
A Equivalent formulation of the expected reward

Ep✓(x|y)[R(x;y)] =
X

x

[p✓(x|y)R(x;y)] (13)

=
X

x

[
R(x;y)P
x R(x;y)

p✓(x|y)(
X

x

R(x;y))]

= (
X

x

R(x;y))
X

x

[
R(x;y)P
x R(x;y)

p✓(x|y)]

= c(y)
X

x

[R̄(x|y)p✓(x|y)]

= c(y)ER̄(x|y)p✓(x|y)

where c(y) =
P

x R(x;y), R̄(x|y) = R(x;y)/c(y)

B Approximating the normalized reward

As our final objective presented in Equation (5), we need to draw samples from the normalized
reward distribution R̄(x|yi). We proposed an distribution p(i, j) which is defined on training data to
approximate such distribution. Here we are going to discuss the derivation of such approximation
and it’s effect on the final learning.

ER̄(x|yi)[log p✓(x|yi)] ⇡
NX

j=1

[R̄(xj |yi) log p✓(xj |yi)]

=
NX

j=1

[
R(xj ;yi)P
x R(x;yi)

log p✓(xj |yi)]

=
NX

j=1

[
R(xj ;yi)P
x R(x;yi)

PN
j=1 R(xj ;yi)

PN
j=1 R(xj ;yi)

log p✓(xj |yi)]

=
NX

j=1

[

PN
j=1 R(xj ;yi)P
x R(x;yi)

R(xj ;yi)PN
j=1 R(xj ;yi)

log p✓(xj ;yi)]

=

PN
j=1 R(xj ;yi)P
x R(x;yi)

NX

j=1

[
R(xj ;yi)PN
j=1 R(xj ;yi)

log p✓(xj |yi)]

=

PN
j=1 R(xj ;yi)P
x R(x;yi)

Ep(j|i)[log p✓(xj |yi)]

⇡ Ep(j|i)[log p✓(xj |yi)] (14)

where p(j|i) is defined as

p(j|i) = R(xj ;yi)PN
j=1 R(xj ;yi)

. (15)

R̄(x|yi) =
R(xj ;yi)P
x R(x;yi)

(16)

Note that the original normalized distribution R̄(x|yi) is defined on all possible x and normalized byP
x R(x;yi), which is the summation over all possible x, while the distribution p(i, j) is defined

only on the training set and therefore normalized by
PN

j=1 R(xj ;yi) which is summation over all x
that are in the training set. The last approximation in equation ?? is off by a scalar multiplication
factor

PN
j=1 R(xj ;yi)/

P
x R(x;yi).

12

However, this factor does not dramatically affect outcomes for two reasons. First, its value inde-
pendent of the value of x, depending only on yi. Any bias which is introduced would come into
play only in the evaluation of equation 6, where entries from different y values may effectively be
assigned different weights. So while this may affect unconditional generations from the model, and
means that some y values may be considered “more important” during training, it should not directly
bias conditional generation for a fixed y.

Second, this can be thought of as a ratio of two expectations; the numerator w.r.t. a uniform
distribution on x and the denominator w.r.t. the empirical data distribution p̃(x). For one of the
empirical examples (on QM9), this ratio has an expected value of 1.0, since the dataset itself is
constructed by enumeration of all molecules with up to 9 heavy atoms and thus also follows a uniform
distribution over the domain.

For the other examples, if the training data well represents the underlying conditional distribution,
that scaling factor should be almost equal for all y in the training set and dropping this term would
not affect the optimization. This is because both terms correspond to estimates of expected reward —
they only differ if values of x which have high probability under the uniform distribution (and low
probability under the data distribution) also have high reward for a given target yi. This factor then
should not vary largely unless significant modes of x are missing from the training data for some
values of yi, but not for others.

C Gradient of the entropy

The gradient of the exact entropy term can be calculated as following using log derivative trick:

r✓H(p✓(x|y)) = �r✓[
X

x

p✓(x|y) log p✓(x|y)] (17)

= �
X

x

r✓[p✓(x|y) log p✓(x|y)]

= �
X

x

[p✓(x|y)r log p✓(x|y) + log p✓(x|y)r✓p✓(x|y)]

= �
X

x

(1 + log p✓(x|y))p✓(x|y)r✓ log p✓(x|y)

= �Ep✓(x|y)[(1 + log p✓(x|y))r✓ log p✓(x|y)]

D Description of the model structure and experiments setup

Model structure To model the conditional distribution p✓(x|y), we modified the Segler et al.
[22], Brown et al. [5] sequence model which was initially designed to learn p✓(x). The pipeline
of the model is presented in figure ??. We set a maximum length of the sequence T = 100. By
adding a start and stop token, we represent each sequence with a T + 2 length vector, each element
of which is an index in the dictionary. We use zero padding whenever it is necessary. Each element
of the T + 2 vector is embedded to a h-dimensional vector (h=512) through an embedding layer and
concatenate with its c-dimensional property vector. Thus each sequence/molecule is represented with
a (T + 2)⇥ (h+ c) matrix. We feed this matrix to an LSTM with three hidden layers with hidden
state dimension 512. The output of LSTM last hidden layers is then feed to a linear layer to generates
the resulting sequence which is given by a (T + 2)⇥D matrix where D refers to the dictionary size
that used to describe the sequences.

experimental setups We set the batch size to 20, maximum epoch number to 100 and learning
rate of the Adam optimizer to 0.001. We early stop when the validation set performance decreases
by a factor of two over the best validation performance obtained so far. Since our learning task
is generating sequences that exhibit a given set of desired properties, y, i.e. the properties over
which we do the conditioning, we define the validation set performance as the error between the set
of properties y0 that the sequence we generate by deterministic decoding from the learned model
exhibits, and the desired set properties y over which we conditioned the generation.

Datasets For the QM9 dataset, we split it into a train, a validation, and a test set with 113k, 10k,
an 10k instances, respectively. For the ChEMBL dataset [17], we particularly consider the subset of

13

Figure D.3: Model pipeline

1600k molecules used for benchmarking by Brown et al. [5]. This dataset is divided in a training set,
a validation set and a test set with roughly 1273k, 79k, and 238k instances respectively.

Hyper parameter setting The value of � and ✏ in equation 12 are set based on the statistics of
`1(f(xj),yi). Our goal is to have a decent number of suggested x’s that have a property vector that
is within `1 distance of ✏ from the desired property vector: a simple heuristic is to choose them such
that, if we plan at train time to draw K samples from p(·|i), we see the original paired values xj with
probability roughly 1/K; appropriate values of ✏ can then be selected by inspecting the dataset. For
example, when we condition on 9 properties in QM9, while sampling K = 10 values of xj for each
yi when evaluating the loss, we set ✏ = 0.3 and � = 1: under these values for any given y from the
training set we have a minimum of one and a maximum of 168 suggested x’s, with an average of 13.
Similarly for ChEMBL dataset, we set ✏ = 0.4. If we condition on a single, smooth, property, such
as LogP, we set ✏ = 5⇥ 10�5 and � = 105, since in that case we can find many molecules that have
a practically identical properties.

E Python expressions dataset generation

. We generate synthetic training data by sampling form the probabilistic context free grammar
presented in Listing 1. We filter the generated expressions to keep only those that evaluate to a value
in the range (�1000, 1000), and where the overall length of the expression is at most 30 characters.
We generate 500,000 samples and after removing duplicates are left with 308,722 unique (expression,
value) pairs. Out of these we set aside 20k pairs as a validation set and an additional 10k as a test set.
To learn the conditional generative model p✓(x|y), we rescale the input values y by a factor of 1000,
to ensure that the inputs to the LSTM are in the interval (�1, 1).

F Additional details regarding the SMILES data augmentation process

The augmentation on SMILES is done as following: for each SMILES string in the training data,
we use the RAML [18] defined edit distance sampling process, setting the ⌧ = 0.745, sampling an
edit distance and then applying a transformation on the SMILES string. We keep sampling until we
get 10 valid molecules from each SMILES string in the training set. After filtering out replicated
ones, we are left with 733k instances, which is 6 times larger than the original training set size. We
then pair the augmented smiles with either the properties of the original matching molecule (i.e. the
property of the original SMILES), for the RAML-style importance sampling approach, or with the
properties that obtained from the RDKit chemical software for the pure data augmentation approach.

G More experimental results

In Table ?? we provide conditional generation performance of our model and ML baseline in terms
of total MSE and negative log-likelihood computed over the test set.

14

QM9 ChEMBL

total MSE � log p(x|y) total MSE � log p(x|y)
ML 10.7237± 0.4915 0.2213440 204.4400±4.2766 0.2494

Ours 7.6398± 0.2891 0.2357489 302.5634±5.6231 0.2569
Table G.1: Conditional generation performance

Table ?? presents the results on full Guacamol ChEMBL test set in terms of generation and conditional
generation performance.

Model MSE per-property total MSE

On larger size sequence dataset: ChEMBL
rotatable bonds # aromatic ring logP QED TPSA bertz molecule weight fluorine count # rings

ML 0.1567 0.0376 0.1448 0.0051 27.2466 1652.6992 103.3155 0.0217 0.0264 202.4087

Ours 0.1589 0.0272 0.1331 0.0046 34.9984 2534.8578 177.042 0.0072 0.0190 290.2351

Table G.2: Conditional generation performance on ChEMBL full testset

To test if the model is able to generate diverse molecules for a given target property, we sampled 10
samples for each y in the testset of QM9 and measured the validity, uniqueness, and novelty of the
generated molecules. The result is presented in Table ??.

Model MSE per-property Validity Uniqueness Novelty

On small size sequence dataset: QM9
rotatable bonds # aromatic ring logP QED TPSA bertz molecule weight fluorine count # rings

ML 0.00918 0.00065 0.010993 0.000322 2.82087 19.56099 0.78806 0.00247 0.011853 0.96420 0.558276 0.645831

Ours 0.00400 0.00023 0.00553 0.00012 1.08904 23.19567 0.36655 0.00010 0.00232 0.98781 0.512173 0.61363

Correlation coefficient
ML 0.996233 0.998001 0.994686 0.971792 0.996827 0.995805 0.993406 0.972188 0.995973 - - -
Ours 0.998357 0.999288 0.997274 0.988833 0.998773 0.99503 0.996947 0.998834 0.999213 - - -

Table G.3: Generation and conditional generation performance of our model when we sample 10
molecules per property vector in the testset. To calculate the MSE and correlation coefficient, we use
mean of the 10 sampled molecules property as y0.

H KL divergence as objective

We want to recover the true underlying data distribution p̃(x|y) as accurately as possible from
the training data that is observed. The KL divergence between the model p✓(x|y) and true data
distribution p̃(x|y) is given by

DKL[p✓(x|y)||p̃(x|y)] (18)
= Ep✓(x|y) log p✓(x|y)� Ep✓(x|y) log p̃(x|y)
= �H(p✓(x|y))� Ep✓(x|y) log p̃(x|y).

If we minimize KL divergence in this direction,

min
✓

DKL[p✓(x|y)||p̃(x|y)] ⇡ (19)

max
✓

Ep✓(x|y) log p̃(x|y) +H(p✓(x|y)),

and assume a non-parametric form approximation of the true distribution p̃(x|y) ⇡ exp(R(x̂,yi)P
x̂ expR(x̂,yi)

,
where R(x̂,yi) refers to some reward function, we get exactly the expected reward objective with
maximum entropy regularizer.

If we take KL in the opposite direction

DKL[p̃(x|y)||p✓(x|y)]
= Ep̃(x|y) log p̃(x|y)� Ep̃(x|y) log p✓(x|y)
= �H(p̃(x|y))� Ep̃(x|y) log p✓(x|y) (20)

15

we have

minDKL[p̃(x|y)||p✓(x|y)] ⇡ max
✓

Ep̃(x|y) log p✓(x|y). (21)

As the expectation is taken over the true data distribution, one can empirically evaluate it on the
training data pairs. This is equivalent of assuming that p̃(x|y) ⇡ �(x|y) and doing maximum
log likelihood training on the training set. Even though both KL have a hypothetical minimum at
p✓(x|y) = p̃(x|y), they do not achieve the same solution unless the model has enough learning
capability. DKL[p✓(x|y)||p̃(x|y)] encourages p✓(x|y) to put its mass mainly on the region where
true data distribution p̃(x|y) has concentrated mass, while the DKL[p̃(x|y)||p✓(x|y)] pushes p✓(x|y)
to learn to cover all the region that p̃(x|y) has its mass on [16, 13].

I RL baseline

Our objective is to maximize the expected reward:

J = Ep̃(y)Ep✓(x|y)[R(x;y)]. (22)

where R(x;y) = exp{��d(f(x),y)}. Using the data distribution to approximate expectations over
p̃(y), we have:

J ⇡ 1

N

NX

i=1

Ep✓(x|yi)[R(x;yi)]. (23)

where yi is sampled from training data.

Note that in our case, the model p✓(x|y) defines a distribution over discrete random variables and
reward depends on non-differentiable oracle function f that return feedback on the discrete sequence
x that is sampled from the model p✓(x|y). Therefore, we can not directly differentiate the Ĵ with
respect to the model parameter ✓. One way to apply gradient based optimization in this case is a to
use score-function estimators of the gradient:

r✓J ⇡ 1

N

NX

i=1

Ep✓(x|yi)[R(x;yi)r✓ log p✓(x|yi)]

⇡ 1

NM

NX

i=1

MX

j=1

[R(xj ;yi)r✓ log p✓(xj |yi)]. (24)

The score-function gradient estimators have high variance. Besides, in the beginning, the output
of the model mostly corresponding to invalid sequences. Therefore, we use to initialize our model
from a pre-trained model as a warm-start. The pre-trained model is obtained by maximizing the
log-likelihood of the training data.

In the following experiment, we train the same model with the maximum log-likelihood objective for
six epochs to obtain the pre-trained model for warm start. We set sample size M = 30, mini-batch
size = 20. We set the temperature parameter � = 0.5. At the early stage of training, since the model
is not perfect, the invalid samples proposed by the model are discarded. Note that such training is
very time-consuming because during training at each mini-batch, firstly, we need to sample from the
model by involves unrolling the RNN which is pretty slow when we have long sequences. Secondly,
for each sampled sequence, to get the property, we need to send it to some oracle function, in this
case, RDKit, which is normally implemented in CPU, this requires frequent communication between
CPU and GPU which greatly increases computation time.

QM9
Model Validity Unicity Novelty Training time per epoch (hour)

ML 0.9619 0.9667 0.3660 0.19
Ours 0.9886 0.9629 0.2605 0.56
RL+ warm start 0.4013 0.8425 0.8497 3.05

Table I.4: Molecule generation quality of the data augmentation sampling strategies and our entropy
regulariser

16

QM9: MSE
Model # rotatable bonds # aromatic ring logP QED TPSA bertz molecule weight fluorine count # rings
ML 0.0468±0.0014 0.0014±0.0003 0.0390±0.0013 0.0010±0.0000 11.1772±0.3129 80.7725±4.4282 4.4251±0.3450 0.0023±0.0012 0.0484± 0.0034
Ours 0.0166±0.0009 0.0005± 0.0005 0.0184±0.0010 0.0004±0.0000 3.8585±0.1637 63.6678±2.5520 1.1835±0.1421 0.0004±0.0003 0.0120±0.0027

RL+ warm start 0.3711±0.0149 0.0359±0.0030 0.5285±0.0141 0.0102±0.0002 206.6262±3.4869 1023.2935±24.5836 53.1911±2.2178 0.0183±0.0031 0.4260±0.0119
QM9: Correlation coefficient

ML 0.980881 0.994366 0.980527 0.906267 0.987089 0.984265 0.965101 0.978346 0.981742
Ours 0.993745 0.997184 0.990115 0.963365 0.995382 0.984006 0.988702 1.000000 0.994824

RL+ warm start 0.851715 0.840686 0.830349 0.460100 0.904118 0.827304 0.714198 0.760453 0.899375

Table I.5: Conditional generation performance for the molecules datasets

Note that the computational cost for sampling from RNN and frequent communication between
CPU and GPU to evaluate the properties of the sampled molecules, do not allow us to use bigger
sample size. With sample size 20, after relaxing the early stopping criteria, the training still exist
with training loss increases more than 10 times the minimum training loss been obtained so far.

J Different ways to approximate the Entropy term

The entropy of p✓(x|y) =
QT

t=1 p✓(xt|x1:t�1,y) is given by:

H[p✓(x|y)] = �Ep✓(x|y)[log p✓(x|y)] (25)

= �Ep✓(x1:t|y)

"
TX

t=1

log p✓(xt|x1:t�1, y
¯
)

#
.

A naïve Monte Carlo estimation involves sampling trajectories x, given y, and then evaluating the
log probabilities. We call this approximation Estimator A:

ĤMC = � 1

S

SX

s=1

TX

t=1

log p✓(x
s
t |xs

1:t�1,y) (26)

for xs
t ⇠ p✓(x|y).

The alternative way of approximating the entropy involves decomposing this into a sequence of other
entropies. In this way, we have

H[p✓(x|y)] =H[p✓(x1|y)] +
TX

t=2

Ep✓(x1:t�1|y) [H[p✓(xt|x1:t�1,y)]] (27)

Since the entropy for each individual xt is cheap enough to compute directly in closed form, we can
do so and just use sampling in order to generate the values we condition on at each step. We call this
approximation Estimator B:

H[p✓(x1|y)] +
TX

t=2

Ep✓(x1:t�1|y) [H[p✓(xt|x1:t�1,y)]] ⇡ H[p✓(x1|y)] +
TX

t=2

SX

s=1

1

S
H[p✓(xt|xs

1:t�1,y)

(28)

We randomly sample a y from the test set and calculated the entropy of p✓(x|y) using above two
estimators, with different sample size. We show the histogram of the resulting entropy values over 15
trials on a trained and a random model in figures ?? and ?? respectively. As figure ?? and ?? show,
the estimator B is rather stable and has less variance than estimator A, as expected. Therefore, from
now on, we use estimator B, which is the Monte Carlo approximation given in the equation (??), as a
gold standard reference to compare other estimators against. Unfortunately, using the estimator B
involves sampling from the model distribution that we want to optimize, so we still have the problems
when taking the derivative. An alternative, instead of taking a Monte Carlo approximation of the
expectation in front of the each entropy term in equation (??), we could do a deterministic greedy
decoding by taking the max at each xt. The below figures ?? and ?? show how the greedy decoding
variants of estimator A and B perform against estimator B with Monte Carlo sample size one and
50. For each of the Monte Carlo estimates, we plot a normal distribution showing the mean and
standard deviation of the entropy values estimated from the 15 independent trials. Greedy decoding
for the values we condition on seems to work reasonably well for approximating the entropy, in both
a random model and a trained model setting, which means it is good-enough to use as a regularizer
during early stages of training. We also tested the straight through estimator as an alternative to the

17

Figure J.4: The histogram of the approximated entropy of a fully-trained model p✓⇤(x|yi)

Figure J.5: The histogram of the entropy of a random model (untrained) p✓(x|yi)

greedy decoding, as it also allows us to take gradients. To get the straight through estimator, instead

18

Figure J.6: Entropy approximation on
the trained model

Figure J.7: Entropy approximation on the random model

of evaluating the RNN on the embedding of a single input, we compute the mean of the embeddings
under the distribution.

Figure J.8: Comparing a greedy and straight-through estimator to a Monte Carlo reference

The figure ?? shows, straight through estimator also works reasonably well. In the experiment we
use the greedy decoding of the estimator B,

H[p✓(x|y)] =H[p✓(x1|y)]+ (29)
TX

t=2

Ep✓(x1:t�1|y) [H[p✓(xt|x1:t�1,y)]]

⇡H[p✓(x1|y)] +
TX

t=2

⇥
H[p✓(xt|x⇤

1:t�1,y)]
⇤
,

where x⇤
1:t�1 is obtained from unrolling the RNN by taking the most probable character at each

time step. For this approximation of the entropy the gradient calculation is straightforward. We can
calculate the each individual entropy term analytically as our underlying sequence is discrete and
finite. Therefore, the gradient calculation of this approximated entropy would be straightforward to
implement and cheap in computation time.

K Molecule generation baselines

L More results

19

Figure K.9: Molecules generated from a given property value vector. The boxed ones are molecules
that have not been seen before.

20

Q
M

9:
M

SE
M

od
el

#
ro

ta
ta

bl
e

bo
nd

s
#

ar
om

at
ic

rin
g

lo
gP

Q
ED

TP
SA

be
rtz

m
ol

ec
ul

e
w

ei
gh

t
flu

or
in

e
co

un
t

#
rin

gs
M

L
0.

04
68

±
0.

00
14

0.
00

14
±

0.
00

03
0.

03
90

±
0.

00
13

0.
00

10
±

0.
00

00
11

.1
77

2±
0.

31
29

80
.7

72
5±

4.
42

82
4.

42
51

±
0.

34
50

0.
00

23
±

0.
00

12
0.

04
84
±

0.
00

34
O

ur
s

0
.0

1
6
6
±

0
.0

0
0
9

0
.0

0
0
5
±

0
.0

0
0
5

0
.0

1
8
4
±

0
.0

0
1
0

0
.0

0
0
4
±

0
.0

0
0
0

3
.8

5
8
5
±

0
.1

6
3
7

6
3
.6

6
7
8
±

2
.5

5
2
0

1
.1

8
3
5
±

0
.1

4
2
1

0
.0

0
0
4
±

0
.0

0
0
3

0
.0

1
2
0
±

0
.0

0
2
7

Q
M

9:
C

or
re

la
tio

n
co

ef
fic

ie
nt

M
L

0.
98

08
81

0.
99

43
66

0.
98

05
27

0.
90

62
67

0.
98

70
89

0
.9

8
4
2
6
5

0.
96

51
01

0.
97

83
46

0.
98

17
42

O
ur

s
0
.9

9
3
7
4
5

0
.9

9
7
1
8
4

0
.9

9
0
1
1
5

0
.9

6
3
3
6
5

0
.9

9
5
3
8
2

0.
98

40
06

0
.9

8
8
7
0
2

1
.0

0
0
0
0
0

0
.9

9
4
8
2
4

C
hE

M
B

L:
M

SE
M

L
0
.1

5
5
2
±

0
.0

1
0
4

0.
03

88
±

0.
00

28
0.

14
50

±
0.

00
25

0.
00

50
±

0.
00

01
2
7
.6

4
1
6
±

0
.4

2
0
4

1
7
0
7
.9

9
9
6
±

3
8
.8

8
0
0

1
0
3
.9

3
8
9
±

3
.1

6
3
7

0.
01

28
±

0.
00

16
0.

02
26
±

0.
00

16
O

ur
s

0
.1

5
5
5
±

0
.0

2
2
1

0
.0

2
6
8
±

0
.0

0
1
8

0
.1

3
2
0
±

0
.0

0
2
5

0
.0

0
4
6
±

0
.0

0
0
1

35
.0

53
1±

0.
41

79
25

12
.7

42
1±

47
.7

03
1

17
4.

93
01

±
3.

69
13

0
.0

0
7
4
±

0
.0

0
1
0

0
.0

1
9
1
±

0
.0

0
1
0

C
he

EM
B

L:
C

or
re

la
tio

n
co

ef
fic

ie
nt

M
L

0
.9

9
3
6
2
8

0.
98

61
84

0.
97

76
86

0.
94

50
18

0
.9

9
0
5
7
6

0.
99

33
85

0
.9

9
5
6
2
4

0.
99

39
52

0.
99

31
05

O
ur

s
0.

99
34

09
0
.9

9
0
1
1
1

0
.9

7
9
5
8
1

0
.9

4
9
5
7
8

0.
98

77
75

0.
99

01
89

0.
99

25
50

0
.9

9
6
5
8
3

0
.9

9
4
2
5
0

Ta
bl

e
L.

6:
C

on
di

tio
na

lg
en

er
at

io
n

pe
rf

or
m

an
ce

fo
rt

he
m

ol
ec

ul
es

da
ta

se
ts

21

Q
M

9:
M

SE
M

od
el

#
ro

ta
ta

bl
e

bo
nd

s
#

ar
om

at
ic

rin
g

lo
gP

Q
ED

TP
SA

be
rtz

m
ol

ec
ul

e
w

ei
gh

t
flu

or
in

e
co

un
t

#
rin

gs
C

la
ss

ic
da

ta
au

gm
en

ta
tio

n
0.

05
84

0.
01

07
0.

06
31

0.
00

17
7.

73
58

13
3.

68
68

6.
42

99
0.

00
09

0.
07

55
R

A
M

L-
lik

e
da

ta
au

gm
en

ta
tio

n
0.

96
66

0.
08

76
0.

59
91

0.
00

71
18

1.
75

02
26

77
.7

33
0

20
31

.7
94

8
0.

01
82

0.
53

56
O

ur
s

+
en

tro
py

(�
=

0.
00

08
)

0
.0

2
2

8
0

.0
0

0
7

0
.0

2
6

2
0

.0
0

0
7

6
.3

3
7

4
8

0
.2

3
7

0
2

.2
9

3
5

0
.0

0
0

6
0

.0
1

9
1

Q
M

9:
C

or
re

la
tio

n
co

ef
fic

ie
nt

C
la

ss
ic

da
ta

au
gm

en
ta

tio
n

0.
97

66
60

0.
97

07
58

0.
96

92
38

0.
85

32
02

0.
99

10
58

0.
96

96
15

0.
91

40
65

0
.9

8
7

7
6

2
0.

97
17

79
R

A
M

L-
lik

e
da

ta
au

gm
en

ta
tio

n
0.

66
25

32
0.

66
52

83
0.

72
40

79
0.

49
99

01
0.

79
07

27
0.

55
41

20
0.

08
08

51
0.

79
57

29
0.

81
70

79
O

ur
s

+
en

tro
py

(�
=

0.
00

08
)

0
.9

9
0

4
3

7
0

.9
9

9
0

4
6

0
.9

8
7

5
2

4
0

.9
4

1
2

5
9

0
.9

9
2

9
9

2
0

.9
8

3
4

0
0

0
.9

8
2

8
5

5
0.

98
07

21
0

.9
9

4
4

2
8

Ta
bl

e
L.

7:
C

on
di

tio
na

lg
en

er
at

io
n

pe
rf

or
m

an
ce

fo
rt

he
m

ol
ec

ul
e

da
ta

se
ts

of
th

e
da

ta
au

gm
en

ta
tio

n
ba

se
d

sa
m

pl
in

g
an

d
ou

re
nt

ro
py

re
gu

la
ris

er
.

22

	Introduction
	Methods
	Maximizing expected reward
	Approximating expectations under the normalized reward distribution
	Sequence diversification

	Experiments
	Conditional generation of mathematical expressions
	Conditional generation of molecules
	Testing against a strong baseline: Data augmentation -based sampling
	Deploying the entropy-based regulariser

	Related work
	Conclusion

