
Supplementary Material

A Proof of Theorem 1

In order to prove Theorem 1 we first describe a technical hypothesis on the potential U . In detail, for
all δ positive there exists two positive integrable functions cδ(t) and κδ(t) such that for every z ∈ Rn
and for all t ∈ [0, T ] we have

|∇U(z, t)| ≤ δ(U(z, t) + |z|2) + cδ(t), |∂tU(z, t)| ≤ δ(U(z, t) + |z|2) + κδ(t) . (1)

Notice that here, in order to simplify the notation, we use the same symbol for U and for Û(z, t) :=
U(z, u(t)). We will also denote with wε the solution of problem (5).

As it is also remarked below the proof articulates as follow: first of all we asses the convergence
of wε → w by compactness arguments, basically by performing an estimate on the solution wε;
then the uniform estimate on the L2 norm of ẇε is used to check that the limit w actually solves the
problem (6).

Proof. The proof of this theorem follows the spirit of Theorem 4.2 of [26]. We will start with an
uniform (in ε) estimate of ‖ẇε‖2L2 and then we will use this estimate in weak form of the Euler
equation to show the convergence of wε to the solution of (6). We will prove the theorem in the case
α > 0 and β = 0.

Uniform Estimate. Start form the differential equation in (5) and scalar multiply it by (w′ε − w1):

ε2αw(4)
ε · (w′ε − w1)− 2εαw(3) · (w′ε − w1) + αẅ · (w′ε − w1) +∇U · (w′ε − w1) = 0,

then integrate this equation on the interval (0, t), and using the boundary conditions (5) integrate by
parts to obtain

ε2αw(3)
ε (t) · (w′ε − w1)− ε2α

2
|ẅε(t)|2 +

ε2α

2
|ẅε(0)|2

−2εαw(3)
ε (t) · (ẇε(t)− w1) + 2εα

∫ t

0

|ẇε(s)|2 ds+
α

2
|ẇε(t)− w1|2

+U(wε(t), t)− U(w0, 0)−
∫ t

0

∇U(wε(s), s) · w1 ds−
∫ t

0

∂tU(wε(s), s) ds.

Now let us integrate this equality again in the interval (0, T ), therefore obtaining(
2ε− 3

2
ε2
)∫ T

0

α|ẅε(s)| ds+
ε2(1 + T )

2
α|ẅε(0)|+

(
1

2
− ε
)
α|ẇε(T )− w1|2

+2εα

∫ T

0

∫ τ

0

ẅε(s) dsdτ +
α

2

∫ T

0

|ẇε(s)− w1|2 ds+ U(wε(T ), T )

+

∫ T

0

U(wε(s), s) ds =

∫ T

0

∇U(wε(s), s) · w1 +

∫ T

0

∫ τ

0

∇U(wε(s), s) · w1 dsdτ

+(1 + T )U(w0, 0) +

∫ T

0

∫ τ

0

∂tU(wε(s), s) dsdτ.

Now we can take all the positive (for ε small enough) terms to the right hand side to obtain

α

2

∫ T

0

|ẇε − w1|2 dt+

∫ T

0

U(wε(t), t) dt ≤(1 + T )U(w0, 0)

+ (1 + T )|w1|
∫ T

0

|∇U(wε(t), t)| dt

+ T

∫ T

0

|∂tU(wε(t), t)| dt.
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Now using Eq. (1) we can choose δ to further reduce this inequality down to

α

2

∫ T

0

|ẇε − w1|2 dt+

∫ T

0

U(wε(t), t) dt ≤ c(T ) + C(T )

∫ T

0

|wε(t)|2 dt, (2)

where c(T ) and C(T ) are constant with respect to the parameter ε. Using Peter-Paul inequality we
have that |ẇε − w1|2 ≥ (1− η′)|ẇε|2 + (1− 1/η′)|w1|2 for all η′ > 0. Similarly since wε ∈ H2,
we can write wε(t) = w0 +

∫ t
0
ẇε and using Peter-Paul and Cauchy-Schwartz we also end up with

the estimate |wε − w0| ≥ (1− η)|wε|+ (1− 1/η)|w0| for all η > 0, which implies∫ T

0

|wε(t)|2 dt ≤ T
1/η − 1

1− η
|w0|2 +

T 2

1− η

∫ T

0

|ẇε(t)|2 dt. (3)

Putting together Eq. (2) and (3) we finally obtain the wanted uniform bound α‖ẇε‖L2 ≤ k(T ), where
k(T ) is a constant with respect to the parameter ε.

Convergence. Once we have this uniform bound we can complete the proof by arguing along the very
same lines of the proof of Section 3.2 of [26] to obtain the thesis.
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