing the intervention targets can be a strong
assumption since even for controlled interventional experiments, off-target effects are common. For
instance, noise variances of the off-target variables can change, resulting in the intervened nodes
being unknown.

For causal structure learning without the knowledge of the intervention targets, an existing study
includes the dynamic programming approach in [8]. This approach has limited scalability due to
its time complexity being exponential in the model size. Structural discovery from interventions
proposed in [17] is a neural network-based method that can learn from interventional data without
target knowledge. Nevertheless, it requires discrete data and can have at most one intervened node
in a given setting, limiting its applicability. The differential causal discovery from interventional
data (DCDI) algorithm proposed in [18] extends the approach of [17] without making as strong
assumptions, e.g., learning a distribution over all potential interventional families via continuous
optimization. While this method is shown to converge to the real intervention targets, its runtime
becomes prohibiting even in models with as few as 100 nodes. The Unknown-target IGSP (UT-
IGSP) algorithm proposed in [19] learns the intervention targets simultaneously while learning the
causal structure. Even though interventions refine the search space, a greedy search of the sparsest
permutation is still too slow in the high-dimensional regime, especially when using non-Gaussian CI
tests. A graphical characterization of soft interventions with unknown targets is proposed in [7] for
causally insufficient systems. This algorithm, however, relies on CI tests and it is not scalable. We
focus on causally sufficient systems in this paper.

3 Problem definition

Let G , ([p], E) be a DAG with the node set [p] , {1, . . . , p} and the edge set E ⊆ [p]× [p]. We
denote the directed edge from i ∈ [p] to j ∈ [p] by i→ j. We associate a random variable Xi with
i ∈ [p], and accordingly, define the random vector X , (X1, . . . , Xp)

>. We consider a linear SEM,
according to which

X = B>X + ε , (1)

where B ∈ Rp×p is the autoregressive matrix in which Bij 6= 0 if and only if i → j in G.
The random vector ε ∈ Rp×1 has zero-mean and covariance matrix Ω , diag(σ2

1 , . . . , σ
2
p). We

denote the covariance matrix of X by Σ and its inverse (the precision matrix) by Θ, which satisfies
Θ = (I −B)Ω−1(I −B)>. For entries of Θ, we have

Θij = −Bij
σ2
j

− Bji
σ2
i

+
∑

k∈ch(i)∩ch(j)

BikBjk
σ2
k

, ∀i 6= j , (2)

and Θii = σ−2
i +

∑
j∈ch(i)

σ−2
j B2

ij , ∀i ∈ [p] , (3)

where ch(i), pa(i), de(i), and an(i) denote children, parents, descendants, and ancestors set of node
i in DAG G, respectively.

From the observational data, a DAG can be learned only up to its MEC [20]. Interventions are
used to increase the identifiability of a DAG by removing all causes of the intervention target
(perfect intervention) or modifying those relationships without removing them completely (imperfect
intervention). We consider the following soft intervention setting, which does not remove causal
effects (from direct parents) on intervention target nodes, and hence, is more practical.

Soft intervention model. In this model, interventions correspond to disturbing the target nodes
i ∈ I by changing the variances of their noise variables, while the cause weights, i.e., the weights
Bpa(i),i , {Bj,i : j ∈ pa(i)}, can vary freely. This intervention procedure on the initial DAG results
in a second DAG with new parameters.

Let G(1) represent a linear SEM prior to intervention with parameters B(1), ε(1), and G(2) be the
linear SEM after the intervention, with parameters B(2), ε(2). The intervention target set that relates
these two DAGs is

I , {i : σ
(1)
i 6= σ

(2)
i } . (4)
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Accordingly, denote the covariance and precision matrices of these two models by Σ(1),Σ(2),Θ(1),
and Θ(2). Accordingly, denote the differences between the two models by ∆B , B(1) −B(2) and
∆Θ , Θ(1) −Θ(2). For a subset of nodes S ⊆ [p], denote the precision matrix of the random vector
XS , {Xi : i ∈ S} by ΘS . We also denote the set of changed nodes by S∆ , {k : (∆Θ)k,k 6= 0}
and denote its size by p∆ , |S∆|. According to (3), this set consists of all the intervened nodes and
their parents.

In this paper, we estimate the intervention targets I given the data from two SEMs under the soft
intervention model. Furthermore, we estimate the non-intervened parents of the targets, which update
the given observational MEC into the I-MEC. Formally, we define ψ : Σ(1) × Σ(2) →

(
Î, pa(Î)

)
as the estimator that maps the covariance matrices of the observational and interventional data to an
intervention target set estimate and their parents. We aim to maximize the probabilities of ψ recovers
I and their parents. To this end, we define

P , P(I = Î) and Q , P(pa(I) = pa(Î)) . (5)

We will show that the algorithm proposed in Section 4 exactly recovers I and the non-intervened
parents of the members of I. Hence, given the observational MEC, we obtain the I-MEC.

4 Algorithm and main results

In this section, we provide our proposed algorithm and present the attendant performance guarantees.
Our algorithm involves repeatedly estimating the difference of the precision matrices to find the
intervention target set I, or equivalently, its complement IC. This algorithm consists of three key
steps. In Step 1, instead of directly estimating I, we aim to discard the nodes that are strongly
deemed not to belong to I. For this purpose, we start by identifying the non-intervened nodes that
do not have intervened children. These nodes are not of interest and they are discarded from further
consideration. We achieve this by estimating difference of precision matrices corresponding to the
complete model with variables [p], and we denote the changed nodes in the diagonal of this precision
difference matrix with S∆. We continue with only the nodes contained in S∆ for further scrutiny.
A naive approach to identifying the rest of the non-intervened nodes is computing ∆Θ exhaustively
for all the 2p∆ subsets of S∆, which for large p∆ is computationally prohibitive. Alternatively, we
partition S∆ into two sets: the set of non-intervened source nodes and its complement. We feed
these two partitions for further processing to Step 2. Since the distribution of a node relies only on
its ancestors, reaching a topological ordering is critical to reduce the complexity. In Step 2, for each
source node, we find the nodes that share a common ancestor with it. Subsequently, we decompose
S∆ into equivalence classes according to these ancestral relationships with non-intervened source
nodes. Decomposing S∆ allows us to order the equivalence classes according to a topological
ordering. In Step 3, we process these classes individually, and show that we only need to compute
∆Θ for all the subsets of each class considered in Step 3. This results in a significant reduction in
the computational complexity compared to the exhaustive search approach. Finally, we identify the
non-intervened parents of I from the earlier results. Since estimating the precision difference appears
in our algorithm repeatedly, we describe it next and then continue with the details of the three steps.

Precision difference estimation (PDE). When the difference between two SEMs is sparse, esti-
mating the difference of their precision matrices can be formulated as a Lasso-type problem and
solved efficiently. Since it will be used repeatedly, it is important for this function to recover the
support of ∆Θ and have a feasible computational complexity. The study in [12] solves the follow-
ing convex problem through the alternating direction method of multipliers (ADMM) to estimate
∆Θ = Θ(1) −Θ(2):

∆̂Θ = argmin
∆Θ

{
1

2
Tr(∆>ΘΣ̂(1)∆ΘΣ̂(2))− Tr(∆Θ(Σ̂(1) − Σ̂(2))) + λ‖∆Θ‖1

}
, (6)

where λ is a tuning parameter. The computational complexity of this algorithm grows according to
O(p3), which overcomes the limitation of the algorithm of [10] used in [14], which has complexity
O(p4). Therefore, we use this ADMM-based method as our PDE procedure.

Step 1: Finding the non-intervened source nodes. By leveraging the PDE procedure discussed,
we first estimate ∆Θ over all [p] nodes and obtain S∆. Representation of Θi,i in (3) implies that
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a diagonal entry of ∆Θ is non-zero if and only if either its corresponding node is in I or it has
a child in I. Hence, the set [p] \ S∆ contains only non-intervened nodes and can be discarded
from consideration. Furthermore, some non-intervened nodes in S∆, namely those that do not have
intervened ancestors, do not observe a change in their statistics. Therefore, it is possible to identify
them from covariance matrices Σ(1) and Σ(2). Subsequently, these nodes can serve as the starting
points for distinguishing the rest of the IC in S∆. Let us define them as the non-intervened source
nodes, denoted by

J0 , {j : j ∈ S∆, j /∈ I, anI(j) = ∅} . (7)

The outputs of this step, S∆ and J0, are fed into the next steps of the algorithm.

Step 2: Forming equivalence classes from J0. We will show that for any non-intervened node
j ∈ S∆, there exists a minimal subset of S∆, which makes the corresponding diagonal entry of the
precision matrix invariant, and it does not contain any descendant of j. Therefore, the non-intervened
nodes that have the same ancestors are affected by the interventions similarly, and finding their
ancestors is critical. We show that determining whether node k ∈ S∆ \ J0 has a common ancestor
with node j ∈ J0 is possible by applying PDE on {j, k}. Accordingly, we define the source ancestral
set Jk0 for each node k ∈ S∆ \ J0 as

Jk0 , {j : j ∈ J0, an(j) ∩ an(k) 6= ∅}, ∀k ∈ S∆ \ J0 . (8)

Next, we decompose the set S∆ \ J0 into equivalence classes where all the nodes in a class have
the same source ancestral set. We denote these equivalence classes by A1, . . . ,AL, and the source
ancestral set corresponding to a classA` by JA`

0 for ` ∈ [L]. These classes are ordered according to a
topological order such that for 1 ≤ ` < `′ ≤ L, JA`′

0 6⊂ JA`
0 . In other words, the class corresponding

to the superset of any JA`
0 should appear later than A` in the sequence A1, . . . ,AL. Source ancestral

sets and equivalence classes are fed into the next step.

Step 3: Processing equivalence classes. Given Step 1 and Step 2, we can describe our exact
search space of subsets for ∆Θ estimates to declare whether a node is intervened. We process
equivalence classes A1, . . . ,AL individually, i.e., at stage `, we consider the nodes in A`. Let us
defineM` , J0 ∪

⋃
1≤b<`Ab. It suffices to estimate ∆ΘM`∪A

only for each A ⊆ A` to determine
the intervention status of any node in A` class. This key observation reduces the number of PDE
steps needed. Specifically, for any non-intervened j ∈ A`, there exists a subset A ⊆ A` such that the
corresponding diagonal entry of ∆ΘM`∪A

will be zero, and there does not exist any such set for the
intervened nodes in A`. Formally, the process equivalence class returns

I` = {i : i ∈ A` ∩ I} , and J` = {j : j ∈ A` ∩ IC} . (9)

Finally, we identify the non-intervened parents of the intervened nodes without any new ∆Θ estimates.

Computational complexity. Algorithm 1 repeatedly performs PDE in each step. The number of
required instances of PDE is (p∆ + 1) in Step 1, O(p2

∆) in Step 2, and
∑
`∈[L] 2|A`| in Step 3. Hence,

it grows exponentially with max`∈[L] |A`|, which can be p∆ in the worst case in extreme examples.
Nevertheless, in almost all practical scenarios it is usually considerably smaller. To provide some
insights, we provide the next example and relegate more discussions to Appendix B.4.

Example 1. Consider a DAG with nodes {1, 2, 3, 4, 5} and the edge set
{1→ 3, 3→ 4, 2→ 4, 2→ 5, 4→ 5} and let I = {3, 5}. Hence, we
have S∆ = {1, 2, 3, 4, 5}, J0 = {1, 2}, J3

0 = {1}, J4
0 = {1, 2}, J5

0 =

{1, 2}, and accordingly, A1 = {3},A2 = {4, 5}, JA1
0 = {1}, and

JA2
0 = {1, 2}. Note that the largest A class has 2 nodes whereas S∆

has 5 nodes.

1 2

3 4 5

I

Restricted SEM. For a linear SEM G with (B, ε), we denote the restricted SEM (see Lemma 1 for
details) that characterizes the relationship among the random variables XS for a set S by (BS , εS).
As defined earlier, the corresponding precision matrix is denoted by ΘS . The entries of BS and noise
variances σS are characterized by the original values of B, σ, and Θ.

Remark 1 We remark that the invariance of the distributions for the noise term of a node and the
value of the node are equivalent only for the non-intervened nodes that do not have an intervened
ancestor. Therefore, only such nodes can be detected from the full linear SEM. The noise term of a
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Algorithm 1 Causal Intervention Target Estimator (CITE)

1: Input: Σ(1) and Σ(2)

2: Output. I intervention set
3: Estimate ∆Θ ← precision difference(Σ(1),Σ(2))

4: Form S∆ , {k : k ∈ [p], [∆Θ]k,k 6= 0}
5: Form J0 using (7) and Jk0 for each k ∈ S∆ \ J0 using (8)
6: Form equivalence classes A1, . . . ,AL.
7: for ` ∈ [L] do
8: Take A` set and the corresponding JA`

0 set
9: B` ← {b : JAb

0 ⊂ JA`
0 , 1 ≤ b < `}

10: M` = JA`
0 ∪⋃b∈B`

Ab
11: J`, I` ← process equivalence class(M`,A`,Σ(1),Σ(2))
12: end for
13: I =

⋃
`∈[L] I`

14: pa(I)← parent finder(I,J ,M1,A1, . . . ,ML,AL,Σ(1),Σ(2))
15: Return I and pa(I)

Algorithm 2 Functions for the main algorithm
Precision Difference Estimation (PDE) (Σ(1),Σ(2))
1: Using ADMM based algorithm of [12] method estimate ∆Θ = (Σ(1))−1 − (Σ(2))−1

2: Symmetrize ∆Θ: set ∆Θ = (∆Θ + ∆>Θ)/2
3: Threshold ∆Θ: set [∆Θ]i,j = 0 if |[∆Θ]i,j | < ε.
4: Return ∆Θ

Process Equivalence Class (M,A,Σ(1), Σ(2))
1: For each subset A ⊆ A, estimate ∆ΘM∪A

← precision difference((Σ(1))A,A, (Σ
(2))A,A)

2: for k ∈ A do
3: if ∃A ⊆ A, where k ∈ A, and [∆ΘM∪A

]k,k = 0 then
4: J ← J ∪ k
5: else
6: I ← I ∪ k
7: end if
8: end for
9: Return J, I

Parent Finder (I,J ,M1,A1, . . . ,ML,AL,Σ(1),Σ(2))
1: for i ∈ I do
2: ci ← ci , ` : i ∈ A`
3: for j ∈Mci do
4: if @A ⊆ Aci such that [∆ΘMci

∪A
]j,i = 0 then

5: Add j to pa(i)
6: end if
7: end for
8: end for
9: Return pa(i) for i ∈ I

non-intervened node maintains its invariance in a restricted SEM in which we keep its intervened
ancestors and their parents. On the other hand, the noise term of an intervened node is always
variant for any choice of restricted SEM.

In the following subsections, we will provide different analytical guarantees of Algorithm 1. Specifi-
cally, we will comment on the consistency of I recovery, the refinement of MEC to I-MEC, and the
sample complexity.
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4.1 Consistency of I recovery

We provide the consistency of Algorithm 1 for estimating I in this subsection. First, we need the
following assumption to ensure that interventions are successful.

Assumption 1 (I-faithfulness) For any choice of i, j ∈ S ⊆ [p], we have the following properties:

1. If σ(1)
i 6= σ

(2)
i , then σ(1)

S,i 6= σ
(2)
S,i .

2. If σ(1)
S,i 6= σ

(2)
S,i , then [Θ

(1)
S ]i,i 6= [Θ

(2)
S ]i,i.

3. If [BS ]j,i 6= 0 in either model, then [Θ
(1)
S ]i,j 6= [Θ

(2)
S ]i,j .

Next, we characterize the parameters of a restricted SEM, and then formalize the observations stated
in Remark 1 in the subsequent proposition.

Lemma 1 ( [14]) Corresponding to a subset S ⊆ [p], denote the removed set of nodes by U , [p]\S
and define Uj , U ∩ an(j), for j ∈ S. We have

σ2
S,j = σ4

j

(
σ2
j −B>Uj ,j [Θan(j)]

−1
Uj ,Uj

BUj ,j

)−1

, (10)

[BS ]k,j =
σ2
S,j

σ2
j

(
Bk,j −B>Uj ,j [Θan(j)]

−1
Uj ,Uj

[Θan(j)]Uj ,k

)
. (11)

Proposition 1 Denote the ancestors of j /∈ I in I by anI(j). If a set S contains anI(j) and their
parents pa(anI(j)), then σ(1)

S,j = σ
(2)
S,j . Furthermore, for i ∈ I and any set S we have [∆ΘS

]i,i 6= 0.
Additionally, if [BS ]j,i 6= 0 in either model, then we have [∆ΘS

]j,i 6= 0.

Remark 2 We repeatedly use the restricted SEM characterization in Lemma 1 with various strategic
choices of subsets S in Algorithm 1 to eliminate the non-intervened nodes from S∆ using the criterion
of Proposition 1. In Step 1, to identify J0 in (7), we set S = {j} for each j ∈ S∆. In Step 2, to
identify Jk0 in (8) for each k ∈ S∆ \ J0, we set S = {j, k} for each j ∈ J0. In Step 3, to process the
nodes in A`, we use subsets of the formM` ∪A for subsets A in A`.

Theorem 1 (Consistency) Given Assumption 1 and the population covariance matrices, Algorithm 1
is consistent in estimating intervention target set I under soft interventions with P = 1.

4.2 I-Markov equivalence

Interventions in a DAG change the conditional distributions of the intervened variables, and hence,
they reveal orientations of some edges that were previously undirected in observational CPDAG,
resulting in the interventional CPDAG (I-CPDAG). The DAGs that have the same I-CPDAG under
soft intervention I form the I-Markov equivalence class (I-MEC). This is shown and discussed next.

For a DAG G and an intervention set I, an additional I-vertex ζ and corresponding I-edges {ζ →
i}i∈I are added to form the interventional DAG (I-DAG). Note that vertex ζ creates a new v-structure
ζ − i− j for any non-intervened j ∈ pa(i). However, if j is also in I , then I-DAG also contains the
ζ → j edge, and there is no new v-structure that can orient the edge i− j.
We call the edges in G that are not directed in the original CPDAG but are directed in I-CPDAG as
I-directed edges. In the parent finder step of Algorithm 1, we find the edge set {j → i}j /∈I,i∈I ,
and subsequently, obtain the I-MEC. Therefore, we can use Algorithm 1 in conjunction with an
observational algorithm to perform causal structure learning, and establish the following theorem.

Theorem 2 (I-MEC) Algorithm 1 consistently recovers non-intervened parents of an i ∈ I with
Q = 1 in population setting. This result modifies the original MEC, which can be obtained via any
observational structure learning algorithm, into the I-MEC.
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Figure 1: Average precision of estimating intervention targets. Algorithm 1 reaches high precision
with increasing number of samples even in large models for all settings.

4.3 Sample complexity

In this subsection, we provide the finite-sample counterparts of Theorem 1 and Theorem 2. Our
choice of the PDE algorithm, the ADMM-based method of [12], enjoys finite-sample results when
noise ε has a Gaussian distribution. The following theorem establishes the sample complexity of
Algorithm 1 for estimating I and the non-intervened parents of the nodes in I.

Theorem 3 (Sample complexity) Let d denote the maximum degree of an intervened node
and set Γ , Σ(2) ⊗ Σ(1) and α , 1 − maxe/∈supp |Γe,suppΓ−1

supp,supp|1. Accordingly,
define M , max{‖Σ(1)‖∞, ‖Σ(2)‖∞ }, MΣ , max{‖Σ(1)‖1,∞, ‖Σ(2)‖1,∞}, MΓ,ΓT ,
max{‖ΓS,S‖1,∞, ‖ΓTS,S‖1,∞}, where S is the support of (Σ(2))−1 − (Σ(1))−1. When α > 0 and

MΣMΓ,ΓT < +∞, with n = O
(
d4

ε2
log p
δ

)
samples, Algorithm 1

1. identifies I with a probability at least ≥ 1− δ;

2. identifies the non-intervened parents {j → i}j /∈I,i∈I with a probability at least ≥ 1− δ.

Note that we have assumed that the product MΣMΓ,ΓT is bounded. This is necessary to avoid a
linear scaling of the sample complexity in p. More discussion on the necessity and implications of
this assumption is provided in the proof of Theorem 3 in Appendix A.

5 Empirical results

5.1 Synthetic data - intervention recovery

We start by testing our algorithm for estimating intervention targets, i.e., the set I . We generate 100 re-
alizations of Erdős-Rényi [21] DAGs with expected neighborhood size c = 1.5, and |I| = 5. We sam-
ple the entries of B, i.e., the edge weights, independently at random according to the uniform distribu-
tion on [−1,−0.25]∪ [0.25, 1]. The additive Gaussian noise terms have distributionN (0, Ip). We se-
lect the intervention set I by randomly selecting 5 nodes from [p]. We consider three different models
to intervene on the nodes in I: (i) shift intervention model in which mean of the noise εi is shifted from
0 to 1, (ii) variance increase model in which the variance of the noise εi is increased from 1 to 2, and
(iii) randomized intervention model, in which (B(2))pa(i),i = 0 and the noise variance varies from 1 to
1.5. All the simulations are run on a MacBook Pro with 2.7 GHz Dual-Core i5 core and 8 GB RAM.

We first run our algorithm by varying the graph size p and the number of samples. Figure 1 illustrates
that our algorithm is able to recover the intervention targets with high precision under all three
intervention models. Having high precision is especially important in high dimensions, since a large
false positive rate severely affects any downstream task such as structure learning. Recall rates are
close to 1 and they are omitted from the graph.

Next, we compare our results with that of the UT-IGSP algorithm [19] for the shift intervention
model. We note that UT-IGSP performs a greedy search to identify the sparsest permutation through
CI tests, and it returns intervention targets as a by-product along with the learned causal structure.
The computation time of UT-IGSP, hence, grows quickly with the size of the graph, reaching an
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average of 61.2 seconds for p = 100. Therefore, the complexity of structure learning and intervention
target discovery in the high-dimensional regime is prohibitive. In contrast, our algorithm has
comparable performance to UT-IGSP when p = 100, while requiring less than a second of runtime.
Our algorithm’s runtime scales gracefully when the dimension is in the hundreds.

Table 1: I estimation in the shift intervention model - 50 repetitions with 5000 samples - density 1.5
UT-IGSP ( [19]) Algorithm 1

p Precision Recall Time(s) Precision Recall Time(s)

40 0.99 (0.04) 0.99 (0.04) 0.8 0.96 (0.09) 0.94 (0.09) 0.1
60 0.95 (0.07) 0.99 (0.05) 5.2 0.97 (0.07) 0.95 (0.10) 0.2
80 0.96 (0.08) 0.99 (0.04) 17.8 0.96 (0.08) 0.96 (0.10) 0.3
100 0.93 (0.11) 1 (0) 61.2 0.94 (0.09) 0.98 (0.07) 0.3

5.2 Synthetic data - causal structure learning

In Section 4.2, we have shown that Algorithm 1 recovers the intervention targets. It can be further
used to refine the observational MEC to an I-MEC. Accordingly, we take the correct CPDAG
of G(1), and then apply our algorithm’s findings to obtain I-CPDAG. We report the accuracy of
additional edge orientations and in particular recovery of parents (if possible) of intervention targets
in Appendix B.2.

5.3 Application to real data

We apply our algorithm to two real datasets with observational and interventional data to learn their
causal structures. When there exist multiple interventional environments, we apply our algorithm to
them individually to estimate the intervened nodes and their parents. Subsequently, we combine the
results from all environments in order to form the final estimated structure. There is a large number of
interventional settings in which finding the targets and their non-intervened parents by our algorithm
yields a good estimate of the associated DAG, which we use for our evaluation.

We compare our results with those of the algorithms UT-IGSP, and UT-IGSP* in [19]1, where the
former works with partially known intervention targets and the latter does not require any target input.
We use both parametric (Gaussian) and non-parametric (Hilbert-Schmidt independence criterion) CI
tests for UT-IGSP methods. We note that the non-parametric tests have significant runtimes. We note
that our algorithm uses PDE at several stages, which calls for different λ regularization parameters.
Namely, let us denote the parameters used for Step 1 and Step 3 by λ1, Step 2 by λ2 and the parent
finder of Step 3 by λ3. Similarly, UT-IGSP needs a cut-off value α for CI tests. We run the algorithms
with different values of these parameters to obtain the receiver operating characteristic (ROC) curves.

Protein signaling data. We first consider the dataset in [22] for discovering the protein signaling
network of 11 nodes. It consists of measurements of proteins and phospolipids under different
interventional environments. In each environment, signaling nodes are inhibited or activated. Hence,
these sites form intervention targets. The conventionally accepted ground truth has been updated over
the years, and we compare with the recent version in [23], which consists of 16 edges. We follow the
process of [19] and work with 1755 observational and 4091 interventional samples aggregated from
5 different interventional environments. In Fig. 2a, we report the results of running Algorithm 1 and
UT-IGSP with various parameters.

Perturb-seq gene expression data. We analyze the performance of our algorithm on the perturb-seq
dataset by in [24]. The dataset consists of observational data and the interventional data from bone
marrow-derived dendritic cells (BMDCs). A single gene has been targeted for deletion in each
interventional environment. Similarly to [24], we have focused on 24 genes that are known to have
regulatory effects, and we have followed [16] to select interventional data from 8 gene deletions
along with observational samples. We take the Fig. 4D in [24] as the ground truth, which has 34

1The code and preprocessed real data are taken from https://github.com/csquires/utigsp for fair comparison,
and CausalDAG package which is distributed under 3-Clause BSD licence is used.
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(a) Sachs [22] dataset
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(b) Dixit [24] dataset

Figure 2: ROC curves for directed edge recovery. Algorithm 1: (a) is more robust in smaller graphs;
(b) handles larger graphs and multiple interventional settings successfully, and conforms to real
datasets better than CI testers.

edges among 24 nodes. We use 23 interventional settings for the targeted 8 gene deletions. In Fig. 2b,
we plot the results of running Algorithm 1 and UT-IGSP with various parameters.

In both real datasets, our algorithm achieves higher accuracy in recovering directed edges. The
comparison with UT-IGSP is more striking in Fig. 2b, and shows that our ability to work with many
interventional environments on a relatively larger graph. Furthermore, Fig. 2a shows that Algorithm 1
handles smaller graphs more robustly. These results illustrate that even though our algorithm is
designed for linear models, on real datasets, it performs better than the current state-of-the-art methods
that rely on CI tests.

6 Conclusion

In this paper, we have considered the problem of estimating intervention targets in linear structural
equation models (SEMs) under soft interventions. We have proposed an algorithm that consistently
identifies intervened nodes that can scale to larger graphs and have sample complexity guarantees in
Gaussian linear SEMs. The algorithm can be used also to infer interventional Markov equivalence
class (MEC) from the observational MEC. We have demonstrated comparable or better performance
compared to the existing methods in a number of settings.

The limitation of our method is that it only applies to linear SEMs. The dataset in an application
should be evaluated carefully to confirm whether the assumptions are satisfied. This avoids any
adverse effects arising from wrong interpretations of cause-effect relationships. Extending the similar
ideas for scalable and efficient intervention target estimation to the non-linear DAGs is an open
question that we aim to address in future work. Finally, the condition number of the optimization
problem is assumed to be bounded in the sample complexity results. We note that our algorithm is
independent of the specific precision difference estimation (PDE) algorithms and can be used in a
modular way. In this regard, it can benefit from any potential relaxation on this limitation of PDE
algorithms.

Acknowledgments and Disclosure of Funding

This work was supported by the Rensselaer-IBM AI Research Collaboration (http://airc.rpi.edu), part
of the IBM AI Horizons Network (http://ibm.biz/AIHorizons).

References
[1] Y. Fu, J. A. Foden, C. Khayter, M. L. Maeder, D. Reyon, J. K. Joung, and J. D. Sander, “High-

frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells,” Nature
Biotechnology, vol. 31, no. 9, pp. 822–826, 2013.

[2] R. W. Tothill, A. V. Tinker, J. George, R. Brown, S. B. Fox, S. Lade, D. S. Johnson, M. K.
Trivett, D. Etemadmoghadam, B. Locandro, N. Traficante, S. Fereday, J. A. Hung, Y.-E. Chiew,

10



I. Haviv, Australian Ovarian Cancer Study Group, D. Gertig, A. deFazio, and D. D. Bowtell,
“Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome,”
Clinical Cancer Research, vol. 14, no. 16, pp. 5198–5208, 2008.

[3] S. Sanei and J. A. Chambers, EEG Signal Processing. John Wiley & Sons, 2013.

[4] J. Bogatinovski, S. Nedelkoski, A. Acker, F. Schmidt, T. Wittkopp, S. Becker, J. Cardoso, and
O. Kao, “Artificial Intelligence for IT Operations workshop white paper,” arXiv:2101.06054,
2021.

[5] F. Eberhardt and R. Scheines, “Interventions and causal inference,” Philosophy of Science,
vol. 74, no. 5, pp. 981–995, 2007.

[6] L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles, D. M. Chickering, E. Portugaly,
D. Ray, P. Simard, and E. Snelson, “Counterfactual reasoning and learning systems: The
example of computational advertising,” Journal of Machine Learning Research, vol. 14, no. 65,
pp. 3207–3260, 2013.

[7] A. Jaber, M. Kocaoglu, K. Shanmugam, and E. Bareinboim, “Causal discovery from soft
interventions with unknown targets: Characterization and learning,” in Proc. Advances in
Neural Information Processing Systems, Dec. 2020, pp. 9551–9561.

[8] D. Eaton and K. Murphy, “Exact Bayesian structure learning from uncertain interventions,” in
Proc. International Conference on Artificial Intelligence and Statistics, San Juan, Puerto Rico,
Mar. 2007, pp. 107–114.

[9] Y. Wang, C. Squires, A. Belyaeva, and C. Uhler, “Direct estimation of differences in causal
graphs,” in Proc. Advances in Neural Information Processing Systems, Montreal, Canada, Dec.
2018, pp. 3770–3781.

[10] S. D. Zhao, T. T. Cai, and H. Li, “Direct estimation of differential networks,” Biometrika, vol.
101, no. 2, pp. 253–268, 2014.

[11] H. Yuan, R. Xi, C. Chen, and M. Deng, “Differential network analysis via lasso penalized
d-trace loss,” Biometrika, vol. 104, no. 4, pp. 755–770, 2017.

[12] B. Jiang, X. Wang, and C. Leng, “A direct approach for sparse quadratic discriminant analysis,”
The Journal of Machine Learning Research, vol. 19, no. 1, pp. 1098–1134, 2018.

[13] Z. Tang, Z. Yu, and C. Wang, “A fast iterative algorithm for high-dimensional differential
network,” Computational Statistics, vol. 35, no. 1, pp. 95–109, 2020.

[14] A. Ghoshal and J. Honorio, “Direct estimation of difference between structural equation models
in high dimensions,” arXiv:1906.12024, 2019.

[15] A. Hauser and P. Bühlmann, “Characterization and greedy learning of interventional Markov
equivalence classes of directed acyclic graphs,” Journal of Machine Learning Research, vol. 13,
no. 1, pp. 2409–2464, 2012.

[16] Y. Wang, L. Solus, K. Yang, and C. Uhler, “Permutation-based causal inference algorithms with
interventions,” in Proc. Advances in Neural Information Processing Systems, Long Beach, CA,
Dec. 2017, pp. 5822–5831.

[17] N. R. Ke, O. Bilaniuk, A. Goyal, S. Bauer, H. Larochelle, B. Schölkopf, M. C. Mozer, C. Pal, and
Y. Bengio, “Learning neural causal models from unknown interventions,” arXiv:1910.01075,
2019.

[18] P. Brouillard, S. Lachapelle, A. Lacoste, S. Lacoste-Julien, and A. Drouin, “Differentiable
causal discovery from interventional data,” in Proc. Advances in Neural Information Processing
Systems, Dec. 2020, pp. 21 865–21 877.

[19] C. Squires, Y. Wang, and C. Uhler, “Permutation-based causal structure learning with unknown
intervention targets,” in Proc. Conference on Uncertainty in Artificial Intelligence, Aug. 2020,
pp. 1039–1048.

[20] T. Verma and J. Pearl, “An algorithm for deciding if a set of observed independencies has a
causal explanation,” in Proc. Conference on Uncertainty in Artificial Intelligence, Stanford, CA,
Jul. 1992, pp. 323–330.

[21] P. Erdös and A. Rényi, “On Random Graphs I,” Publicationes Mathematicae Debrecen, vol. 6,
pp. 290–297, 1959.

11



[22] K. Sachs, O. Perez, D. Pe'er, D. A. Lauffenburger, and G. P. Nolan, “Causal protein-signaling
networks derived from multiparameter single-cell data,” Science, vol. 308, no. 5721, pp. 523–
529, 2005.

[23] R. O. Ness, K. Sachs, P. Mallick, and O. Vitek, “A Bayesian active learning experimental design
for inferring signaling networks,” in Proc. Research in Computational Molecular Biology, Hong
Kong, May 2017, pp. 134–156.

[24] A. Dixit, O. Parnas, B. Li, J. Chen, C. P. Fulco, L. Jerby-Arnon, N. D. Marjanovic, D. Dionne,
T. Burks, R. Raychowdhury, B. Adamson, T. M. Norman, E. S. Lander, J. S. Weissman,
N. Friedman, and A. Regev, “Perturb-seq: Dissecting molecular circuits with scalable single-
cell RNA profiling of pooled genetic screens,” Cell, vol. 167, no. 7, pp. 1853–1866.e17, 2016.

[25] A. Ghoshal and J. Honorio, “Learning linear structural equation models in polynomial time and
sample complexity,” in Proc. International Conference on Artificial Intelligence and Statistics,
Playa Blanca, Lanzarote, Canary Islands, Apr. 2018, pp. 1466–1475.

[26] M. Pourahmadi, “Covariance estimation: The glm and regularization perspectives,” Statistical
Science, vol. 26, no. 3, pp. 369–387, 2011.

[27] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, “High-dimensional covariance estima-
tion by minimizing `1-penalized log-determinant divergence,” Electronic Journal of Statistics,
vol. 5, pp. 935–980, 2011.

12


