
Supplementary Material:
Residual Force Control for Agile Human Behavior

Imitation and Extended Motion Synthesis

1 Symbol Tables

Table 1: Important notations used in the main paper.

Notation Description

s state
a action
r reward
rim motion imitation reward
rreg regularizing reward of residual forces
γ discount factor
x humanoid state, x = (q, q̇)

x̂ reference humanoid state, x = (q̂, ̂̇q)
x0:T humanoid motion x0:T = (x0, . . . ,xT−1)
x̂0:T reference motion x̂0:T = (x̂0, . . . , x̂T−1)
q humanoid DoFs, q = (qr, qnr)
qr humanoid root DoFs (global position and orientation)
qnr humanoid non-root DoFs
q̇ joint velocities
q̈ joint accelerations
u target joint angles of PD controllers
τ joint torques computed from PD control
kp,kd PD controller gains
ã corrective action (residual forces)
T (st+1|st,at) original humanoid dynamics
T̃ (st+1|st,at, ãt) RFC-based humanoid dynamics
πθ(at|st) original humanoid control policy
π̃θ(at, ãt|st) RFC-based composite policy
π̃θ1(at|st) humanoid control policy same as πθ(at|st)
π̃θ2(ãt|st) residual force policy
ξj residual force vector
ej the contact point of ξj
hi contact force vector determined by simulation
vi the contact point of hi
Jej Jacobian matrix dej/dq
Jvi Jacobian matrix dvi/dq
B(q) inertial matrix
C(q, q̇) matrix of Coriolis and centrifugal terms
g(q) gravity vector
η total joint torques

∑
JTej

ξj of residual forces, η = (ηr,ηnr)
ηr torques of root DoFs from residual forces
ηnr torques of non-root DoFs from residual forces
z latent variable for human intent
κψ(xt:t+f |xt−p:t,z) kinematic policy (decoder distribution) in CVAE
qφ(z|xt−p:t,xt:t+f) approximate posterior (encoder distribution) in CVAE

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2 Motion Imitation Reward

In the following, we give a detailed definition of the motion imitation reward rimt introduced in Sec. 3
of the main paper, which is used to encourage the humanoid motion x0:T generated by the policy to
match the reference motion x̂0:T . We use two types of imitation reward rimt depending on the length
of the motion:

(1) World coordinate reward rworldt , which is the reward used in DeepMimic [3]. It has proven to be
effective for imitating short clips (< 5s) of locomotions, but not suitable for long-term motions
due to global position drifts as pointed out in [6]. We still use this reward for imitating short clips
of locomotions (e.g., acrobatics) to have a fair comparison with DeepMimic.

(2) Local coordinate reward rlocalt , which is the reward used in EgoPose [6]. It is more robust
to global position drifts and we use it to imitate longer motion clips (e.g., ballet dance). For
extended motion synthesis, we also use rlocalt to imitate the output motion of the kinematic
policy κψ .

Note that for the same reference motion, we always use the same motion imitation reward for both
our RFC models and DeepMimic for a fair compairson.

2.1 World Coordinate Reward

As defined in DeepMimic [3], the world coordinate reward rworldt consists of four sub-rewards:

rworldt = wpr
p
t + wvr

v
t + wer

e
t + wcr

c
t , (1)

where wp, wv, we, wc are weighting factors, which we set to (0.3, 0.1, 0.5, 0.1).

The pose reward rpt measures the mismatch between joint DoFs qt and the reference q̂t for non-root

joints. We use bjt and b̂
j

t to denote the local orientation quaternion of joint j computed from qt and
q̂t respectively. We use b1 	 b2 to denote the relative quaternion from b2 to b1, and ‖b‖ to compute
the rotation angle of b.

rpt = exp

−αp

∑
j

‖bjt 	 b̂
j

t‖2
 . (2)

The velocity reward rvt measures the difference between joint velocities q̇t and the reference ̂̇qt. The
reference velocity ̂̇qt is computed using finite difference:

rvt = exp
[
−αv‖q̇t − ̂̇qt‖2] . (3)

The end-effector reward ret measures the difference between end-effector position get and the reference
position ĝet in the world coordinate:

ret = exp

[
−αe

(∑
e

‖get − ĝ
e
t‖2
)]

. (4)

The center-of-mass reward rct encourages the humanoid’s center of mass ct to match the reference ĉt:

rct = exp
[
−αc‖ct − ĉt‖2

]
. (5)

The weighting factors αp, αv, αe, αc are set to (2, 0.005, 5, 100). All the hyperparameters of rworldt
are tuned to achieve best performance for the DeepMimic baseline.

2.2 Local Coordinate Reward

The local coordinate reward rlocalt also consists of four sub-rewards:

rlocalt = wpr
p
t + wer

e
t + wrpr

rp
t + wrvr

rv
t , (6)

where wp, we, wrp, wrv are weighting factors set to (0.5, 0.3, 0.1, 0.1) same as EgoPose [6].

The pose reward rpt is the same as that in rworldt as defined in Eq. (2). The end-effector reward ret takes
the same form as Eq. (4) but the end-effector positions get and ĝet are computed in the humanoid’s

2

local heading coordinate. The root pose reward rrpt encourages the humanoid’s root joint to have the
same height yt and orientation quaternion ot as the reference ŷt and ôt:

rrpt = exp
[
−αrp

(
(yt − ŷt)2 + ‖ot 	 ôt‖2

)]
. (7)

The root velocity reward rrvt penalizes the deviation of the root’s linear velocity lt and angular
velocity ωt from the reference l̂t and ω̂t:

rrvt = exp
[
−‖lt − l̂t‖2 − αrv‖ωt − ω̂t‖2

]
. (8)

Note that all features are computed in the local heading coordinate of the humanoid instead of
the world coordinate. The weighting factors αp, αe, αrp, αrv are set to (2, 20, 300, 0.1) same as
EgoPose [6].

3 Additional Implementation Details

Residual Forces. In RFC-Explicit, each ξj is a 6 dimensional vector including both the force and
torque applied at the contact point ej . The torque is needed since it along with the force can model
the total effect of multiple forces applied at different contact points for a single rigid body of the
humanoid. We scale ξj by 100 after it is output by the policy. In RFC-Implicit, we similarly scale the
total root torques ηr by 100. The weight wreg for the regularizing reward rregt defined in Eq. (3) and
Eq. (5) of the main paper is set to 0.1 for both RFC-Explicit and RFC-Implicit. For RFC-Expicit, kf
and kcp are set to 1 and 4 respectively. For RFC-Implicit, kr is set to 1.

Time Efficiency. Without the residual forces, the total time of a single policy step with simulation
is 3.9ms. After adding the residual forces, the time is 4.0ms for RFC-Explicit and 4.3ms for RFC-
Implicit. The slight increase in time is due to the larger action space of RFC as well as the Jacobian
computation in RFC-Explicit. The processing time 4.0ms translates to 250 FPS, which is well above
the interactive frame rate, and the performance gain from RFC justifies the small sacrifice in speed.

Humanoid Model. As mentioned in the main paper, we have different humanoid models for different
datasets, and the number of DoFs and rigid bodies varies for different humanoid models. Each DoF
except for the root is implemented as a hinge joint in MuJoCo. Most joints have 3 DoFs meaning
3 consecutive hinge joints that form a 3D rotation parametrized by Euler angles. Only the elbow
and knee joints have just one DoF. In MuJoCo, there are many parameters one can specify for each
joint (e.g., stiffness, damping, armature). We only set the armatrue inertia to 0.01 to further stablize
the simulation. We leave the stiffness and damping to 0 since they are already modeled in the gains
kp and kd of the PD controllers. The gains kp range from 200 to 1000 where stronger joints like
spine and legs have larger gains while weaker joints like arms and head have smaller gains. The gains
kd are set to 0.2kp. We also set proper torque limits ranging from 50 to 200 based on the gains to
prevent instability. In our experiments, we find that the learned motion policies are not sensitive to
the gains and scaling the gains by reasonable amount yields similar results. We believe the reason is
that the policy can learn to adjust to different scales of gains.

3.1 Motion Imitation

The reference motions we use are from the following motion clips in the CMU MoCap database1:
05_06 (ballet1), 05_07 (ballet2), 05_13 (ballet3), 88_01 (backflip), 90_02 (cartwheel), 90_05 (jump
kick), 90_08 (side flip), 90_11 (handspring). The motion clips are downsampled to 30Hz. We do not
apply any filters to smooth the motions and directly use the downsampled motions for training.

Table 2: Training hyperparameters for motion imitation.

Parameter γ GAE(λ) Batch Size Minibatch Size Policy Stepsize Value Stepsize PPO clip ε

Value 0.95 0.95 50000 2048 5× 10−5 3× 10−4 0.2

Training. In each RL episode, the state of the humanoid agent is initialized to the state of a random
frame in the reference motion. The episode is terminated when then end of the reference motion

1http://mocap.cs.cmu.edu/

3

http://mocap.cs.cmu.edu/

GRU Cell (256-dim)

MLP Layer

...

...

Avg Pool

...

...

...

(512, 256)

(512, 256)

CVAE Encoder Kinematic Policy (Decoder)

Figure 1: Network architectures for the CVAE encoder qφ and kinematic policy (decoder) κψ .

is reached or the humanoid’s root height is 0.1 below the minimum root height in the reference
motion. As discussed in the main paper, the control policy πθ is a Gaussian policy whose mean µθ
is generated by a multi-layer perceptron (MLP). The MLP has two hidden layers (512, 256) with
ReLU activations. The diagonal elements of the policy’s covarian matrix Σ are set to 0.1. We use
the proximal policy optimization (PPO [5]) to learn the policy πθ. We use the generalized advantage
estimator GAE(λ) [4] to compute the advantage for policy gradient. The policy is updated with
Adam [2] for 2000 epochs. The hyperparameter settings are available in Table 2.

3.2 Extended Motion Synthesis

Network Architectures. The CVAE Encoder distribution qφ(z|xt−p:t,xt:t+f) = N (µe,Diag(σ2
e))

is a Gaussian distribution whose parameters µe and σe are generated by a recurrent neural network
(RNN) as shown in Fig. 1 (Left). Similarly, the kinematic policy (decoder) κψ(xt:t+f |xt−p:t, z) =
N (x̃t:t+f , βI) is also a Gaussian distribution whose mean x̃t:t+f is generated by another RNN
as illustrated in Fig. 1 (Right), and β is a hyperparameter which we set to 10. We use GRUs [1]
as the recurrent units for both qφ and κψ. For the RFC-based control policy π̃θ(a, ã|x, x̂, z), we
concatenate (x, x̂, z) together and input them to an MLP to produce the mean of the actions (a, ã).
The MLP has two hidden layers (512, 256) with ReLU activations.

Table 3: CVAE Training hyperparameters for the kinematic policy κψ .

Parameter Dim(z) Batch Size Minibatch Size Initial Learning Rate KL Tolerance

Value 128 10000 256 1× 10−3 10

Training. The kinematic policy κψ is trained with the CVAE objective in Eq. (6) of the main paper.
We jointly optimize qφ and κψ for 200 epochs using Adam [2] with a fixed learning rate. We then
continue to optimize the model for another 800 epochs while linearly decreasing the learning rate
to 0. We list the hyperparameters for training the CVAE in Table 3. The training procedure for the
RFC-based control policy π̃θ(a, ã|x, x̂, z) is outlined in Alg. 1 of the main paper. Similar to motion
imitation, we optimize the policy π̃θ with PPO for 3000 epochs using Adam. The hyperparameter
settings are the same as motion imitation as shown in Table 2.

References
[1] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on

sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
[2] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.
[3] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. Deepmimic: Example-guided deep reinforcement

learning of physics-based character skills. ACM Transactions on Graphics (TOG), 37(4):1–14, 2018.
[4] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control using

generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

4

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

[6] Y. Yuan and K. Kitani. Ego-pose estimation and forecasting as real-time pd control. In Proceedings of the
IEEE International Conference on Computer Vision, pages 10082–10092, 2019.

5

	Symbol Tables
	Motion Imitation Reward
	World Coordinate Reward
	Local Coordinate Reward

	Additional Implementation Details
	Motion Imitation
	Extended Motion Synthesis

