Hard Negative Mixing for Contrastive Learning

Yannis Kalantidis Mert Bulent Sariyildiz Noe Pion
Philippe Weinzaepfel Diane Larlus
NAVER LABS Europe

Grenoble, France

Abstract

Contrastive learning has become a key component of self-supervised learning
approaches for computer vision. By learning to embed two augmented versions of
the same image close to each other and to push the embeddings of different images
apart, one can train highly transferable visual representations. As revealed by recent
studies, heavy data augmentation and large sets of negatives are both crucial in
learning such representations. At the same time, data mixing strategies, either at the
image or the feature level, improve both supervised and semi-supervised learning
by synthesizing novel examples, forcing networks to learn more robust features. In
this paper, we argue that an important aspect of contrastive learning, i.e. the effect of
hard negatives, has so far been neglected. To get more meaningful negative samples,
current top contrastive self-supervised learning approaches either substantially
increase the batch sizes, or keep very large memory banks; increasing memory
requirements, however, leads to diminishing returns in terms of performance.
We therefore start by delving deeper into a top-performing framework and show
evidence that harder negatives are needed to facilitate better and faster learning.
Based on these observations, and motivated by the success of data mixing, we
propose hard negative mixing strategies at the feature level, that can be computed
on-the-fly with a minimal computational overhead. We exhaustively ablate our
approach on linear classification, object detection, and instance segmentation and
show that employing our hard negative mixing procedure improves the quality of
visual representations learned by a state-of-the-art self-supervised learning method.

Project page: https://europe.naverlabs.com/mochi

x NEGATIVES (MEMORY>

1 Introduction

Contrastive learning was recently shown to be
a highly effective way of learning visual repre-
sentations in a self-supervised manner [8, 21].
Pushing the embeddings of two transformed ver-
sions of the same image (forming the positive
pair) close to each other and further apart from
the embedding of any other image (negatives)
using a contrastive loss, leads to powerful and
transferable representations. A number of recent
studies [10, 17, 39] show that carefully hand-
crafting the set of data augmentations applied to
images is instrumental in learning such represen-

Y SYNTHETIC NEGATIVES
B QUERY

Vv 3
v

"V wy
vyvYy
Yy

X

' HARD NEGATIVE MIXING ‘

Figure 1: MoCHi generates synthetic hard nega-
tives for each positive (query).

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://europe.naverlabs.com/mochi

tations. We suspect that the right set of transformations provides more diverse, i.e. more challenging,
copies of the same image to the model and makes the self-supervised (proxy) task harder. At the
same time, data mixing techniques operating at either the pixel [41, 49, 50] or the feature level [40]
help models learn more robust features that improve both supervised and semi-supervised learning
on subsequent (farget) tasks.

In most recent contrastive self-supervised learning approaches, the negative samples come from
either the current batch or a memory bank. Because the number of negatives directly affects the
contrastive loss, current top contrastive approaches either substantially increase the batch size [8], or
keep large memory banks. Approaches like [31, 46] use memories that contain the whole training
set, while the recent Momentum Contrast (or MoCo) approach of He et al. [21] keeps a queue with
features of the last few batches as memory. The MoCo approach with the modifications presented
in [10] (named MoCo-v2) currently holds the state-of-the-art performance on a number of target
tasks used to evaluate the quality of visual representations learned in an unsupervised way. It is
however shown [8, 21] that increasing the memory/batch size leads to diminishing returns in terms of
performance: more negative samples does not necessarily mean hard negative samples.

In this paper, we argue that an important aspect of contrastive learning, i.e. the effect of hard negatives,
has so far been neglected in the context of self-supervised representation learning. We delve deeper
into learning with a momentum encoder [21] and show evidence that harder negatives are required to
facilitate better and faster learning. Based on these observations, and motivated by the success of
data mixing approaches, we propose hard negative mixing, i.e. feature-level mixing for hard negative
samples, that can be computed on-the-fly with a minimal computational overhead. We refer to the
proposed approach as MoCHI, that stands for "(M)ixing (0)f (C)ontrastive (H)ard negat(i)ves".

A toy example of the proposed hard negative mixing strategy is presented in Figure 1; it shows a
t-SNE [29] plot after running MoCHi on 32-dimensional random embeddings on the unit hypersphere.
We see that for each positive query (red square), the memory (gray marks) contains many easy
negatives and few hard ones, i.e. many of the negatives are too far to contribute to the contrastive loss.
We propose to mix only the hardest negatives (based on their similarity to the query) and synthesize
new, hopefully also hard but more diverse, negative points (blue triangles).

Contributions. a) We delve deeper into a top-performing contrastive self-supervised learning
method [21] and observe the need for harder negatives; b) We propose hard negative mixing, i.e. to
synthesize hard negatives directly in the embedding space, on-the-fly, and adapted to each positive
query. We propose to both mix pairs of the hardest existing negatives, as well as mixing the hardest
negatives with the query itself; ¢) We exhaustively ablate our approach and show that employing hard
negative mixing improves both the generalization of the visual representations learned (measured via
their transfer learning performance), as well as the utilization of the embedding space, for a wide
range of hyperparameters; d) We report competitive results for linear classification, object detection
and instance segmentation, and further show that our gains over a state-of-the-art method are higher
when pre-training for fewer epochs, i.e. MoCHi learns transferable representations faster.

2 Related work

Most early self-supervised learning methods are based on devising proxy classification tasks that try
to predict the properties of a transformation (e.g. rotations, orderings, relative positions or channels)
applied on a single image [12, 13, 16, 26, 32]. Instance discrimination [46] and CPC [33] were
among the first papers to use contrastive losses for self-supervised learning. The last few months
have witnessed a surge of successful approaches that also use contrastive learning losses. These
include MoCo [10, 21], SimCLR [8, 9], PIRL [31], CMC [38] or SVAV [7]. In parallel, methods
like [3, 5-7, 53, 27] build on the idea that clusters should be formed in the feature spaces, and use
clustering losses together with contrastive learning or transformation prediction tasks.

Most of the top-performing contrastive methods leverage data augmentations [8, 10, 18, 21, 31, 38].
As revealed by recent studies [2, 17, 39, 43], heavy data augmentations applied to the same image are
crucial in learning useful representations, as they modulate the hardness of the self-supervised task
via the positive pair. Our proposed hard negative mixing technique, on the other hand, is changing
the hardness of the proxy task from the side of the negatives.

A few recent works discuss issues around the selection of negatives in contrastive self-supervised
learning [4, 11, 23, 45, 47, 22]. Iscen et al. [23] mine hard negatives from a large set by focusing on
the features that are neighbors with respect to the Euclidean distance, but not when using a manifold
distance defined over the nearest neighbor graph. Interested in approximating the underlying “true”
distribution of negative examples, Chuang et al. [11] present a debiased version of the contrastive
loss, in an effort to mediate the effect of false negatives. Wu et al. [45] present a variational extension
to the InfoNCE objective that is further coupled with modified strategies for negative sampling, e.g.
restricting negative sampling to a region around the query. In concurrent works, Cao et al. [4] propose
a weight update correction for negative samples to decrease GPU memory consumption caused by
weight decay regularization, while in [22] the authors propose a new algorithm that generates more
challenging positive and hard negative pairs, on-the-fly, by leveraging adversarial examples.

Mixing for contrastive learning. Mixup [50] and its numerous variants [36, 40, 42, 49] have been
shown to be highly effective data augmentation strategies when paired with a cross-entropy loss
for supervised and semi-supervised learning. Manifold mixup [40] is a feature-space regularizer
that encourages networks to be less confident for interpolations of hidden states. The benefits of
interpolating have only recently been explored for losses other than cross-entropy [25, 36, 52]. In [36],
the authors propose using mixup in the image/pixel space for self-supervised learning; in contrast,
we create query-specific synthetic points on-the-fly in the embedding space. This makes our method
way more computationally efficient and able to show improved results at a smaller number of epochs.
The Embedding Expansion [25] work explores interpolating between embeddings for supervised
metric learning on fine-grained recognition tasks. The authors use uniform interpolation between
two positive and negative points, create a set of synthetic points and then select the hardest pair as
negative. In contrast, the proposed MoCHi has no need for class annotations, performs no selection
for negatives and only samples a single random interpolation between multiple pairs. What is more,
in this paper we go beyond mixing negatives and propose mixing the positive with negative features,
to get even harder negatives, and achieve improved performance. Our work is also related to metric
learning works that employ generators [14, 51]. Apart from not requiring labels, our method exploits
the memory component and has no extra parameters or loss terms that need to be optimized.

3 Understanding hard negatives in unsupervised contrastive learning

3.1 Contrastive learning with memory

Let f be an encoder, i.e. a CNN for visual representation learning, that transforms an input image x
to an embedding (or feature) vector z = f(x),z € R?. Further let Q be a “memory bank” of size
K, i.e. aset of K embeddings in R%. Let the query q and key k embeddings form the positive pair,
which is contrasted with every feature n in the bank of negatives (QQ) also called the queue in [21]. A
popular and highly successful loss function for contrastive learning [8, 21, 38] is the following:

exp(q’k/7)
SD(ATR/T) + oneq oxp(aT0/7)’

where T is a temperature parameter and all embeddings are ¢5-normalized. In a number of recent
successful approaches [8, 21, 31, 39] the query and key are the embeddings of two augmentations of
the same image. The memory bank () contains negatives for each positive pair, and may be defined
as an “external” memory containing every other image in the dataset [31, 38, 46], a queue of the last
batches [21], or simply be every other image in the current minibatch [8].

,Cq’k’Q = — log (1)

The log-likelihood function of Eq (1) is defined over the probability distribution created by applying
a softmax function for each input/query q. Let p,, be the matching probability for the query and
feature z; € Z = Q U {k}, then the gradient of the loss with respect to the query q is given by:

0Lq.x,Q 1 exp(q’'z;/T)
QLaxe _ L _py k=S puon|, wherep., = ,
0q T % > jezexp(a’z;/7)

2

and py, p,, are the matching probability of the key and negative feature, i.e. for z; = k and for z; = n,
respectively. We see that the contributions of the positive and negative logits to the loss are identical
to the ones for a (K 4 1)-way cross-entropy classification loss, where the logit for the key corresponds
to the query’s latent class [1] and all gradients are scaled by 1/7.

1.0k — Fjp()(th 1
N Epoch 25
N == Epoch 50
== Epoch 100
== Epoch 150
== Epoch 200

=

=~
15

ot
=)

24,1024, 0)
24 024, 128)
2 4 MoCHi(1024, 1024, 128) Class Oracle

% of False Negatives

Proxy Task Accuracy

[N
o

=
=)

c A 2
10 10! 107 10° 2055750 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Largest Negative Logits (ranked) Epochs Epochs

(a) (b) (©)

Figure 2: Training on ImageNet-100 dataset. (a) A histogram of the 1024 highest matching probabili-
ties p.,, z; € @ for MoCo-v2 [10], across epochs; logits are ranked by decreasing order and each line
shows the average value of the matching probability over all queries; (b) Accuracy on the proxy task,
i.e. percentage of queries where we rank the key over all negatives. Lines with triangle markers for
MoCHi variants correspond to the proxy task accuracy after discarding the synthetic hard negatives.
(c) Percentage of false negatives (FN), i.e. negatives from the same class as the query, among the
highest 1024 (negative) logits. when using a class oracle. Lines with triangle (resp. square) markers
correspond to the percentage of synthetic points for which one (resp. both) mixed points are FN. For
Purple and orange lines the class oracle was used during training to discard FN.

3.2 Hard negatives in contrastive learning

Hard negatives are critical for contrastive learning [1, 19, 23, 30, 37, 44, 48]. Sampling negatives
from the same batch leads to a need for larger batches [8] while sampling negatives from a memory
bank that contains every other image in the dataset requires the time consuming task of keeping a
large memory up-to-date [31, 46]. In the latter case, a trade-off exists between the “freshness” of the
memory bank representations and the computational overhead for re-computing them as the encoder
keeps changing. The Momentum Contrast (or MoCo) approach of He et al. [21] offers a compromise
between the two negative sampling extremes: it keeps a queue of the latest K features from the last
batches, encoded with a second key encoder that trails the (main/query) encoder with a much higher
momentum. For MoCo, the key feature k and all features in () are encoded with the key encoder.

How hard are MoCo negatives? In MoCo [21] (resp. SimCLR [8]) the authors show that increas-
ing the memory (resp. batch) size, is crucial to getting better and harder negatives. In Figure 2a
we visualize how hard the negatives are during training for MoCo-v2, by plotting the highest 1024
matching probabilities p; for ImageNet-100' and a queue of size K = 16k. We see that, although in
the beginning of training (i.e. at epoch 0) the logits are relatively flat, as training progresses, fewer
and fewer negatives offer significant contributions to the loss. This shows that most of the memory
negatives are practically not helping a lot towards learning the proxy task.

On the difficulty of the proxy task. For MoCo [21], SimCLR [8], InfoMin [39], and other
approaches that learn augmentation-invariant representations, we suspect the hardness of the proxy
task to be directly correlated with the difficulty of the transformations set, i.e. hardness is modulated
via the positive pair. We propose to experimentally verify this. In Figure 2b, we plot the proxy task
performance, i.e. the percentage of queries where the key is ranked over all negatives, across training
for MoCo [21] and MoCo-v2 [10]. MoCo-v2 enjoys a high performance gain over MoCo by three
main changes: the addition of a Multilayer Perceptron (MLP) head, cosine learning rate schedule,
and more challenging data augmentation. As we further discuss in the Appendix, only the latter of
these three changes makes the proxy task harder to solve. Despite the drop in proxy task performance,
however, further performance gains are observed for linear classification. In Section 4 we discuss
how MoCHi gets a similar effect by modulating the proxy task through mixing harder negatives.

'In this section we study contrastive learning for MoCo [21] on ImageNet-100, a subset of ImageNet
consisting of 100 classes introduced in [38]. See Section 5 for details on the dataset and experimental protocol.

3.3 A class oracle-based analysis

In this section, we analyze the negatives for contrastive learning using a class oracle, i.e. the ImageNet
class label annotations. Let us define false negatives (FN) as all negative features in the memory
Q, that correspond to images of the same class as the query. Here we want to first quantify false
negatives from contrastive learning and then explore how they affect linear classification performance.
What is more, by using class annotations, we can train a contrastive self-supervised learning oracle,
where we measure performance at the downstream task (linear classification) after disregarding FN
from the negatives of each query during training. This has connections to the recent work of [24],
where a contrastive loss is used in a supervised way to form positive pairs from images sharing the
same label. Unlike [24], our oracle uses labels only for discarding negatives with the same label for
each query, i.e. without any other change to the MoCo protocol.

In Figure 2c, we quantify the percentage of false negatives for the oracle run and MoCo-v2, when
looking at highest 1024 negative logits across training epochs. We see that a) in all cases, as
representations get better, more and more FNs (same-class logits) are ranked among the top; b) by
discarding them from the negatives queue, the class oracle version (purple line) is able to bring
same-class embeddings closer. Performance results using the class oracle, as well as a supervised
upper bound trained with cross-entropy are shown in the bottom section of Figure 1. We see that the
MoCo-v2 oracle recovers part of the performance relative to the supervised case, i.e. 78.0 (MoCo-v2,
200 epochs) — 81.8 (MoCo-v2 oracle, 200 epochs) — 86.2 (supervised).

4 Feature space mixing of hard negatives

In this section we present an approach for synthesizing hard negatives, i.e. by mixing some of the
hardest negative features of the contrastive loss or the hardest negatives with the query. We refer to
the proposed hard negative mixing approach as MoCHI, and use the naming convention MoCHi (N,
s, §'), that indicates the three important hyperparameters of our approach, to be defined below.

4.1 Mixing the hardest negatives

Given a query q, its key k and negative/queue features n € () from a queue of size K, the loss for
the query is composed of logits (z;) = q”'z; /7 fed into a softmax function. Let Q = {ny,... ,ng}
be the ordered set of all negative features, such that: [(n;) > I(n;), Vi < j, i.e. the set of negative
features sorted by decreasing similarity to that particular query feature.

For each query, we propose to synthesize s hard negative features, by creating convex linear combina-
tions of pairs of its “hardest” existing negatives. We define the hardest negatives by truncating the
ordered set Q, i.e. only keeping the first N < K items. Formally, let H = {h; ..., h} be the set of
synthetic points to be generated. Then, a synthetic point hy, € H, would be given by:

h -
h; = ~7k, where hy, = axn; + (1 — ag)n;, 3)
(b |2
n;,n; € QN are randomly chosen negative features from the set QN = {ny,...,ny} of the closest

N negatives, oy, € (0,1) is a randomly chosen mixing coefficient and |[|-||2 is the o-norm. After
mixing, the logits /(hy) are computed and appended as further negative logits for query q. The
process repeats for each query in the batch. Since all other logits I(z;) are already computed, the extra
computational cost only involves computing s dot products between the query and the synthesized
features, which would be computationally equivalent to increasing the memory by s << K.

4.2 Mixing for even harder negatives

As we are creating hard negatives by convex combinations of the existing negative features, and if one
disregards the effects of the £5-normalization for the sake of this analysis, the generated features will
lie inside the convex hull of the hardest negatives. Early during training, where in most cases there is
no linear separability of the query with the negatives, this synthesis may result in negatives much
harder than the current. As training progresses, and assuming that linear separability is achieved,
synthesizing features this way does not necessarily create negatives harder than the hardest ones
present; it does however still stretch the space around the query, pushing the memory negatives further

and increasing the uniformity of the space (see Section 4.3). This space stretching effect around
queries is also visible in the t-SNE projection of Figure 1.

To explore our intuition to the fullest, we further propose to mix the query with the hardest negatives
to get even harder negatives for the proxy task. We therefore further synthesize s’ synthetic hard
negative features for each query, by mixing its feature with a randomly chosen feature from the
hardest negatives in set Q. Let H' = {h/ ..., h’,} be the set of synthetic points to be generated
by mixing the query and negatives, then, similar to Eq. (3), the synthetic points hj, = hj /||h/s]|2,
where h), = Brq + (1 — Bx)n;, and n; is a randomly chosen negative feature from QV, while
Br € (0,0.5) is a randomly chosen mixing coefficient for the query. Note that 5, < 0.5 guarantees
that the query’s contribution is always smaller than the one of the negative. Same as for the synthetic
features created in Section 4.1, the logits [(h},) are computed and added as further negative logits
for query q. Again, the extra computational cost only involves computing s’ dot products between
the query and negatives. In total, the computational overhead of MoCHi is essentially equivalent to
increasing the size of the queue/memory by s + s’ << K.

4.3 Discussion and analysis of MoCHi

Recent approaches like [8, 10] use a Multi-layer Perceptron (MLP) head instead of a linear layer for
the embeddings that participate in the contrastive loss. This means that the embeddings whose dot
products contribute to the loss, are not the ones used for target tasks—a lower-layer embedding is used
instead. Unless otherwise stated, we follow [8, 10] and use a 2-layer MLP head on top of the features
we use for downstream tasks. We always mix hard negatives in the space of the loss.

Is the proxy task more difficult? Figure 2b shows the proxy task performance for two variants
of MoCHIi, when the synthetic features are included (lines with no marker) and without (lines with
triangle marker). We see that when mixing only pairs of negatives (s’ = 0, green lines), the model
does learn faster, but in the end the proxy task performance is similar to the baseline case. In fact, as
features converge, we see that max /(hy,) < max!(n;),hy € H,n; € Q. This is however not the
case when synthesizing negatives by further mixing them with the query. As we see from Figure 2b,
at the end of training, max [(h},) > maxi(n;), hj, € H’, i.e. although the final performance for the
proxy task when discarding the synthetic negatives is similar to the MoCo-v2 baseline (red line with
triangle marker), when they are taken into account, the final performance is much lower (red line
without markers). Through MoCHi we are able to modulate the hardness of the proxy task through
the hardness of the negatives; in the next section we experimentally ablate that relationship.

Oracle insights for MoCHi. From Figure 2c we see that the percentage of synthesized features
obtained by mixing two false negatives (lines with square markers) increases over time, but remains
very small, i.e. around only 1%. At the same time, we see that about 8% of the synthetic features are
fractionally false negatives (lines with triangle markers), i.e. at least one of its two components is a
false negative. For the oracle variants of MoCHi, we also do not allow false negatives to participate
in synthesizing hard negatives. From Table 1 we see that not only the MoCHi oracle is able to get a
higher upper bound (82.5 vs 81.8 for MoCo-v2), further closing the difference to the cross entropy
upper bound, but we also show in the Appendix that, after longer training, the MoCHi oracle is able
to recover most of the performance loss versus using cross-entropy, i.e. 79.0 (MoCHi, 200 epochs)
— 82.5 (MoCHi oracle, 200 epochs) — 85.2 (MoCHi oracle, 800 epochs) — 86.2 (supervised).

It is noteworthy that by the end of training, MoCHi exhibits slightly lower percentage of false negatives
in the top logits compared to MoCo-v2 (rightmost values of Figure 2¢). This is an interesting result:
MoCHi adds synthetic negative points that are (at least partially) false negatives and is pushing
embeddings of the same class apart, but at the same time it exhibits higher performance for linear
classification on ImageNet-100. That is, it seems that although the absolute similarities of same-class
features may decrease, the method results in a more linearly separable space. This inspired us to
further look into how having synthetic hard negatives impacts the utilization of the embedding space.

Measuring the utilization of the embedding space. Very recently, Wang and Isola [43] presented
two losses/metrics for assessing contrastive learning representations. The first measures the alignment
of the representation on the hypersphere, i.e. the absolute distance between representations with the
same label. The second measures the uniformity of their distribution on the hypersphere, through

measuring the logarithm of the average pairwise Gaussian potential between all embeddings. In
Figure 3c, we plot these two values for a number of models, when using features from all images
in the ImageNet-100 validation set. We see that MoCHi highly improves the uniformity of the
representations compared to both MoCo-v2 and the supervised models. This further supports our
hypothesis that MoCHi allows the proxy task to learn to better utilize the embedding space. In fact,
we see that the supervised model leads to high alignment but very low uniformity, denoting features
targeting the classification task. On the other hand, MoCo-v2 and MoCHi have much better spreading
of the underlying embedding space, which we experimentally know leads to more generalizable
representations, i.e. both MoCo-v2 and MoCHi outperform the supervised ImageNet-pretrained
backbone for transfer learning (see Figure 3c).

5 Experiments

We learn representations on two datasets, the “yethod

Topl % (o) diff (%)

common ImageNet-1K [35], and its smaller v com 734
ImageNet-100 subset, also used in [36, 38]. All MoCo + iMix [36] 74.2% 0.8
runs of MoCHi are based on MoCo-v2. We gﬁg [3?1\]/[_ o ;g-;t o
developed our approach on top of the official oc +;1 1: L56] X 74'0 -

. . 2 211t = 0. A
public }mplementatlon of MoCo-v2° and repro- MoCo {21}* E . 0_2)) 759
duced it on our setup; other results are copied ~ MoCo-v2 [10]* 78.0 (£0.2)
from the respective papers. We run all exper- +MoCHi (1024, 1024, 128) | 79.0 (+0.4) Lo
. 4 GPU For 1i lassifi- +MoCHi (1024, 256,512) | 79.0 (+0.4) 1.0
1ments on servers. ror linear classi +MoCHi (1024, 128,256) | 78.9 (£0.5) 0.9
cation on ImageNet-100 (resp. ImageNet-1K), Using Class Oracle
we follow the common protocol and report re- MoCo-v2* 81.8
sults on the validation set. We report perfor- _+MoCHi (1024, 1024, 128) | 82.5

. . . Supervised (Cross Entropy) 86.2

mance after learning linear classifiers for 60

(resp. 100) epochs, with an initial learning rate Typle 1: Results on ImageNet-100 after training
of 10.0 (30.0), a batch size of 128 (resp. 512) for 200 epochs. The bottom section reports results
and a step learning rate schedule that drops at when using a class oracle (see Section 3.3). * de-
epochs 30, 40 and 50 (resp. 60, 80). For training potes reproduced results, ¥ denotes results visually

we use K = 16k (resp. /X = 65k). For MoCHI, extracted from Figure 4 in [36]. The parameters of
we also have a warm-up of 10 (resp. 15) epochs, MoCHi are (I, s,).

i.e. for the first epochs we do not synthesize hard

negatives. For ImageNet-1K, we report accuracy for a single-crop testing. For object detection on
PASCAL VOC [15] we follow [21] and fine-tune a Faster R-CNN [34], R50-C4 on trainvalQ7+12
and test on test2007. We use the open-source detectron2® code and report the common AP, AP50
and AP75 metrics. Similar to [21], we do not perform hyperparameter tuning for the object detection
task. See the Appendix for more implementation details.

A note on reporting variance in results. It is unfortunate that many recent self-supervised learning
papers do not discuss variance ; in fact only papers from highly resourceful labs [21, 8, 39] report
averaged results, but not always the variance. This is generally understandable, as e.g. training and
evaluating a ResNet-50 model on ImageNet-1K using 4 V100 GPUs take about 6-7 days. In this
paper, we tried to verify the variance of our approach for a) self-supervised pre-training on ImageNet-
100, i.e. we measure the variance of MoCHi runs by training a model multiple times from scratch
(Table 1), and b) the variance in the fine-tuning stage for PASCAL VOC and COCO (Tables 2, 3).
It was unfortunately computationally infeasible for us to run multiple MoCHi pre-training runs for
ImageNet-1K. In cases where standard deviation is presented, it is measured over at least 3 runs.

5.1 Ablations and results

We performed extensive ablations for the most important hyperparameters of MoCHi on ImageNet-
100 and some are presented in Figures 3a and 3b, while more can be found in the Appendix. In general
we see that multiple MoCHi configurations gave consistent gains over the MoCo-v2 baseline [10] for
linear classification, with the top gains presented in Figure 1 (also averaged over 3 runs). We further
show performance for different values of /N and s in Figure 3a and a table of gains for NV = 1024 in

’https://github.com/facebookresearch/moco
*https://github.com/facebookresearch/detectron?

https://github.com/facebookresearch/moco
https://github.com/facebookresearch/detectron2

Supervised
T
79 1024 — -0.6
°
S 512
s}
°
f 78.5 [512 | 07
g" o s 1024@ g
= (e i BT K24 g MoCHi Oracle
o0-0.8 ®
® 5l | | | | < MoCo-v2 Oracle®
128 256 512 1024 2048 16384
. . -0.9
(a) Accuracy when varying N (x-axis) and s. MoCo-v2®
MoCHi (1024, 128, 256)®
-1.0 MoCHi (1024, 1024, 128)®

2.0 2.2 2.4 2.6 2.8

-_MM Uniformity
508 [ENEN 1. KN
L+0.3] e —
80 82 84 86

Topl Accuracy

(b) Accuracy gains over MoCo-v2 when N = 1024. (c) Alignment and uniformity.

Figure 3: Results on the validation set of ImageNet-100. (a) Top-1 Accuracy for different values of
N (x-axis) and s; the dashed black line is MoCo-v2. (b) Top-1 Accuracy gains (%) over MoCo-v2
(top-left cell) when N = 1024 and varying s (rows) and s’ (columns). (¢) Alignment and uniformity
metrics [43]. The x/y axes correspond t0 — L.,y form and —Lgjign, respectively.

Figure 3b; we see that a large number of MoCHi combinations give consistent performance gains.
Note that the results in these two tables are not averaged over multiple runs (for MoCHi combinations
where we had multiple runs, only the first run is presented for fairness). In other ablations (see
Appendix), we see that MoCHi achieves gains (+0.7%) over MoCo-v2 also when training for 100
epochs. Table 1 presents comparisons between the best-performing MoCHi variants and reports gains
over the MoCo-v2 baseline. We also compare against the published results from [36] a recent method
that uses mixup in pixel space to synthesize harder images.

Comparison with the state of the art on ImageNet-1K, PASCAL VOC and COCO. In Table 2
we present results obtained after training on the ImageNet-1K dataset. Looking at the average negative
logits plot and because both the queue and the dataset are about an order of magnitude larger for this
training dataset we mostly experiment with smaller values for /N than in ImageNet-100. Our main
observations are the following: a) MoCHi does not show performance gains over MoCo-v2 for linear
classification on ImageNet-1K. We attribute this to the biases induced by training with hard negatives
on the same dataset as the downstream task: Figures 3¢ and 2c show how hard negative mixing
reduces alignment and increases uniformity for the dataset that is used during training. MoCHi
still retains state-of-the-art performance. b) MoCHi helps the model learn faster and achieves high
performance gains over MoCo-v2 for transfer learning after only 100 epochs of training. c) The
harder negative strategy presented in Section 4.2 helps a lot for shorter training. d) In 200 epochs
MoCHi can achieve performance similar to MoCo-v2 after 800 epochs on PASCAL VOC. e¢) From
all the MoCHi runs reported in Table 2 as well as in the Appendix, we see that performance gains are
consistent across multiple hyperparameter configurations.

In Table 3 we present results for object detection and semantic segmentation on the COCO dataset [28].
Following He et al. [21], we use Mask R-CNN [20] with a C4 backbone, with batch normalization
tuned and synchronize across GPUs. The image scale is in [640, 800] pixels during training and
is 800 at inference. We fine-tune all layers end-to-end on the train2017 set (118k images) and
evaluate on val2017. We adopt feature normalization as in [21] when fine-tuning. MoCHi and
MoCo use the same hyper-parameters as the ImageNet supervised counterpart (i.e. we did not do any
method-specific tuning). From Table 3 we see that MoCHi displays consistent gains over both the
supervised baseline and MoCo-v2, for both 100 and 200 epoch pre-training. In fact, MoCHi is able
to reach the AP performance similar to supervised pre-training for instance segmentation (33.2) after
only 100 epochs of pre-training.

IN-1k VOC 2007
Method ‘ Topl | APs AP APy
100 epoch training
MoCo-v2 [10]* 63.6 80.8 (£0.2) 53.7 (£0.2) 59.1 (£0.3)
+ MoCHi (256, 512, 0) 63.9 81.1(+0.1) (0.4) 54.3(+0.3)(0.7) 60.2 (+0.1) (1.2)
+ MoCHi (256, 512, 256) 63.7 81.3 (+£0.1) (0.6) 54.6 (£0.3) (1.0) 60.7 (£0.8) (1.7)
+ MoCHi (128, 1024, 512) 63.4 81.1(+0.1) (0.4) 54.7 (+£0.3) (1.1) 60.9 (+0.1) (1.9)
200 epoch training
SimCLR [8] (8k batch size, from [10]) | 66.6
MoCo + Image Mixture [36] 60.8 76.4
InstDis [46]" 59.5 | 80.9 55.2 61.2
MoCo [21] 60.6 81.5 559 62.6
PIRL [31] 61.7 | 81.0 55.5 61.3
MoCo-v2 [10] 67.7 82.4 57.0 63.6
InfoMin Aug. [39] 70.1 82.7 57.6 64.6
MoCo-v2 [10]* 67.9 82.5(+0.2) 56.8 (£0.1) 63.3 (£0.4)
+ MoCHi (1024, 512, 256) 68.0 82.3 (£0.2) (0.2) 56.7 (£0.2) (0.1) 63.8 (+0.2) (0.5)
+ MoCHi (512, 1024, 512) 67.6 82.7(£0.1) (0.2) 57.1(+£0.1) (0.3) 64.1 (£0.3) (0.8)
+ MoCHi (256, 512, 0) 67.7 82.8 (+0.2) (0.3) 57.3(£0.2) (0.5) 64.1 (£0.1) (0.8)
+ MoCHi (256, 512, 256) 67.6 82.6 (£0.2) (0.1) 57.2(+0.3) (0.4) 64.2(£0.5) (0.9)
+ MoCHi (256, 2048, 2048) 67.0 82.5(+0.1) (0.0) 57.1(+0.2)(0.3) 64.4(+0.2) (1.1)
+ MoCHi (128, 1024, 512) 66.9 | 82.7(£0.2)(02) 57.5(£0.3)(0.7) 64.4 (+0.4) (L1)
800 epoch training
SVAV [7] 75.3 82.6 56.1 62.7
MoCo-v2 [10] 71.1 82.5 574 64.0
MoCo-v2[10]* 69.0 82.7 (+0.1) 56.8 (+0.2) 63.9 +0.7)
+ MoCHi (128, 1024, 512) 68.7 83.3 (+0.1) (0.6) 57.3 0.2 (0.5) 64.2 (+0.4) (0.3
Supervised [21] | 76.1 | 813 53.5 58.8

Table 2: Results for linear classification on ImageNet-1K and object detection on PASCAL VOC
with a ResNet-50 backbone. Wherever standard deviation is reported, it refers to multiple runs for
the fine-tuning part. For MoCHi runs we also report in parenthesis the difference to MoCo-v2. *
denotes reproduced results. T results are copied from [21]. We bold (resp. underline) the highest
results overall (resp. for MoCHi).

Pre-train | AP® AP} APYS | AP™* APLE APyER
Supervised [21] | 382 58.2 41.6 | 33.3 54.7 35.2
| 100 epoch pre-training
MoCo-v2 [10]* 37.0 xo0.1) 56.5 (x0.3) 39.8 (x0.1) 32.7 o0.1) 53.3 x0.2) 34.3 xo0.1)
+ MoCHi (256, 512, 0) 37.5 o) (0.5) 57.0 +0.1) (0.5) 40.5 +0.2 (0.7) | 33.0 0.1y (0.3) 53.9 x0.2 (0.6) 34.9 (0.1 (0.6)

+ MoCHi (128, 1024, 512) | 37.8 z0.1) (0.8) 57.2 x0.0)(0.7) 40.8 (x0.2) (1.0) | 33.2 0.0 (0.5)

‘ 200 epoch pre-training

54.0 x0.2) (0.7) 35.4 xo0.1) (1.1)

MoCo [21] 38.5 58.3 41.6 33.6 54.8 35.6

MoCo (1B image train) [21] 39.1 58.7 422 34.1 554 36.4

InfoMin Aug. [39] 39.0 58.5 42.0 34.1 55.2 36.3

MoCo-v2 [10]* 39.0 (x0.1) 58.6 (x0.1) 41.9+0.3) 34.2 +o.1 55.4 xo0.1) 36.2 +0.2)
+ MoCHi (256, 512, 0) 39.2 0.1 (0.2) 58.8 +0.1)(0.2) 424 (x0.2 (0.5) | 344 (+0.1)(0.2) 55.6 x0.1)(0.2) 36.7 0.1 (0.5)
+ MoCHi (128, 1024, 512) | 39.2 (+0.1) (0.2) 58.9 (+0.2)(0.3) 42.4 (+0.3(0.5) | 34.3 +0.1(0.2) 55.5 +0.1)(0.1) 36.6 +o0.1) (0.4)
+ MoCHi (512, 1024, 512) | 39.4 (+0.1) (0.4) 59.0 +0.1) (0.4) 42.7 (x0.1) (0.8) | 34.5 +0.0)(0.3) 55.7 (+0.2 (0.3) 36.7 +0.1) (0.5)

Table 3: Object detection and instance segmentation results on COCO with the x 1 training schedule
and a C4 backbone. * denotes reproduced results.

6 Conclusions

In this paper we analyze a state-of-the-art method for self-supervised contrastive learning and identify
the need for harder negatives. Based on that observation, we present a hard negative mixing approach
that is able to improve the quality of representations learned in an unsupervised way, offering better
transfer learning performance as well as a better utilization of the embedding space. What is more, we
show that we are able to learn generalizable representations faster, something important considering
the high compute cost of self-supervised learning. Although the hyperparameters needed to get
maximum gains are specific to the training set, we find that multiple MoCHi configurations provide
considerable gains, and that hard negative mixing consistently has a positive effect on transfer learning
performance.

Broader Impact

Self-supervised tasks and dataset bias. Prominent voices in the field advocate that self-supervised
learning will play a central role during the next years in the field of Al. Not only representations
learned using self-supervised objectives directly reflect the biases of the underlying dataset, but also it
is the responsibility of the scientist to explicitly try to minimize such biases. Given that, the larger the
datasets, the harder it is to properly investigate biases in the corpus, we believe that notions of fairness
need to be explicitly tackled during the self-supervised optimization, e.g. by regulating fairness on
protected attributes. This is especially important for systems whose decisions affect humans and/or
their behaviours.

Self-supervised learning, compute and impact on the environment. On the one hand, self-
supervised learning involves training large models on very large datasets, on long periods of time. As
we also argue in the main paper, the computational cost of every self-supervised learning paper is
very high: pre-training for 200 epochs on the relatively small ImageNet-1K dataset requires around
24 GPU days (6 days on 4 GPUs). In this paper we show that, by mining harder negatives, one
can get higher performance after training for fewer epochs; we believe that it is indeed important to
look deeper into self-supervised learning approaches that utilize the training dataset better and learn
generalizable representations faster.

Looking at the bigger picture, however, we believe that research in self-supervised learning is highly
justified in the long run, despite its high computational cost, for two main reasons. First, the goal
of self-supervised learning is to produce models whose representations generalize better and are
therefore potentially useful for many subsequent tasks. Hence, having strong models pre-trained by
self-supervision would reduce the environmental impact of deploying to multiple new downstream
tasks. Second, representations learned from huge corpora have been shown to improve results when
directly fine-tuned, or even used as simple feature extractors, on smaller datasets. Most socially
minded applications and tasks fall in this situation where they have to deal with limited annotated
sets, because of a lack of funding, hence they would directly benefit from making such pretraining
models available. Given the considerable budget required for large, high quality datasets, we foresee
that strong generalizable representations will greatly benefit socially mindful tasks more than e.g. a
multi-billion dollar industry application, where the funding to get large clean datasets already exists.

Acknowledgements

This work is part of MIAI@Grenoble Alpes (ANR-19-P31A-0003).

References

[1] S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, and N. Saunshi. A theoretical analysis of contrastive
unsupervised representation learning. /CML, 2019. 3, 4

[2] Y. M. Asano, C. Rupprecht, and A. Vedaldi. A critical analysis of self-supervision, or what we can learn
from a single image. /CLR, 2020. 2

[3] Y. M. Asano, C. Rupprecht, and A. Vedaldi. Self-labelling via simultaneous clustering and representation
learning. In ICLR, 2020. 2

[4] Y. Cao, Z. Xie, B. Liu, Y. Lin, Z. Zhang, and H. Hu. Parametric instance classification for unsupervised
visual feature learning. In NeurIPS, 2020. 3

[5S] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual
features. In ECCV, 2018. 2

[6] M. Caron, P. Bojanowski, J. Mairal, and A. Joulin. Unsupervised pre-training of image features on
non-curated data. In /CCV, 2019.

[7] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsupervised learning of visual
features by contrasting cluster assignments. NeurIPS, 2020. 2, 9

[8] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual
representations. In /ICML, 2020. 1,2, 3,4,6,7,9

10

(9]

[10]

(11]

(12]

[13]

[14]
[15]

[16]

(17]

(18]

(19]

(20]
[21]

(22]
(23]

[24]

[25]

[26]

(27]

(28]

(29]
(30]

(31]

(32]

[33]

T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton. Big self-supervised models are strong
semi-supervised learners. arXiv preprint arXiv:2006.10029, 2020. 2

X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020. 1,2,4,6,7,9

C.-Y. Chuang, J. Robinson, L. Yen-Chen, A. Torralba, and S. Jegelka. Debiased contrastive learning. In
NeurlPS, 2020. 3

C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction.
In ICCV, 2015. 2

A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsupervised feature
learning with convolutional neural networks. In NeurIPS, 2014. 2

Y. Duan, W. Zheng, X. Lin, J. Lu, and J. Zhou. Deep adversarial metric learning. In CVPR, 2018. 3

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes
(voc) challenge. IJCV, 2010. 7

S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting image
rotations. In ICLR, 2018. 2

R. Gontijo-Lopes, S. J. Smullin, E. D. Cubuk, and E. Dyer. Affinity and diversity: Quantifying mechanisms
of data augmentation. arXiv preprint arXiv:2002.08973, 2020. 1, 2

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. A. Pires, Z. D.
Guo, M. G. Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. NeurIPS,
2020. 2

B. Harwood, B. Kumar, G. Carneiro, I. Reid, T. Drummond, et al. Smart mining for deep metric learning.
InICCV,2017. 4

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN]. In ICCV, 2017. 8

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation
learning. In CVPR, 2020. 1,2,3,4,7,8,9

C.-H. Ho and N. Vasconcelos. Contrastive learning with adversarial examples. In NeurIPS, 2020. 3

A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Mining on manifolds: Metric learning without labels. In
CVPR, 2018. 3,4

P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan.
Supervised contrastive learning. In NeurIPS, 2020. 5

B. Ko and G. Gu. Embedding expansion: Augmentation in embedding space for deep metric learning.
CVPR, 2020. 3

A. Kolesnikov, X. Zhai, and L. Beyer. Revisiting self-supervised visual representation learning. In CVPR,
2019. 2

J. Li, P. Zhou, C. Xiong, R. Socher, and S. C. Hoi. Prototypical contrastive learning of unsupervised
representations. arXiv preprint arXiv:2005.04966, 2020. 2

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll4r, and C. L. Zitnick. Microsoft
coco: Common objects in context. In ECCV, 2014. 8

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. JMLR, 2008. 2

A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas. Working hard to know your neighbor’s margins:
Local descriptor learning loss. In NeurIPS, 2017. 4

I. Misra and L. van der Maaten. Self-supervised learning of pretext-invariant representations. CVPR, 2020.
2,3,4,9

M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In
ECCV,2016. 2

A. v.d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 2

11

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]
(52]

(53]

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region
proposal networks. In NeurIPS, 2015. 7

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV, 2015. 7

Z. Shen, Z. Liu, Z. Liu, M. Savvides, and T. Darrell. Rethinking image mixture for unsupervised visual
representation learning. arXiv preprint arXiv:2003.05438, 2020. 3,7, 8,9

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer. Discriminative learning of
deep convolutional feature point descriptors. In /ICCV, 2015. 4

Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. arXiv preprint arXiv:1906.05849, 2019.
2,3,4,7

Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola. What makes for good views for contrastive
learning. In NeurlPS, 2020. 1,2,3,4,7,9

V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, and Y. Bengio. Manifold mixup:
Better representations by interpolating hidden states. In /ICML, 2019. 2, 3

V. Verma, A. Lamb, J. Kannala, Y. Bengio, and D. Lopez-Paz. Interpolation consistency training for
semi-supervised learning. IJCAI, 2019. 2

D. Walawalkar, Z. Shen, Z. Liu, and M. Savvides. Attentive cutmix: An enhanced data augmentation
approach for deep learning based image classification. In /CASSP, 2020. 3

T. Wang and P. Isola. Understanding contrastive representation learning through alignment and uniformity
on the hypersphere. In ICML, 2020. 2, 6, 8

C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl. Sampling matters in deep embedding learning.
In ICCV, 2017. 4

M. Wu, C. Zhuang, M. Mosse, D. Yamins, and N. Goodman. On mutual information in contrastive learning
for visual representations. arXiv preprint arXiv:2005.13149, 2020. 3

Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, 2018. 2, 3,4, 9

J. Xie, X. Zhan, Z. Liu, Y. S. Ong, and C. C. Loy. Delving into inter-image invariance for unsupervised
visual representations. arXiv preprint arXiv:2008.11702, 2020. 3

H. Xuan, A. Stylianou, X. Liu, and R. Pless. Hard negative examples are hard, but useful. In ECCV, 2020.
4

S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In ICCV, 2019. 2, 3

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. In
ICLR, 2018. 2,3

W. Zheng, Z. Chen, J. Lu, and J. Zhou. Hardness-aware deep metric learning. In CVPR, 2019. 3

H.-Y. Zhou, S. Yu, C. Bian, Y. Hu, K. Ma, and Y. Zheng. Comparing to learn: Surpassing imagenet
pretraining on radiographs by comparing image representations. In MICCAI, 2020. 3

C. Zhuang, A. L. Zhai, and D. Yamins. Local aggregation for unsupervised learning of visual embeddings.
In ICCV, 2019. 2

12

