
A Experimental Details

A.1 Training Details

Model Training: Following TENT [Wang et al., 2020a], we use ResNet26 models [He et al., 2016a]
for all experiments besides the ImageNet experiments. For ImageNet, we use ResNet50v2 [He et al.,
2016b]. All methods utilizing ensembles use 10 different models in the ensemble.

For all ResNet26 experiments, we train all models and obtain posteriors using SWAG-D [Maddox
et al., 2019] and use the same hyperparameters as provided by the authors for training a WideRes-
Net28x10. For methods that do not include the posterior density term, we simply use the mean of the
learned SWAG-D posterior, which simply corresponds to the solution obtained by Stochastic Weight
Averaging (SWA) [Izmailov et al., 2018]. We train for 300 epochs on each training dataset, starting
to collect iterates for SWA/SWAG starting from epoch 160. We use SGD with momentum for all
experiments, with a learning rate schedule given by 0.1 for the first 150 epochs, decaying linearly
down to 0.01 until epoch 270, then remaining at 0.01 for the remaining 30 epochs.

For ResNet50v2 experiments on ImageNet, we first train for 90 epochs using the example train-
ing script at https://github.com/deepmind/dm-haiku/tree/master/examples/imagenet.
We then train for an additional 10 epochs with a constant learning rate of 0.0001 to collect iterates for
SWAG, collecting 4 iterates per epoch.

Adaptation Details: For test time adaptation on the small scale experiments with ResNet26, we use
the same hyperparameters described in TENT [Wang et al., 2020a]. using learning rate 0.001 and
batch size 128, using SGD with momentum. For the ImageNet experiments with ResNet50v2, we
tune the learning rate for accuracy using the validation corruptions in ImageNet-C, and keep the batch
size fixed at 64. For TENT, we found a learning rate 0.001 to perform the best, while for our method
BACS, we found a smaller learning rate of 0.0001 to perform the best.

During adaptation with BACS, according to equation 8, we would optimize each model with the
objective

max
θ

log qi(θ)−
α̃

m

m∑
j=1

−H(Y |x̃j , θ). (9)

where qi(θ) is a diagonal Gaussian posterior density obtained by SWAG-D, and α̃ is a hyperparameter
controlling how much to weight the entropy minimization objective against the posterior term. We
initialize from the mean of the SWAG posterior before adaptation. In practice, we also rewrite the
objective as

max
θ
β log qi(θ)−

1

m

m∑
j=1

−H(Y |x̃j , θ), (10)

where β = 1
α̃ , and use minibatches of test inputs for the entropy minimization term. For all small-

experiments with ResNet26, we use β = 0.0001. For the ImageNet experiments, we jointly tuned β
with the learning rate using the extra validation corruptions and selected β = 0.0003.

Compute Resources: The initial training for each ResNet50 model on ImageNet used a Google
Cloud TPU v3 instance with 8 cores, each taking approximately 20 hours to train. In total, as we
needed to train 10 models for the ensemble, this utilized 200 hours of compute with TPU v3 instances
with 8 cores each.

All other model training and all the adaptation were run using local GPU servers with Nvidia Titan
RTX GPUs. We estimate model training time to be around 200 hours in total for all ResNet26 models
(10 models for each of CIFAR10, CIFAR100, and SVHN and an estimated 6 hour training time with
on one GPU). For adaptation and evaluation, we estimate the total time needed for the ImageNet-
Corrupted experiments, as these would take up the bulk of the time spent on adaptation. For each of
the 15 corruption types and 5 corruption levels, we estimate the total time it takes to adapt each model
using entropy minimization for one epoch, evaluate the model without any adaptation, evaluate the
model with adapted batchnorm statistics, and evaluate each model after entropy minimization to be
10 minutes. With 10 models for each corruption, this totals 125 hours of GPU time to compile the
ImageNet Corrupted results, which take up the bulk of the time needed for adaptation and evaluation
in our experiments.

15

https://github.com/deepmind/dm-haiku/tree/master/examples/imagenet

CIFAR10-C CIFAR100-C
Method Acc NLL Brier ECE Acc NLL Brier ECE
TENT 84.52 0.7248 0.2289 0.09914 64.37 3.265 0.6111 0.2759

BACS (ours) 87.43 0.4242 0.1845 0.02882 67.28 1.323 0.4435 0.0500

Table 4: CIFAR-10/100 Corrupted Online results at the highest level of corruption, averaged over
all corruption types at severity level 5 (the most severe level). While online adaptation performs
slightly worse than offline adaptation, our method BACS still provides substantial improvements over
TENT, ensembles with BN adaptation and other baselines.

A.2 Metrics

We compute Brier score for a probability vector p(y|xn) and true label yn as∑
y∈Y

(p(y|xn)− δ(y − yn))2. (11)

To compute expected calibration error (ECE), we use 20 bins. We order all predictions by confidence
and aggregate them into 20 bins, each with the same number of data points, instead of using fixed
windows for the buckets. Given the bins Bi, we then compute ECE as

ECE =
1

20

20∑
i=1

|acc(Bi)− conf(Bi)|, (12)

where acc and conf compute the average accuracies and confidences within the predictions in each
bucket.

A.3 Dataset details

Models were trained on CIFAR10/100 [Krizhevsky, 2012], ImageNet [Deng et al., 2009],
CIFAR10/100-Corrupted and Imagenet-Corrupted [Hendrycks and Dietterich, 2019], STL10 [Coates
et al., 2011], SVHN [Netzer et al., 2011], MNIST [LeCun et al., 2010].

For the corrupted datasets, we report results averaged over all 15 standard corruption types in
[Hendrycks and Dietterich, 2019], using the 4 extra corruption types for validation.

CIFAR10-Corrupted, STL10, SVHN, and MNIST were downloaded using Tensorflow Datasets. The
Imagenet training data was directly downloaded from www.image-net.org), while CIFAR-100-
Corrupted and Imagenet-Corrupted were downloaded from the author-released images at zenodo.
org/record/3555552 and https://zenodo.org/record/2235448 respectively.

For Imagenet-C, we initially ran experiments and performed hyperparameter tuning using the datasets
generated through Tensorflow Datasets, which recomputed the the corrupted images instead of simply
downloading the images released by the original authors. However, performance on the TFDS version
of ImageNet-C (see appendix B.3) is not directly comparable to that using the official released dataset,
with overall results being substantially stronger with the TFDS version. This discrepancy is also
noted in Ford et al. [2019], who postulated the performance differences are due to the extra JPEG
compression used for the officially released dataset making the tasks more difficult.

We were unable to find licensing information for CIFAR10, CIFAR100 or STL10. Imagenet is
released under a custom license stipulating non-commercial research and educational use only (see
www.image-net.org/download). SVHN is released with a note stating it should be used for non-
commercial uses only. MNIST is released under the CC BY-SA 3.0 license. CIFAR10/100-Corrupted
and Imagenet-Corrupted are released under the CC BY 4.0 License.

B Additional Experimental Results

B.1 Online Evaluation

For the results in the main paper, all methods that adapted to the test distribution were evaluated in an
offline setting, where each method could access the full test dataset before making any predictions.

16

www.image-net.org
zenodo.org/record/3555552
zenodo.org/record/3555552
https://zenodo.org/record/2235448
www.image-net.org/download

CIFAR10 CIFAR100
Method Acc NLL Brier ECE Acc NLL Brier ECE
Vanilla 95.50 0.1715 0.07252 0.02549 77.88 1.023 0.3389 0.1198

BN Adapt 95.49 0.1767 0.07303 0.02588 77.88 1.071 0.3437 0.1266
TENT 95.48 0.1788 0.07662 0.03180 77.86 1.083 0.3458 0.1322

BACS (MAP) 95.40 0.1827 0.07734 0.02884 77.81 1.1388 0.3494 0.1412
Vanilla ensemble 96.07 0.122 0.05835 0.009644 80.34 0.7182 0.2711 0.04254

Ensemble BN Adapt 96.09 0.1244 0.05834 0.009433 80.46 0.7312 0.2720 0.04438
TENT Ensemble 96.08 0.1240 0.05869 0.01065 80.68 0.7341 0.2719 0.05352

BACS (ours) 95.98 0.1340 0.06154 0.01091 80.32 0.7428 0.2754 0.05051

Table 6: CIFAR-10/100 In-distribution results. We evaluate all methods on the standard (uncor-
rupted) test sets.

For BACS, this involves first making one pass through the test data to update the network for one
epoch of optimization (or multiple epochs when specified), then making one more pass through the
dataset to make predictions with the fully adapted network.

As there might be scenarios where we do not have access to all the test data from a particular
distribution at once, we also include experiments on the corrupted datasets evaluating methods in an
online setting, where we adapt the network and make predictions in a single pass through the dataset.
The online procedure is more computationally efficient (requiring one fewer forward pass per batch)
and does not require the model to wait for all the data to arrive before making predictions. Note that
all adaptive methods we evaluate still require access to batches of test data to make updates, and we
utilize the same adaptation hyperparameters as with the offline experiments. For online experiments,
we fix the ordering on the test dataset for all methods.

Method Acc NLL Brier ECE
TENT 54.12 2.330 0.6005 0.09544

BACS (MAP) 56.13 2.171 0.5771 0.07055
TENT Ensemble 60.22 2.093 0.5702 0.1828

BACS (ours) 61.81 1.911 0.5369 0.1503
Table 5: ImageNet-C Online results averaged over all corrup-
tion types and levels. Again, online adaptation performs worse
compared to offline adaptation, but online BACS still outper-
forms one TENT (as well as other baseliens) in accuracy, NLL,
and Brier score.

We show results in the online set-
ting for TENT and BACS in Tables
4 and 5. Compared to the offline
results in Tables 1 and 2, online
BACS generally performs worse
than offline BACS, but still out-
performs all baselines in accuracy,
NLL, and Brier score.

B.2 In Distribution Results

At test time, it is also possible that the distribution we encounter is actually the same as training,
though we would not necessarily know a priori. We thus also evaluate the performance of different
adaptive methods when there is no distribution shift at test time in Table 6. We see that BACS
does slightly underperform relative to ensembles without adaptation and ensembles with batch-norm
adaptation.

B.3 Expanded ImageNet-C and CIFAR-C Results

Method mCE
Vanilla 73.42

BN Adapt 61.24
TENT 54.37

BACS (MAP) 53.13
Vanilla Ensemble 67.98

Ensemble BN Adapt 52.70
TENT Ensemble 47.50

BACS (ours) 46.78
Table 7: ImageNet-C mCE results. BACS (ours)
outperforms all other methods, while our ablation
without ensembles BACS (MAP) outperforms all
non-ensembled methods.

In addition to measuring the average accuracy
across the ImageNet-C corruptions, we also re-
port results using the mean corruption error
(mCE) [Hendrycks and Dietterich, 2019], which
normalizes the per-corruption error rates using
the performance of an AlexNet model as a base-
line before averaging across corruption types.
We include these results in Table 7.

We include expanded experimental results for
ImageNet-Corrupted in Figure 7. For each met-
ric, we now use box plots to show the variability
of results over different corruption types, sep-
arating out results at each level of corruption.

17

Across all corruption levels, BACS consistently performs the best in accuracy, NLL and Brier score
(with the exception being the mean accuracy at the highest level of corruption, where a single corrup-
tion where BACS has very low accuracy drags down the mean, though median performance is still
higher than all baselines).

finally, we include expanded experimental results for CIFAR10 and CIFAR100 Corrupted in Figures
5 and 6.

Method Acc NLL Brier ECE
Vanilla 45.64 2.867 0.6750 0.0614

BN Adapt 55.97 2.363 0.6050 0.1606
TENT 60.82 1.803 0.522 0.0313

BACS (MAP) 61.96 1.712 0.5022 0.0294
Vanilla Ensemble 50.48 2.519 0.6211 0.07878

Ensemble BN Adapt 62.18 2.137 0.5802 0.2438
TENT Ensemble 65.83 1.586 0.4726 0.0956

BACS (ours) 66.64 1.492 0.4548 0.0735
Table 8: ImageNet-C (TFDS) results averaged over all cor-
ruption types and levels. BACS again substantially outper-
forms all baselines in accuracy, NLL, and Brier score.

We also include experimental results
using the TFDS version of ImageNet-
C in Table 8, which we note has sub-
stantially better results overall than
the officially released dataset. We
also included boxplots for the Ten-
sorflow Datasets version of ImageNet-
Corrupted in Figure 8, where we see
BACS performs the best in accuracy,
NLL, and Brier scores at each level of
corruption.

B.4 Domain Adaptation Results

We further evaluate BACS in additional small-scale experiments commonly evaluated for domain
adaptation. We evaluate transferring from CIFAR10 to STL10 (using only the 9 overlapping classes),
as well as a commonly used digit recognition task transferring from SVHN to MNIST.

Method Acc NLL Brier ECE
Vanilla 82.38 0.7825 0.2886 0.1185

BN adapt 83.72 0.7926 0.2709 0.1147
TENT 84.05 0.8831 0.2753 0.1216

Vanilla Ensemble 84.03 0.5360 0.2333 0.06561
Ensemble BN Adapt 85.40 0.5301 0.2195 0.05949

TENT Ensemble 85.10 0.5337 0.2270 0.06844
BACS (ours) 85.47 0.5284 0.2184 0.06114

Table 9: CIFAR10 to STL10: Source model trained on CI-
FAR10 and evaluated on STL10 test set the (with nonoverlap-
ping classes removed during both training and test). Here, the
ensembled approaches perform the best overall and perform
similarly to one another in uncertainty estimation.

CIFAR10 to STL10. We further
evaluate all methods on a more natu-
ral distribution shift by considering
evaluating a model trained CIFAR-
10 and evaluated on STL-10 [Coates
et al., 2011]. We only use the 9 over-
lapping classes in each dataset. In
this setting, BACS and BN ensem-
bles outperform the other methods.

While TENT is able to improve
accuracy slightly over the non-
ensembled baselines, we again see
that uncertainty estimates degrade
as entropy is minimized (as seen
by the increases in NLL, Brier, and
ECE scores). In contrast, BACS still remains well-calibrated, again emphasizing the importance
of Bayesian marginalization for reliable uncertainty estimation when adapting models via entropy
minimization.

SVHN to MNIST transfer. We also evaluate our method on a digit classification task, transferring a
model trained on SVHN [Netzer et al., 2011] to MNIST [LeCun et al., 2010], which is commonly
studied as a the domain adaptation setting [Ganin et al., 2015, Liang et al., 2020]. We find that BACS
is able to significantly outperform the models with no adaptation as well as ensembles with batch
norm adaptation in accuracy, NLL, and Brier score.

We find that this severe distribution shift requires larger changes in parameters to effectively adapt,
as seen by the substantial improvements between optimizing for one epoch and optimizing for 10.
We also find that the approximate posterior term used in our method overly constrains the network
during adaptation, as removing the regularizer from the method (denoted BACS-posterior in the table)
results in the best performance in all metrics. We note that all ensemble methods perform much better
than non-ensembled methods in terms of calibration, emphasizing the benefits of marginalizing over
different models for uncertainty estimation when adapting via entropy minimization.

We note that our method and the compared baselines are focused on improving results in robustness
settings, and do not necessarily obtain state-of-the-art performance in common domain adaptation

18

Figure 5: CIFAR10 Corrupted Results. For each corruption level, we use boxplots the spread of
results over the different individual corruption types. Boxes are drawn at the 25th and 75th percentiles,
with the median being drawn as a line in the middle of the box and the mean being shown with white
dots. The ends of the whiskers show the min and max across corruption types at the level (with black
diamonds for outliers).

19

Figure 6: CIFAR100 Corrupted Results. For each corruption level, we use boxplots the spread of
results over the different individual corruption types. Boxes are drawn at the 25th and 75th percentiles,
with the median being drawn as a line in the middle of the box and the mean being shown with white
dots. The ends of the whiskers show the min and max across corruption types at the level (with black
diamonds for outliers).

20

Figure 7: ImageNet Corrupted Results. For each corruption level, we use boxplots the spread of
results over the different individual corruption types. Boxes are drawn at the 25th and 75th percentiles,
with the median being drawn as a line in the middle of the box and the mean being shown with white
dots. The ends of the whiskers show the min and max across corruption types at the level (with black
diamonds for outliers).

21

Figure 8: ImageNet Corrupted (TFDS) Results. For each corruption level, we use boxplots the
spread of results over the different individual corruption types. Boxes are drawn at the 25th and 75th
percentiles, with the median being drawn as a line in the middle of the box and the mean being shown
with white dots. The ends of the whiskers show the min and max across corruption types at the level
(with black diamonds for outliers). At each corruption level, BACS (ours) outperforms all baselines
in accuracy, NLL, and Brier score.

22

Method Acc NLL Brier ECE
Vanilla 76.99 0.9967 0.3645 0.1290

Vanilla ensemble 79.52 0.7368 0.3024 0.03856
BN Adapt 73.43 1.4502 0.4453 0.1878

Ensemble BN Adapt 76.84 0.9444 0.3442 0.07855
TENT (1 epoch) 77.24 1.321 0.3896 0.1605

TENT (10 epochs) 85.53 0.9554 0.2035 0.1166
TENT Ensemble (1 epoch) 79.48 0.8869 0.3149 0.09254

TENT Ensemble (10 epochs) 86.89 0.5784 0.2035 0.06384
BACS (ours) (1 epoch) 84.14 0.6024 0.2285 0.05595

BACS (ours) (10 epochs) 86.32 0.5553 0.2094 0.05133
BACS - posterior (1 epoch) 87.28 0.4214 0.1650 0.02603

BACS - posterior (10 epochs) 93.03 0.2371 0.0965 0.02404

Table 10: SVHN to MNIST: In this domain adaptation setting, we find adapting batch norm
statistics alone hurts performance compared to the unadapated models, but methods utilizing entropy
minimization are able to improve substantially in accuracy.

settings when compared to algorithms specifically designed for these problems. For example, Liang
et al. [2020] introduce a source-free domain adaptation algorithm (that also does not require access to
the training data during adaptation) and report 99% accuracy transferring from SVHN to MNIST,
though results are not directly comparable due to architecture and training differences. In contrast to
typical source-free domain adaptation algorithms, our algorithm also focuses on improving uncertainty
estimation, does not require multiple epochs of optimization during adaptation, and is amenable to
online evaluations where predictions need to be made before seeing the entirety of the test data.

23

	Experimental Details
	Training Details
	Metrics
	Dataset details

	Additional Experimental Results
	Online Evaluation
	In Distribution Results
	Expanded ImageNet-C and CIFAR-C Results
	Domain Adaptation Results

