
Supplements for Quantile Propagation for Wasserstein-Approximate Gaussian Processes.

A Minimization of L2 WD between Univariate Gaussian and Non-Gaussian

Distributions

In this section, we derive the formulas of the optimal µ∗ and σ∗ for the L2 WD, i.e., Eqn. (5). Recall
the optimization problem: we use a univariate Gaussian distribution N (f |µ, σ2) to approximate a
univariate non-Gaussian distribution q(f) by minimizing the L2 WD between them:

min
µ,σ

W2
2(q,N ) = min

µ,σ

∫ 1

0

∣∣∣F−1
q (y)− µ−

√
2σerf−1(2y − 1)

∣∣∣
2

dy,

where F−1
q is the quantile function of the non-Gaussian distribution q, namely the pseudoinverse

function of the corresponding cumulative distribution function Fq defined in Proposition 1.

To solve this problem, we first calculate derivatives about µ and σ:

∂W2
2

∂µ
= −2

∫ 1

0

F−1
q (y)− µ−

√
2σerf−1(2y − 1) dy,

∂W2
2

∂σ
= −2

∫ 1

0

(F−1
q (y)− µ−

√
2σerf−1(2y − 1))

√
2erf−1(2y − 1) dy.

Then, by zeroing derivatives, we obtain the optimal parameters:

µ∗ =

∫ 1

0

F−1
q (y)−

√
2σerf−1(2y − 1) dy

=

∫ ∞

−∞

xq(x) dx−
√
2

2
σ

∫ 1

−1

erf−1(y) dy

= µq −
√
2σ

∫ ∞

−∞

xN (x|0, 1/2) dx

= µq,

σ∗ =
√
2

∫ 1

0

(F−1
q (y)− µ)erf−1(2y − 1) dy

/∫ 1

0

2(erf−1)2(2y − 1) dy

=
√
2

∫ 1

0

F−1
q (y)erf−1(2y − 1) dy

/∫ ∞

−∞

2x2N (x|0, 1/2) dx

︸ ︷︷ ︸
=1

=
√
2

∫ 1

0

F−1
q (y)erf−1(2y − 1) dy

=
√
2

∫ ∞

−∞

ferf−1(2Fq(f)− 1) dFq(f)

= −
√

1

2π

∫ ∞

−∞

f d e−[erf−1(2Fq̃(f)−1)]2

= 0 +

√
1

2π

∫ ∞

−∞

e−[erf−1(2Fq̃(f)−1)]2 df. (8)

B Minimization of Lp WD between Univariate Gaussian and Non-Gaussian

Distributions

In this section, we describe a gradient descent approach to minimizing an Lp WD, for p 6= 2, in
order to handle cases with no analytical expressions for the optimal parameters. Our goal is to use a
univariate Gaussian distribution N (f |µ, σ2) to approximate a univariate non-Gaussian distribution
q(f). Specifically, we seek the minimiser in µ and σ of Wp

p(q,N ); the derivatives of the objective
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function about µ and σ are:

∂µWp
p = −p

∫ 1

0

|ε(y)|p−1sgn(ε(y)) dy = −p

∫ ∞

−∞

|η(x)|p−1sgn(η(x))q(x) dx,

∂σWp
p = −p

∫ 1

0

|ε(y)|p−1sgn(ε(y))erf−1(2y − 1) dy = −p

∫ ∞

−∞

|η(x)|p−1sgn(η(x))erf−1(2Fq(x)− 1)q(x) dx.

where for simplification, we define ε(y) = F−1
q (y) − µ −

√
2σerf−1(2y − 1) and η(x) = x −

µ−
√
2σerf−1(2Fq(x)− 1), with Fq and F−1

q being the CDF and the quantile function of q. Note
the derivatives have no analytical expressions. However, if the CDF Fq is available, we can use
the standard numerical integration routines; otherwise, we resort to Monte Carlo sampling. In the

framework of EP or QP, q(x) ∝ q\i(x)p(yi|x) and q\i is Gaussian, so we may draw samples from a
Gaussian proposal distribution to obtain a simple Monte Carlo method.

C Computations for Different Likelihoods

Given the likelihood p(y|f) and the cavity distribution q\i(f) = N (f |µ, σ2), a stable way to compute

the mean and the variance of the tilted distribution q̃(f) = p(y|f)q\i(f)/Z where the normalizer

Z =
∫∞

−∞ p(y|f)q\i(f) df , can be found in the software manual of Rasmussen and Williams [47].

We present the key formulae below, for use in subsequent derivations:

∂µZ =

∫ ∞

−∞

f − µ

σ2
p(y|f)N (f |µ, σ2) df

∂µZ

Z
=

1

σ2

∫ ∞

−∞

f
p(y|f)N (f |µ, σ2)

Z
df − µ

σ2

∫ ∞

−∞

p(y|f)N (f |µ, σ2)

Z
dy

∂µZ

Z
=

1

σ2
µq̃ −

µ

σ2

=⇒ µq̃ =
σ2∂µZ

Z
+ µ = σ2∂µ logZ + µ,

∂2
µZ =

∫ ∞

−∞

− 1

σ2
p(y|f)N (f |µ, σ2) +

(
f − µ

σ2

)2

p(y|f)N (f |µ, σ2) df

∂2
µZ

Z
=

∫ ∞

−∞

(
− 1

σ2
+

µ2

σ4
+

f2

σ4
− 2µf

σ4

)
p(y|f)N (f |µ, σ2)

Z
df

∂2
µZ

Z
= − 1

σ2
+

µ2

σ4
+

1

σ4
(σ2

q̃ + µ2
q̃)−

2µ

σ4
µq̃

∂2
µZ

Z
= − 1

σ2
+

σ2
q̃

σ4
+

(µ− µq̃)
2

σ4
= − 1

σ2
+

σ2
q̃

σ4
+

(
∂µZ

Z

)2

=⇒ σ2
q̃ = σ4

[
∂2
µZ

Z
−
(
∂µZ

Z

)2
]
+ σ2 = σ4∂2

µ logZ + σ2.

C.1 Probit Likelihood for Binary Classification

For the binary classification with labels y ∈ {−1, 1}, the PDF of the tilted distribution q̃(f) with the
probit likelihood is provided by Rasmussen and Williams [47]:

q̃(f) = Z−1Φ(fy)N (f |µ, σ2), Z = Φ(z), z =
µ

y
√
1 + σ2

,

and the mean estimate also has a closed form expression:

µ⋆ = µq̃ = µ+
σ2N (z)

Φ(z)y
√
1 + σ2

.
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As per Equation (5), the computation of the optimal σ⋆ requires the CDF of q̃, denoted as Fq̃. For
positive y > 0, the CDF is derived as

Fq̃,y>0(x) = Z−1

∫ x

−∞

Φ (fy)N
(
f |µ, σ2

)
df

=
Z−1

2πσy

∫ µ

−∞

∫ x−µ

−∞

exp

(
−1

2

[
w
f

]T [
v−2 + σ−2 v−2

v−2 v−2

] [
w
f

])
dw df

= Z−1

∫ k

−∞

∫ h

−∞

N
([

w
f

] ∣∣∣∣0,
[
1 −ρ
−ρ 1

])
dw df

(a)
= Z−1

[
1

2
Φ(h)− T

(
h,

k + ρh

h
√

1− ρ2

)
+

1

2
Φ(k)− T

(
k,

h+ ρk

k
√

1− ρ2

)
+ η

]

k =
µ√

σ2 + 1
, h =

x− µ

σ
, ρ =

1√
1 + 1/σ2

, x 6= µ, µ 6= 0,

where the step (a) is obtained by exploiting the work of Owen [45] and T (·, ·) is the Owen’s T
function:

T (h, a) =
1

2π

∫ a

0

exp
[
− (1 + x2)h2/2

]

1 + x2
dx,

and η is defined as

η =

{
0 hk > 0 or (hk = 0 and h+ k ≥ 0),

−0.5 otherwise.

Similarly, for y < 0, the CDF is

Fq̃,y<0(x) = Z−1

[
1

2
Φ(h) + T

(
h,

k + ρh

h
√

1− ρ2

)
− 1

2
Φ(k) + T

(
k,

h+ ρk

k
√
1− ρ2

)
− η

]
.

Summarizing the two cases, we get the closed form expression of Fq̃:

Fq̃(x) = Z−1

[
1

2
Φ(h)− yT

(
h,

k + ρh

h
√
1− ρ2

)
+

y

2
Φ(k)− yT

(
k,

h+ ρk

k
√

1− ρ2

)
+ yη

]

= Z−1

[
1

2
Φ(h)− yT

(
h,

k

h
√
1− ρ2

+ σ

)
+

y

2
Φ(k)− yT

(
k,

h

k
√
1− ρ2

+ σ

)
+ yη

]
.

Provided the above, the optimal σ⋆ can be computed by numerical integration of Eqn (8). For special
cases, we provide additional formulas:

(1)x = µ, µ 6= 0 : Fq̃(x) = Z−1

[
1

4
− ysign(k)

4
+

y

2
Φ(k)− yT (k, σ) + yη

]
;

(2)x 6= µ, µ = 0 : Fq̃(x) = 2

[
1

2
Φ(h)− yT (h, σ) +

y

4
− ysign(h)

4
+ yη

]
;

(3)x = µ, µ = 0 : Fq̃(x) =
1

2
− y

π
arctan(σ).

C.2 Square Link Function for Poisson Regression

Consider Poisson regression, which uses the Poisson likelihood p(y|g) = gy exp(−g)/y! to model
count data y ∈ N, with the square link function g(f) = f2 [56, 15]. We use the square link
function because it is more mathematically convenient than the exponential function. Given the cavity

distribution q\i(f) = N (f |µ, σ2), we want the tilted distribution q̃(f) = q\i(f)p(y|g(f))/Z where
the normalizer Z is derived as:

Z =

∫ ∞

−∞

q\i(f)p(y|g) df
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=

∫ ∞

−∞

1√
2πσ2

exp

(
− (f − µ)2

2σ2

)
f2y exp(−f2)/y! df

(a)
=

1√
2πσ2y! exp(µ2/(1 + 2σ2))

∫ ∞

−∞

f2y exp

(
− (f − µ/(1 + 2σ2))2

2σ2/(1 + 2σ2)

)
df

(b)
=

(
2σ2

1+2σ2

)y+ 1
2

√
2πσ2y! exp(µ2/(1 + 2σ2))

Γ

(
y +

1

2

)
1F1

(
−y;

1

2
;− µ2

2σ2(1 + 2σ2)

)

=
αy+ 1

2√
2πσ2y! exp(h)

Γ

(
y +

1

2

)
1F1

(
−y;

1

2
;− h

2σ2

)
,

α =
2σ2

1 + 2σ2
, h =

µ2

1 + 2σ2
(9)

where the step (a) rewrites the product of two exponential functions into the form of the Gaus-
sian distribution, (b) is achieved through Mathematica [59], Γ(·) is the Gamma function and

1F1

(
−y; 1

2 ;− h2

2σ2

)
is the confluent hypergeometric function of the first kind. Furthermore, we

compute the first derivative of logZ w.r.t. µ and then the mean of the tilted distribution:

∂µ logZ =

(
y 1F1

(
−y + 1; 3

2 ;− h
2σ2

)

σ2
1F1

(
−y; 1

2 ;− h
2σ2

) − 1

)
2µ

1 + 2σ2

=⇒ µq̃ = σ2∂µ logZ + µ.

∂2
µ logZ =

(
y 1F1

(
−y + 1; 3

2 ;− h
2σ2

)

σ2
1F1

(
−y; 1

2 ;− h
2σ2

) − 1

)
2

1 + 2σ2
−

(
2(1− y) 1F1

(
−y + 2; 5

2 ;− h
2σ2

)

3 1F1

(
−y; 1

2 ;− h
2σ2

) +
2y 1F1

(
−y + 1; 3

2 ;− h
2σ2

)2

1F1

(
−y; 1

2 ;− h
2σ2

)2

)
2µ2y

σ4(1 + 2σ2)2

=⇒ σ2
q̃ = σ4∂2

µ logZ + σ2

Finally, we derive the CDF of the tilted distribution q̃ by using the binomial theorem:

Fq̃(x) = Z−1

∫ x

−∞

p(y|g)N (f |µ, σ2) df

(a)
= A

∫ x

−∞

f2y exp

(
− (f − µ/(1 + 2σ2))2

2σ2/(1 + 2σ2)

)
df

= A

∫ x− µ

1+2σ2

−∞

(
f +

µ

1 + 2σ2

)2y

exp

(
− f2

2σ2/(1 + 2σ2)

)
df

(b)
= A

∫ x−β

−∞

[
2y∑

k=0

(
2y
k

)
fkβ2y−k

]
exp

(
−f2

α

)
df

= A

2y∑

k=0

(
2y
k

)
β2y−k

[∫ 0

−∞

fk exp

(
−f2

α

)
df +

∫ x−β

0

fk exp

(
−f2

α

)
df

]

(c)
=

A

2

2y∑

k=0

(
2y
k

)
β2y−kα

k+1

2

[
(−1)kΓ

(
k + 1

2

)
+ sgn(x− β)k+1

(
Γ

(
k + 1

2

)
− Γ

(
k + 1

2
,
(x− β)2

α

))]

A =
Z−1

√
2πσ2y! exp(µ2/(1 + 2σ2))

=

[
αy+ 1

2Γ

(
y +

1

2

)
1F1

(
−y;

1

2
;− h

2σ2

)]−1

, β =
µ

1 + 2σ2
,

where the step (a) has been derived in (a) of Eqn. (9), (b) applies the binomial theorem and (c)
is obtained through Mathematica [59]. And, the function Γ(a, z) =

∫∞

z
ta−1e−t dt is the upper
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incomplete gamma function and sgn(x) is the sign function, equaling 1 when x > 0, 0 when x = 0
and −1 when x < 0.

D Proof of Convexity

Theorem Given two probability measures in M1
+(R): a Gaussian N (µ, σ2) with mean µ and

standard deviation σ > 0, and an arbitrary measure q̃, the Lp WD Wp
p(q̃,N ) is strictly convex about

µ and σ.

Proof. Let F−1
q̃ (y) and F−1

N (y) = µ +
√
2σerf−1(2y − 1), y ∈ [0, 1], be the quantile functions

of q̃ and the Gaussian N , where erf is the error function. Then, we consider two distinct Gaussian
measures N (µ1, σ

2
1) and N (µ2, σ

2
2) and a convex combination w.r.t. their parameters N (a1µ1 +

a2µ2, (a1σ1 + a2σ2)
2) with a1, a2 ∈ R+ and a1 + a2 = 1. Given the above, we further define

εk(y) = F−1
q̃ (y)− µk − σk

√
2erf−1(2y − 1), k = 1, 2, for notational simplification, and derive the

convexity as:

Wp
p(q̃,N (a1µ1 + a2µ2, (a1σ1 + a2σ2)

2))
(a)
=

∫ 1

0

|a1ε1(y) + a2ε2(y)|p dy
(b)

≤
∫ 1

0

(a1|ε1(y)|+

a2|ε2(y)|)p dy
(c)

≤ a1Wp
p(q̃,N (µ1, σ

2
1)) + a2Wp

p(q̃,N (µ2, σ
2
2)),

where steps (a), (b) and (c) are obtained by applying Proposition 1, non-negativity of the absolute
value, and the convexity of f(x) = xp, p ≥ 1, over R+ respectively. The equality at (b) holds iff
εk(y) ≥ 0, k = 1, 2, ∀y ∈ [0, 1], and (c)’s equality holds iff |ε1(y)| = |ε2(y)|, ∀y ∈ [0, 1]. These
two conditions for equality can’t be attained simultaneously as otherwise it would contradict that
N (µ1, σ

2
1) is different from N (µ2, σ

2
2). So, Wp

p(q̃,N ), p ≥ 1, is strictly convex about µ and σ.

E Proof of Variance Difference

Theorem The variance of the Gaussian approximation to a univariate tilted distribution q̃(f) as
estimated by QP and EP satisfy σ2

QP ≤ σ2
EP.

Proof. Let N (µQP, σ
2
QP) be the optimal Gaussian in QP. As per Proposition 1, we reformulate the

L2 WD based projection W2
2(q̃,N (µQP, σ

2
QP)) w.r.t. quantile functions:

W2
2(q̃,N (µQP,σ

2
QP))=

∫ 1

0

|F−1
q̃ (y)−µQP−

√
2σQPerf−1(2y−1)|2 dy=

∫ 1

0

(F−1
q̃ (y)−µQP)

2

︸ ︷︷ ︸
σ2

EP

+(
√
2σQPerf−1(2y−1))2︸ ︷︷ ︸

σ2
QP

−2(F−1
q̃ (y)−µQP)

√
2σQPerf−1(2y−1)

︸ ︷︷ ︸
(A)

dy=σ2
EP−σ2

QP,

where for (A), we used
∫
µQPσQPerf−1(2y− 1) dy = 0 and the remaining factor can be easily shown

to be equal to 2σ2
QP. Furthermore, due to the non-negativity of the WD, we have σ2

EP ≥ σ2
QP, and the

equality holds iff q̃ is Gaussian.

F Proof of Locality Property

Theorem Minimization of W2
2(q̃(f),N (f)) w.r.t. N (f) results in q\i(f\i|fi) = N (f\i|fi).

Proof. We first apply the decomposition of the L2 norm to rewriting the W2
2(q̃(f),N (f)) as below

(see detailed derivations in Appendix F.2):

W2
2(q̃,N )=inf

πi

Eπi

[
‖fi−f ′

i‖22+W2
2(q

\i
\i|i,N\i|i)

]
, (10)

where the prime indicates that the variable is from the Gaussian N , and for simplification, we use the
notation πi for the joint distribution π(fi, f

′
i) which belongs to a set of measures U(q̃i,Ni). Since
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q\i(f) is known to be Gaussian, we define it in a partitioned form:

q\i(f) ≡ N
([

f\i

fi

] ∣∣∣∣
[
m\i

mi

]
,

[
S\i S\ii

ST

\ii Si

])
, (11)

and the conditional q\i(f\i|fi) is expressed as:

q\i(f\i|fi) = N (f\i|m\i|i,S\i|i), m\i|i = m\i + S\iiS
−1
i (fi −mi) ≡ afi + b, (12)

S\i|i = S\i − S\iiS
−1
i ST

\ii.

We define a similar partioned expression for the Gaussian N (f ′) by adding primes to variables and
parameters on the r.h.s. of Equation (11), and as a result, the conditional N (f ′

\i|f ′
i) is written as:

N (f ′
\i|f ′

i) = N (m′
\i|i,S

′
\i|i), m′

\i|i = m′
\i + S′

\iiS
′−1
i (f ′

i −m′
i) ≡ a′f ′

i + b′, (13)

S′
\i|i = S′

\i − S′
\iiS

′−1
i S′ T

\ii . (14)

Given the above definitions, we exploit Proposition 2 to take the means out of the L2 WD on the r.h.s.
of Equation (10):

W2
2 (q̃,N ) = inf

πi

Eπi

[
‖fi − f ′

i‖22 + ‖m\i|i −m′
\i|i‖22

]
+ W2

2

(
N (0,S\i|i),N (0,S′

\i|i)
)

︸ ︷︷ ︸
(A)

. (15)

Minimizing this function requires optimizing m′
i, m

′
\i, S

′
i, S

′
\i and S′

\ii. As S′
\i is only contained in

S\i|i and isolated into the term (A), it can be optimized by simply setting

S′
\i|i=S\i|i

Eqn. (14)
=⇒ S

(n)∗
\i =S\i|i+S′

\iiS
′−1
i S′ T

\ii . (16)

As a result, (A) is minimized to zero. Next, we plug in expressions of m\i|i and m′
\i|i (Equation (12)

and Equation (13)) into optimized Equation (15):

min
S′

\i

(15)=inf
πi

Eπi

[
‖fi−f ′

i‖22+‖afi−a′f ′
i+b−b′‖22

]
, (17)

where m′
\i is only contained by b′. Thus, we can optimize it by zeroing the derivative of the above

function about m′
\i, which results in:

b′ = b+ aµq̃i − a′m′
i

Eqn. (13)
=⇒ m

(n)∗
\i = S′

\iiS
′−1
i m′

i + b+ aµq̃i − a′m′
i, (18)

where µq̃i is the mean of q̃(fi). The minimum value of Equation (17) thereby is (see details in
subsection F.3):

min
m′

\i

(17) = (1 + aTa′)W2
2(q̃i,Ni) + ‖a‖22σ2

q̃i
+ ‖a′‖22S′

i − aTa′
[
σ2
q̃i
+ S′

i + (µq̃i −m′
i)

2
]
(19)

where σ2
q̃i

is the variance of q̃(fi). This function can be further simplified using the quantile based

reformulation of W2
2(q̃i,Ni) (see details in Appendix F.4) which results in:

(19)=W2
2(q̃i,Ni)+‖a‖22σ2

q̃i
−2

3
2aTa′cq̃iS

′ 1
2

i +‖a′‖22S′
i︸ ︷︷ ︸

(B)

. (20)

Now, we are left with optimizing m′
i, S

′
i and S′

\ii. To optimize S′
\ii, which only exists in the above

term (B), we zero the derivative of (B) w.r.t. S′
\ii and this yields:

a′∗ = 2
1
2 (S′

i)
− 1

2 cq̃ia
Eqn. (13)
=⇒ S′∗

\ii = (2S′
i)

1
2 cq̃ia, (21)

and the minimum value of Equation (20) is

min
S′

\ii

(20) = W2
2(q̃i,Ni) + ‖a‖22(σ2

q̃i
− 2c2q̃i). (22)

The results of optimizing m′
i and S′

i in the above equation have already been provided in Equation (5):
m′∗

i = µq̃i and S′∗
i = 2c2q̃i . By plugging them into Equation (21) and Equation (18), we have
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a′∗ = a and b′∗ = b. Finally, using Equation (16), we obtain q\i(f\i|fi) = N (f\i|afi+b,S\i|i) =
N (f\i|a′fi + b′,S′

\i|i) = N (f\i|fi) , which concludes the proof.

F.1 Details of Eqn. (6)

KL(q̃(f)‖N (f)) =

∫
q̃(f) log

q̃(f\i|fi)q̃(fi)
N (f\i|fi)N (fi)

df

=

∫
q̃(fi) log

q̃(fi)

N (fi)
dfi +

∫
q̃(fi)

∫
q̃(f\i|fi) log

q̃(f\i|fi)
N (f\i|fi)

df\i dfi

= KL
(
q̃(fi)‖N (fi)

)
+ Eq̃(fi)

[
KL
(
q̃(f\i|fi)‖N (f\i|fi)

)]

q̃(f\i|fi) =
q̃(f)

q̃(fi)
∝

p(f)✘✘✘✘p(yi|fi)
∏

j 6=i tj(f)

q\i(fi)✘✘✘✘p(yi|fi)
= q\i(f\i|fi). (23)

F.2 Details of Eqn. (10)

W2
2 (q̃(f),N (f)) ≡ inf

π∈U(q̃,N )
Eπ

(
‖f − f ′‖22

)

= inf
π∈U(q̃,N )

Eπ

(
‖fi − f ′

i‖22
)
+ Eπ

(
‖f\i − f ′

\i‖22
)

(a)
= inf

π∈U(q̃,N )
Eπi

[
‖fi − f ′

i‖22 + Eπ\i|i

(
‖f\i − f ′

\i‖22
) ]

(b)
= inf

πi

Eπi

[
‖fi − f ′

i‖22 + inf
π\i|i

Eπ\i|i

(
‖f\i − f ′

\i‖22
) ]

= inf
πi

Eπi

[
‖fi − f ′

i‖22 + W2
2(q̃\i|i,N\i|i)

]

(c)
= inf

πi

Eπi

[
‖fi − f ′

i‖22 + W2
2(q

\i
\i|i,N\i|i)

]
,

where the superscript prime indicates that the variable is from the Gaussian N . In (a), πi =
π(fi, f

′
i) and π\i|i = π(f\i,f

′
\i|fi, f ′

i). In (b), the first and the second inf are over U(q̃i,Ni) and

U(q̃\i|i,N\i|i) respectively. (c) is due to q̃(f\i|fi) being equal to q\i(f\i|fi) (refer to Eqn. (23)).

F.3 Details of Eqn. (19)

min
m′

\i

Eqn. (17)

= inf
πi

Eπi

[
‖fi − f ′

i‖22 + ‖a(fi − µq̃i)− a′(f ′
i −m′

i)‖22
]

= inf
πi

Eπi

[
‖fi − f ′

i‖22
]
+ ‖a‖22σ2

q̃i
+ ‖a′‖22S′

i − 2aTa′
Eπi

(
fif

′
i − µq̃im

′
i

)

= inf
πi

Eπi

[
‖fi − f ′

i‖22
]
+ ‖a‖22σ2

q̃i
+ ‖a′‖22S′

i + aTa′
Eπi

(
‖fi − f ′

i‖22 − f2
i − (f ′

i)
2 + 2µq̃im

′
i

)

= inf
πi

Eπi

[
‖fi − f ′

i‖22
]
+ ‖a‖22σ2

q̃i
+ ‖a′‖22S′

i + aTa′
Eπi

(
‖fi − f ′

i‖22 − (fi − µq̃i)
2−

2fiµq̃i + µ2
q̃i
− (f ′

i −m′
i)

2 − 2f ′
im

′
i + (m′

i)
2 + 2µq̃im

′
i

)

= (1 + aTa′)W2
2(q̃i,Ni) + ‖a‖22σ2

q̃i
+ ‖a′‖22S′

i − aTa′
(
σ2
q̃i
+ µ2

q̃i
+ S′

i + (m′
i)

2 − 2µq̃im
′
i

)

= (1 + aTa′)W2
2(q̃i,Ni) + ‖a‖22σ2

q̃i
+ ‖a′‖22S′

i − aTa′
[
σ2
q̃i
+ S′

i + (µq̃i −m′
i)

2
]
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F.4 Details of Eqn. (19)

We first use Proposition 1 to reformulate the L2 WD W2
2(q̃i,Ni) as:

W2
2(q̃i,Ni) =

∫ 1

0

(
F−1
q̃i

(y)−m′
i −
√
2S′

ierf−1(2y − 1)
)2

dy,

=

∫ 1

0

(F−1
q̃i

(y)−m′
i)

2 + 2S′
ierf−1(2y − 1)2 − 2

√
2S′

ierf−1(2y − 1)(F−1
q̃i

(y)−m′
i) dy,

=

∫ 1

0

(F−1
q̃i

(y)− µq̃i + µq̃i −m′
i)

2 dy + S′
i − 2

√
2S′

icq̃i ,

= σ2
q̃i
+ (µq̃i −m′

i)
2 + S′

i − 2cq̃i
√

2S′
i,

where F−1
q̃i

(y) is the quantile function of q̃(fi) and cq̃i ≡
∫ 1

0
F−1
q̃i

(y)erf−1(2y − 1) dy. Next, we

plug this reformulation into Eqn. (19):

Eqn. (19) = W2
2(q̃i,Ni) + aTa′W2

2(q̃i,Ni) + ‖a‖22σ2
q̃i
+ ‖a′‖22S′

i − aTa′
[
σ2
q̃i
+ S′

i + (µq̃i −m′
i)

2
]

= W2
2(q̃i,Ni) + aTa′

[
✭✭✭✭✭✭✭✭✭✭

σ2
q̃i
+ (µq̃i −m′

i)
2 + S′

i − 2cq̃i
√
2S′

i

]
+ ‖a‖22σ2

q̃i
+ ‖a′‖22S′

i

− aTa′
[
✭✭✭✭✭✭✭✭✭✭

σ2
q̃i
+ S′

i + (µq̃i −m′
i)

2
]

= W2
2(q̃i,Ni)− 2cq̃i

√
2S′

ia
Ta′ + ‖a‖22σ2

q̃i
+ ‖a′‖22S′

i

G More Details of EP

We use the expressions q̃(f) = q\i(f)p(yi|fi)/Zq̃ and q\i(f) = q(f)/(ti(fi)Zq\i), and the deriva-

tion of KL(q̃(f)‖q(f)) = KL(q̃(fi)‖q(fi)) is shown as below:

KL(q̃(f)‖q(f)) =
∫

q̃(f) log
q\i(f)p(yi|fi)

Zq̃q(f)
df

=

∫
q̃(f) log ✟

✟✟q(f)p(yi|fi)
Zq\iZq̃✟

✟✟q(f)ti(fi)
df

=

∫
q̃(fi) log

p(yi|fi)
Zq\iZq̃ti(fi)

dfi

=

∫
q̃(fi) log

q\i(fi)p(yi|fi)
Zq\iZq̃q\i(fi)ti(fi)

dfi

=

∫
q̃(fi) log

q̃(fi)

q(fi)
dfi

= KL(q̃(fi)‖q(fi))

H Predictive Distributions of Poisson Regression

Given the approximate predictive distribution f(x∗) = N (µ∗, σ
2
∗) and the relation g(f) = f2, it is

straightforward to derive the corresponding g(x∗) ∼ Gamma(k∗, c∗)
2 where the shape k∗ and the

scale c∗ are expressed as [56, 61]:

k∗ =
(µ2

∗ + σ2
∗)

2

2σ2
∗(2µ

2
∗ + σ2

∗)
, c∗ =

2σ2
∗(2µ

2
∗ + σ2

∗)

µ2
∗ + σ2

∗

.

2Gamma(x|k, c) = 1
Γ(k)ck

xk−1e−x/c.
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Furthermore, the predictive distribution of the count value y ∈ N can also be derived straightfor-
wardly:

p(y) =

∫ ∞

0

p(g∗)p(y|g∗) dg∗

=

∫
Gamma(g∗|k∗, c∗)Poisson(y|g∗) dg∗

=
cy∗(c∗ + 1)−k∗−yΓ(k∗ + y)

y!Γ(k∗)
= NB(y|k∗, c∗/(1 + c∗)),

where g∗ = g(x∗) and NB denotes the negative binomial distribution. The mode is obtained as
⌊c∗(k∗ − 1)⌋ if k∗ > 1 else 0.

I Proof of Corollary 2.2

Since the site approximations of both EP and QP are Gaussian, we may analyse the predictive
variances using results from the regression with Gaussian likelihood function case, namely the well
known Equation (3.61) in [47]:

σ2(f∗) = k(x∗,x∗)− kT

∗ (K + Σ̃)−1k∗, (24)

where f∗ = f(x∗) is the evaluation of the latent function at x∗ and k∗ =
[k(x∗,x1), · · · , k(x∗,xN )]T is the covariance vector between the test data x∗ and the training

data {xi}Ni=1, K is the prior covariance matrix and Σ̃ is the diagonal matrix with elements of site
variances σ̃2

i .

After updating the parameters of a site function ti(fi), the term (K + Σ̃)−1 is updated to (K +

Σ̃ + (σ̃2
i,new − σ̃2

i )eie
T

i )
−1 where σ̃i,new is the site variance estimated by EP or QP and ei is a unit

vector in direction i. Using the Woodbury, Sherman & Morrison formula [47, A.9], we rewrite

(K + Σ̃ + (σ̃2
i,new − σ̃2

i )eie
T

i )
−1 as

(K + Σ̃ + (σ̃2
i,new − σ̃2

i )eie
T

i )
−1

≡ (A−1 + (σ̃2
i,new − σ̃2

i )eie
T

i )
−1

= A−Aei[(σ̃
2
i,new − σ̃2

i )
−1 + eTi Aei]

−1eTi A

≡ A− si[(σ̃
2
i,new − σ̃2

i )
−1 +Aii]

−1sTi

= A− 1

(σ̃2
i,new − σ̃2

i )
−1 +Aii

sis
T

i

where A = (K+Σ̃)−1 and si is the i’th column of A. Putting the above expression into Equation (24),
we have that the predictive variance is updated according to:

σ2
new(f∗) = k(x∗,x∗)− kT

∗Ak∗ +
1

(σ̃2
i,new − σ̃2

i )
−1 +Aii

kT

∗ sis
T

i k∗.

In EP and QP, the first two terms on the r.h.s. of the above equation are equivalent. As the site
variance provided by QP is less or equal to that by EP, i.e., σ̃2

i,QP ≤ σ̃2
i,EP, the third term on the r.h.s.

for QP is less or equal to that for EP. Therefore, the predictive variance of QP is less or equal to that
of EP: σ2

QP(f∗) ≤ σ2
EP(f∗).

J Lookup Tables

To speed up updating variances σ2
QP in QP, we pre-compute the integration in Equation (5) over a

grid of cavity parameters µ and σ, and store the results into lookup tables. Consequently, each update
step obtains σ2

QP simply based on the lookup tables. Concretely, for the GP binary classification, we

compute Equation (5) with µ, σ and y varying from -10 to 10, 0.1 to 10 and {−1, 1} respectively.
µ and σ vary in a linear scale and a log10 scale respectively, and both have a step size of 0.001.
The resulting lookup tables has a size of 20001× 2001. In a similar way, we make the lookup table
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Algorithm 1 Expectation (Quantile) Propagation

Input: p(f), p(yi|fi), ti(fi), i = 1, · · · , N , θ
Output: q(f) approximate posterior

1: repeat
2: compute q(f) ∝ p(f)

∏
i ti(fi) by (1)

3: repeat
4: for i = 1 to N do
5: compute q\i(fi) ∝ q(fi)/ti(fi) cavity

6: compute q̃(fi) ∝ q\i(fi)p(yi|fi) tilted
7: if EP then
8: ti(fi) ∝ projKL[q̃(fi)]/q

\i(fi) by (3)(4)
9: else if QP then

10: ti(fi) ∝ projW[q̃(fi)]/q
\i(fi) by (5)(4)

11: end if
12: update q(f) ∝ p(f)

∏
i ti(fi) by (1)

13: end for
14: until convergence
15: θ = argmaxθ log q(D) by (2)
16: until convergence
17: return q(f)

for the Poisson regression. In the experiments, we exploit the linear interpolation to fit σ2
QP given

µ ∈ [−10, 10] and σ ∈ [0.1, 10], and if µ and σ lie out of the lookup table, σ2
QP is approximately

computed by the EP update formula, i.e., σ2
QP ≈ σ2

EP. On Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz, we observe the running time of EP and QP is almost the same.
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