Critic Regularized Regression

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback »Bibtex »MetaReview »Paper »Review »Supplemental »


Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S. Merel, Jost Tobias Springenberg, Scott E. Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, Nando de Freitas


Offline reinforcement learning (RL), also known as batch RL, offers the prospect of policy optimization from large pre-recorded datasets without online environment interaction. It addresses challenges with regard to the cost of data collection and safety, both of which are particularly pertinent to real-world applications of RL. Unfortunately, most off-policy algorithms perform poorly when learning from a fixed dataset. In this paper, we propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR). We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces -- outperforming several state-of-the-art offline RL algorithms by a significant margin on a wide range of benchmark tasks.