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Figure 1: Our method can represent and reconstruct complex open surfaces. Given a sparse
test point cloud of a captured room (left) it generates a detailed, completed scene (right).

Abstract
In this work we target a learnable output representation that allows contin-
uous, high resolution outputs of arbitrary shape. Recent works represent
3D surfaces implicitly with a Neural Network, thereby breaking previous
barriers in resolution, and ability to represent diverse topologies. However,
neural implicit representations are limited to closed surfaces, which divide
the space into inside and outside. Many real world objects such as walls of
a scene scanned by a sensor, clothing, or a car with inner structures are not
closed. This constitutes a significant barrier, in terms of data pre-processing
(objects need to be artificially closed creating artifacts), and the ability
to output open surfaces. In this work, we propose Neural Distance Fields
(NDF), a neural network based model which predicts the unsigned distance
field for arbitrary 3D shapes given sparse point clouds. NDF represent
surfaces at high resolutions as prior implicit models, but do not require
closed surface data, and significantly broaden the class of representable
shapes in the output. NDF allow to extract the surface as very dense point
clouds and as meshes. We also show that NDF allow for surface normal
calculation and can be rendered using a slight modification of sphere tracing.
We find NDF can be used for multi-target regression (multiple outputs for
one input) with techniques that have been exclusively used for rendering in
graphics. Experiments on ShapeNet [13] show that NDF, while simple, is the
state-of-the art, and allows to reconstruct shapes with inner structures, such
as the chairs inside a bus. Notably, we show that NDF are not restricted to
3D shapes, and can approximate more general open surfaces such as curves,
manifolds, and functions. Code is available for research at [1].
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Figure 2: Recent works rely on occupancies or signed distances to represent surfaces, which
limits shapes to be closed. In NDF, we learn with an un-signed distance field representation,
allowing us to reconstruct a broader class of shapes.

1 Introduction

Reconstructing continuous and renderable surfaces from unstructured and incomplete 3D
point-clouds is a fundamental problem in robotics, vision and graphics. The choice of
shape representation is central for effective learning. There have been a growing number
of papers on implicit function learning (IFL) for shape representation and reconstruction
tasks [53, 14, 49, 68, 15, 27, 11, 10]. The idea is to train a neural network which classifies
continuous points in 3D as inside or outside the surface via occupancies or signed distance
fields (SDF). Compared to point, mesh or voxels-based methods, IFL can output continuous
surfaces of arbitrary resolution and can handle more topologies.
A major limitation of existing IFL approaches is that they can only output closed surfaces –
that is, surfaces which divide the 3D space into inside and outside the surface. Many real
world objects such as cars, cylinders, or a wall of a scanned 3D scene can not be represented.
This is a barrier, both in terms of tedious data pre-processing — surfaces need to be closed
which often leads to artifacts and loss of detail — and more importantly the ability to output
open surfaces.
In this paper, we introduce Neural Distance Fields (NDF), which do not suffer from the
above limitations and are a more general shape representation for learning. NDF directly
predict the unsigned distance field (UDF) to the surface – we regress, for a point p ∈ Rd, the
distance to the surface S ⊂ Rd with a learned function f (p) : Rd 7→R+

0 whose zero-levelset
f (p) = 0 represents the surface. In contrast to SDFs or occupancies, this allows to naturally
represent surfaces which are open, or contain objects inside, like the bus with chairs inside
in Figure 2. Furthermore, NDF is not limited to 3D shape representation (d = 3), but allows
to represent functions, open curves and surface manifolds (we experimented with d = 2, 3),
which is not possible when using occupancy or SDFs.
Learning with UDF poses new challenges. Several applications require extracting point
clouds, meshes or directly rendering the implicit surface onto an image, which requires
finding its zero-levelset. Most classical methods, such as marching cubes [48] and volume
rendering [23], find the zero-levelset by detecting flips from inside to outside and vice versa,
which is not possible with UDF. However, exploiting properties of UDFs and fast gradient
evaluation of NDF, we introduce easy to implement algorithms to compute dense point
clouds and meshes, as well as rendered images from NDF.
Experiments on ShapeNet [13] demonstrate that NDF significantly outperform the state-of-
the-art (SOTA) and, unlike all IFL competitors except [5], do not require pre-computing closed
meshes for training. More importantly, in comparison to all IFL methods (including [5]), we
can represent and reconstruct shapes with inner structures and layering. To demonstrate
the wide applicability of NDF beyond 3D shape reconstruction, we use them for classical
regression tasks – we interpolate linear, quadratic and sinusoidal functions, as well as manifold
data, such as spirals, which is not possible with occupancies or SDFs. In contrast to standard
regression based on L 2 or L 1 losses which tends to average multiple modes, NDF can naturaly
produce multiple outputs for a single input. Interestingly, we show that function regression
y = f (x) can be cast as sphere tracing the NDF, effectively leveraging a classical graphics
technique for a core machine learning task.
In summary, we make the following contributions:
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� We introduce NDF as a new representation for 3D shape learning, which in contrast
to occupancies or SDFs, do not require to arti�cially close shapes for training, and
can represent open surfaces, shapes with inner structures, and open manifolds.

� We obtain SOTA results on reconstruction from point clouds on ShapeNet using
NDF.

� We contribute simple yet e�ective algorithms to generate dense point-clouds, normals,
meshes and render images from NDF.

� To encourage further research in this new direction, we make code and model publicly
available at https://virtualhumans.mpi-inf.mpg.de/ndf/ .

2 Related Work

Distance �elds can be found in computer vision, graphics, robotics and physics [37]. They
are used for shape registration [26], model �tting [ 69, 3], to speed up inference in part based
models [25], and for extracting skeletons and medial axis [22, 8]. However, to our knowledge,
unsigned distance �elds have not been used for learning 3D shapes. Here, we limit our
discussion tolearning based methods for 3D shape representation and reconstruction.

2.1 Learning with Voxels, Meshes and Points-Clouds

Since convolutions are natural on voxels, they have been the most popular representation for
learning [39, 35, 64], but the memory footprint scales cubically with resolution, which has
limited grids to small sizes of323 [44, 82, 16, 74]. Higher resolutions (2563) [81, 80, 86] can be
achieved at the cost of slow training, or di�cult multi-resolution implementations [ 31, 71, 76].
Replacing occupancy with Truncated Signed Distance functions [17] for learning [19, 42, 65,
70] can reduce quantization artifacts, nonetheless TSDF values need to be stored in a grid of
�xed limited resolution.

Mesh based methods deform a template [77, 63, 58] but are limited to a single topology
or predict vertices and faces directly [29, 18], but do not guarantee surface continuity.
Alternatively, a shape can be approximated predicting by convexes directly [20] or combining
voxels and meshes [28], but results are still coarse. Meshes are common to represent humans
and have been used for estimating pose, shape [38, 40, 41, 52, 75, 85] and clothing [4, 3, 12]
from images, but topologies and detail are restricted by an underlying model like SMPL [47]
or SMPL + Garments meshes (ClothCap [57], TailorNet [ 54] and GarNet [30], SIZER [73]).

For point clouds (PCs) the pioneering PointNet based architectures [60, 61] spearheaded
research, such as kernel point convolutions [72, 59, 33, 78], tree-based graph convolutions [67]
normalizing �ows [ 84], combinations of points and voxels for e�ciency [46] or domain
adaptation techniques [62]. Due to their simplicity, PCs have been used to represent shape in
reconstruction and generation tasks [24, 34, 84], but the number of output points is typically
�xed beforehand, limiting the e�ective resolution of such methods.

2.2 Implicit Function Leaning (IFL)

IFL methods use either binary occupancies [49, 27, 15, 66, 21] or signed distance functions [53,
14, 50, 36] as shape representation for learning. They predict occupancy or the SDF values
at continuous point locations (x-y-z). Like our model (NDF), in stark contrast to PC, voxel
and mesh-based methods, IFL techniques are not limited by resolution and are �exible to
represent di�erent topologies. Unlike our NDF, they require arti�cially closing the shapes
during a pre-processing step, which often leads to loss of detail, artifacts or lost inner
structures. The recent work of [5] (SAL) does not require to close training data. However,
the �nal output is again an SDF prediction, and hence can only represent closed surfaces.
In the experiments we show that this leads to missing interior structures for cars (missing
chairs, steering wheel). Moreover, NDF can be trained on multiple object classes jointly,
whereas SAL diverges from the signed distance solution and fails in this setting.

To our knowledge, all existing methods can only representclosed surfacesbecause they rely
on classifying the 3D space into inside and outside regions. Instead in NDF, we regress
the unsigned distance to the surface. This is simple to implement, but it is a powerful
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