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Abstract

We consider the problem of estimating the Wasserstein distance between the
empirical measure and a set of probability measures whose expectations over a
class of functions (hypothesis class) are constrained. If this class is sufficiently
rich to characterize a particular distribution (e.g., all Lipschitz functions), then our
formulation recovers the Wasserstein distance to such a distribution. We establish a
strong duality result that generalizes the celebrated Kantorovich-Rubinstein duality.
We also show that our formulation can be used to beat the curse of dimensionality,
which is well known to affect the rates of statistical convergence of the empirical
Wasserstein distance. In particular, examples of infinite-dimensional hypothesis
classes are presented, informed by a complex correlation structure, for which it is
shown that the empirical Wasserstein distance to such classes converges to zero at
the standard parametric rate. Our formulation provides insights that help clarify
why, despite the curse of dimensionality, the Wasserstein distance enjoys favorable
empirical performance across a wide range of statistical applications.

1 Introduction

In this paper we consider the problem of projecting the empirical measure, under the Wasserstein
distance, to a set of probability measures that are constrained to satisfy a family of expectations over
a class of functions. We call this class of functions the “hypothesis class”, examples of which include
moment constraints or expectations of functions other than polynomials.

The Wasserstein distance has generated a great deal of attention in recent years across a broad
spectrum of areas, ranging from artificial intelligence, learning and statistics to areas such as image
analysis, economics and operations research [1, 18, 9, 12, 15]. However, despite its versatility and
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modelling power, classical results on the rates of statistical convergence of the Wasserstein distance
metric show that these rates scale poorly as a function of the dimension of the space [8]. This may
suggest that comparing distributions based on the Wasserstein distance is a strategy that is bound to
suffer from the so-called curse of dimensionality. Nevertheless, such theoretical performance in terms
of rates of statistical convergence seems to be incompatible with the popularity of the Wasserstein
distance based on the empirical performance observed in the previously mentioned application areas.

Our goal in this paper is to shed light on some of the fundamental reasons that explain the empirical
performance of the Wasserstein distance as an effective way to compare distributions, guided by the
following intuition. The Wasserstein distance (using, say, the Euclidean metric in Rd) has substantial
power to “separate” two distributions based on a wide and detailed range of characteristics. Mean-
while, some users of Wasserstein distances may be interested in only a subset of these characteristics
(maybe a large subset, but just a subset, nonetheless). Hence, in the end, these users may be interested
in only testing if an empirical sample is compatible with a subset of characteristics. Since this subset
of characteristics of interest are likely to change from user to user or from task to task, the power of
the Wasserstein distance to discriminate widely makes is particularly convenient for multiple users or
tasks with different preferences because of this type of versatility. In practice, however, when testing
if the data is compatible with the characteristics required for a particular user or task, such a user
typically exploits the Wasserstein distance to obtain key insights and a deeper understanding while,
in the end, making final decisions with a criterion that may ignore a lack of fit of certain aspects.

To be more precise, consider as a canonical example the process of using the Wasserstein distance in
the Wasserstein GAN application [1]. The general goal is to fine tune a neural network to generate
synthetic data that is similar in some sense to a target data set. The network is trained in order
to minimize the Wasserstein distance. However, if the generative models eventually produce the
desirable features (e.g., faces that appear to be realistic), we may choose to ignore imperfections in,
for example, the background of the picture. Hence, “faces” are what we choose to emphasize in the
training process and the rest of the data characteristics are not given as much importance.

The idea of choosing a hypothesis class corresponds precisely to modeling the set of characteristics
that are important. The hypothesis class partitions the set of distributions into equivalence classes,
where two distributions are equivalent if the expectations coincide over the hypothesis class. Formally,
we posit that many users of the Wasserstein distance are actually testing if the data belongs to a
certain equivalence class. To provide a solid statistical footing for such scenarios, this then involves
computing the distance between the empirical measure and the target equivalence class, evaluating a
corresponding asymptotic quantile statistic, and rejecting the hypothesis of membership in the target
equivalence class for large values of the statistic relative to the desired confidence quantile.

More formally, suppose that Pn denotes the empirical measure of independent and identically
distributed (i.i.d.) samples {Xi}ni=1 ⊆ Rd generated from a distribution P∗. Let us writeW(P, Pn)
to denote the Wasserstein distance [24] between Pn and a given (Borel) probability measure P . (We
recall the formal definition of the Wasserstein distance in Section 2.1.)

Let B be a given hypothesis class of interest. To avoid technicalities, let us focus in this introductory
discussion on a given subset of the space of continuous and bounded functions with certain character-
istics. Next, for f ∈ B, we write EP [f (X)] to denote the expectation of f (X) under the measure
P ; so, for example, EPn [f (X)] = n−1

∑n
i=1 f (Xi).

Our goal then in this paper is to study

Rn = inf
P
{W (P, Pn) : EP [f (X)] = EP∗ [f (X)] for all f ∈ B}. (1)

The main contributions of this paper are as follows. First, we provide a duality result that shows

Rn = sup
f∈LB

{EP∗ [f (X)]− EPn [f c (X)]},

where f c is a suitable transformation (to be described precisely in Theorem 1) and LB is the linear
span generated by B. If B is the class of all 1-Lipschitz functions and the cost function is the
corresponding metric, then it turns out for f ∈ B that f c = f and we recover the celebrated
Kanotorovich-Rubinstein duality.

The second contribution of this paper is to study the rate of statistical convergence for Rn. Note
that, if B is the class of 1-Lipschitz functions, then Rn will typically converge to zero at the rate
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Op
(
n−1/(d∨2)

)
[8], where d is the dimension of the underlying space. If B is finite dimensional,

then convergence of Rn occurs at a parametric rate [3]. However, we also establish more general
conditions that accommodate infinite dimensional hypothesis classes B and for which a parametric
rate of convergence is also achievable, thus beating the curse of dimensionality. Examples of
infinite-dimensional hypothesis classes, informed by a complex correlation structure, are considered.

Moreover, we are able to explicitly characterize the asymptotically limiting distribution of n×Rn as
n→∞, which is the maximum of a Gaussian process, indexed by functions in LB. The existence
of this asymptotic distribution is critically important from the standpoint of using these results for
hypothesis testing, as we have discussed above, either by explicit evaluation of quantiles or by means
of subsampling as considered in [17].

There is a rapidly growing research literature discussing the statistical properties of the Wasserstein
distance and how to beat the curse of dimensionality. Weed and Bach [25] claim that the Wasserstein
distance enjoys a faster convergence rate if the true measure has support on a lower-dimensional
manifold. Weed and Berthet [26] produce a new density estimator that converges faster if the
true measure has sufficiently smooth density. Tameling et al. [20] recover the parametric rates of
convergence, but under the assumption that the underlying measures are atomic. Genevay et al. [11]
study Wasserstein distance with entropy regularization (Sinkhorn Divergences), but their convergence
rate is exponential in the regularization power ε. In connection to our study, Blanchet et al. [2, 3]
focus on finite hypothesis classes and prove that the canonical rate of statistical convergence can be
obtained. We study cases in which the hypothesis class may form an infinite-dimensional vector space
encoding complex information about the joint distribution, for which we are able to show, for the
first time, that it is not only possible to also obtain a canonical rate of statistical convergence in these
types of complex formulations, but to further obtain a characterization of the limiting distribution.

Our formulation is also related to distributionally robust optimization (DRO) with the Wasserstein
distance metric [4, 16, 27, 3, 10, 5]. In this literature, estimators are obtained as the solution of
a min-max game in which the optimizer seeks to minimize a loss, while an adversary chooses a
probability distribution inside a so-called “uncertainty set” defined around the empirical measure.
The Wasserstein distance is used to describe the uncertainty set and Rn is used to describe the radius
of the uncertainty set (also called the size of uncertainty). One criterion for choosing the size of
uncertainty is to minimize the size of a natural confidence region for the parameter of interest; refer
to [3]. Under this criterion, it is shown that the optimal size of uncertainty coincides with a quantile
of Rn (which, in this literature, is known as the “Robust Wasserstein Profile” function).

The paper is organized as follows. In Section 2, we provide the necessary definitions and setup to
state our duality result in compact spaces, which is presented in Section 2.2. Then, in Section 3, we
discuss the statistical guarantee that Rn satisfies, where we present a central limit theorem for Rn.
Further, in Section 4, we extend our duality result and our statistical guarantee to non-compact spaces.
Finally, Section 5 illustrates the use of our results in the context of a hypothesis testing example.

Notation. Let Ck(Ω) represent the space of all k-th continuous differentiable functions defined on
the domain Ω, where C(Ω) denotes the space of continuous functions and Cb(Ω) the space of bounded
continuous functions. Denote by P(Ω) the space of all Borel probability measures on the underlying
space Ω. Let L1 (µ) be the space of all integrable functions with respect to measure µ. Denote by
Z+ the set of all positive integers and by ‖·‖F the Frobenius norm of a matrix. Let⇒ denote the
weak convergence in a given probability space, and N (µ, σ2) a Gaussian distribution with mean µ
and variance σ2. For a vector x ∈ Rd, we use x(i), i = 1, 2, . . . , d, to denote the i-th entry of x.

2 Main Duality Result

The goal of this section is to present our new strong duality result, also providing the necessary
definitions to do so. Recall that this result extends the existing optimal transport duality theory in
a geometric sense by closing the gap between the renowned Kantorovich-Rubinstein duality result
[24] at one extreme and the recent strong duality result in [3] at the other extreme. In doing so,
our new strong duality result helps to reduce the computational burdens encountered in practice by
establishing an equivalence with a problem that is easier and more computationally efficient to solve.

We start by reviewing the definition of the Wasserstein distance and the elements required to pose the
dual problem. We then state our new strong duality result together with some examples of applying
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the result, which further illustrate some of the benefits of our duality result. This is then followed by
an extension of our strong duality result beyond the Wasserstein distance in (1) to the max-sliced
Wasserstein distance in [7].

2.1 Wasserstein Distance

For a given closed set Ω ⊆ Rd, we endow Ω with a metric, denoted by % (·), which may be naturally
defined in terms of a norm such as % (x, y) = ‖y − x‖. Let c : Ω × Ω → [0,∞) be a continuous
function with respect to % (·). Then the optimal transport cost between P,Q ∈ P(Ω) is defined as

Dc(P,Q) = min
π∈P(Ω×Ω)

{(∫
c(x,w)π (dx, dw)

)
:

∫
w∈Rd

π (dx,dw) = P (dx) ,

∫
x∈Rd

π (dx, dw) = Q (dw)}
}
.

If c (·) = % (·), thenW1(P,Q) = D%(P,Q) is the Wasserstein distance generated by such a metric
[24]. However, we may also be interested in cases where c (·) = %r (·) for r > 1 in order to study the
Wasserstein distance of order r, which is defined asWr(P,Q) = D1/r

%r (P,Q).

2.2 Strong Duality

The hypothesis class B(Ω) is assumed to be given throughout our discussion which follows where
we further assume that B(Ω) ⊆ C(Ω) ∩ L1 (P∗) for a targeting probability measure P∗. We may also
assume, without loss of generality, that 1 ∈ B(Ω) (i.e., constant functions belong to the hypothesis
class). Let LB(Ω) denote the linear span generated by B(Ω), namely

LB(Ω) =

{
f(·) =

m∑
i=1

λifi(·) : {fi(·)}mi=1 ⊂ B(Ω), λ ∈ Rm, and m ∈ Z+

}
.

We formally state our assumptions as follows.
Assumption 1. 1. The function class satisfies B(Ω) ⊆ C(Ω) ∩ L1 (P∗) .

2. The cost function c(·, ·) is a non-negative continuous function with c(x, x) = 0, for x ∈ Ω.

Given a probability measure P0 ∈ P(Ω) (which eventually will be taken as an empirical measure),
we are interested in studying the robust Wasserstein profile function

R0 = inf
P∈P(Ω)

{Dc (P, P0) : EP [f (X)] = EP∗ [f (X)] , for all f ∈ B (Ω)}. (2)

Observe that writing B (Ω) or LB (Ω) in the definition of R0 leads to an equivalent formulation due
to the linearity of the constraints defining R0. We now state our main duality result.
Theorem 1. Suppose Assumption 1 is enforced and B(Ω) ⊂ L1(P0). We then have the weak duality

R0 ≥ sup
f∈LB(Ω)

{EP∗ [f(X)]− EP0
[f c (X)]} ,

where f c is the c-transform of f , which is defined by

f c(x) = sup
z∈Ω
{f(z)− c(z, x)} .

Furthermore, if Ω is compact, we have the strong duality

R0 = sup
f∈LB(Ω)

{EP∗ [f(X)]− EP0 [f c (X)]} . (3)

The key to the proof is first writing R0 in a Lagrangian form and then applying Sion’s minimax
theorem [19]. The technical details and complete proof are provided in Appendix A.1.
Remark 1. Notice that, for the strong duality, we require the sample space to be compact. For
the non-compact space, the strong duality does not hold in general and should be treated on a
case-by-case basis. We will discuss such strong duality results for some examples in Section 4.
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Remark 2. Note that the dual formulation (3) shares some similarities with the Integral Probability
Metric (IPM),which is defined as

IPMF (P, P0) = sup
f∈F

∣∣∣∣∫ fdP −
∫
fdP0

∣∣∣∣ ,
for a function class F . The similarities are not surprising since the dual formulations of Wasserstein
distances have deep connections with IPM. However, it is important to note that our primary intention
is not to define a new metric. Rather we seek to provide a thorough analysis of the Wasserstein
distance, which has been the focus of a great deal of attention in the statistical learning research
literature. In particular, we add a new modeling feature, which is the hypothesis class or the actor
critic class. This induces a class of dual functions; and we note that our expression for the strong
duality (generalizing the celebrated Kantorovich-Rubinstein duality) uses the combination of both
the function f and its c-transform f c in contrast with IPM.

Problem (2) is an infinite-dimensional optimization problem that cannot be solved directly. Our main
duality results (Theorem 1) enable us to compute R0 using function approximators for functions in
LB(Ω), such as wavelet basis expansions. We will discuss computing R0 in Section 5.

For now, let us consider a few examples that apply our results to illustrate some of the benefits
which they provide. In order to connect these examples with our future statistical development,
recall that {Xi}ni=1 ⊆ Ω are i.i.d. samples from a data-generating distribution P∗ ∈ P(Ω) and that
Pn = 1

n

∑n
i=1 δXi

is the corresponding empirical measure. We next apply our strong duality result
where P0 is replaced by Pn and the corresponding Rn is defined as

Rn = inf
P∈P(Ω)

{Dc (P, Pn) : EP [f (X)] = EP∗ [f (X)] , for all f ∈ B (Ω)}.

Example 1. Suppose LB(Ω) is sufficiently rich to uniquely determine any distributions and assume
that c = %. Then, we might assume that LB(Ω) is the space of all Lipschitz functions, which also
determines any distribution. Let Lip1 (Ω) be the space of all 1-Lipschitz functions. Hence, by our
weak duality result, we have

sup
f∈Lip1(Ω)

{EP∗ [f(X)]− EPn
[f c (X)]} ≤ Rn.

On the other hand, since f (x) ≤ supz∈Ω {f(z)− c(z, x)}, we also have

Rn ≤ sup
f∈LB(Ω)

{EP∗ [f c(X)]− EPn [f c (X)]} .

Finally, it is well known (see, e.g., [24]) that f c(x) is a 1-Lipschitz function, and therefore

sup
f∈LB(Ω)

{EP∗ [f c(X)]− EPn [f c (X)]} ≤ sup
fc∈Lip1(Ω)

{EP∗ [f c(X)]− EPn [f c (X)]} .

Consequently, if LB(Ω) determines any distribution, then our result recovers the renowned
Kantorovich-Rubinstein duality result [24, Theorem 5.10]:

Rn = sup
f∈Lip1(Ω)

{EP∗ [f(X)]− EPn
[f (X)]} =W1 (P∗, Pn) .

It is important to keep in mind that, if P∗ has bounded moments, then Rn = O
(
n−1/(d∨2)

)
as

n→∞ (see, e.g., [8, Theorem 1]).
Example 2. Suppose that B(Ω) is finite dimensional, such as B(Ω)= {fi (x)}Ki=1. Then, we have

Rn = sup
λ∈RK

{
EP∗

[
K∑
i=1

λifi (X)

]
− EPn

[
sup
z∈Ω

{
K∑
i=1

λifi (z)− c(z,X)

}]}
,

which recovers the duality result obtained in [3]. Note that [3] also provides a typical rate Rn =
Op
(
n−1

)
as n→∞ under some regularity conditions.

Example 3. Fix linearly independent unit vectors θ1, . . . , θK ∈ Rd, K ≤ d, and let a function
class FB ⊆ Cb(R) collect some bounded continuous functions in R. We consider the function class
B(Ω) = ∪Ki=1Bi(Ω), where Bi(Ω) =

{
f(θ>i ·)|Ω : f ∈ FB

}
, in which case

LB(Ω) =

{
f(·) =

K∑
i=1

λifi(θ
>
i ·)|Ω : {fi(·)}Ki=1 ⊂ FB, λ ∈ RK

}
.
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This example is particularly interesting because it is infinite dimensional if FB is infinite dimensional.
The hypothesis class carries a substantial amount of information about the dependence structure of
P∗ and yet, as we shall see, for this hypothesis class and the cost function c(x, y) = ‖x− y‖22, we
also conclude that Rn = Op

(
n−1/2

)
for Ω = Rd (Theorem 4 below) and Rn = Op

(
n−1

)
under

suitable regularity (Theorem 2 below).

At first glance, Example 3 is similar to the max-sliced Wasserstein distance [7]. Recall that the
max-sliced Wasserstein distance is defined as

max-Wr (P,Q) =

[
max

θ:‖θ‖2=1
Wr (θ]P, θ]Q)

r

]1/r

,

where θ]P (θ]Q) is the push-forward measure from P(Ω) to P
(
θ>Ω

)
such that, for any Borel set A

in θ>Ω,
(θ]P ) (A) = P

({
x ∈ Ω : θ>x ∈ A

})
. (4)

Proposition 1 provides a strong duality result for max-Wr (P,Q).

Proposition 1. Consider Ω = Rd, r = 2, and %(x, y) = |x − y|, for x, y ∈ R. Denote by Sd−1

a unit sphere in Rd, i.e., Sd−1 =
{
x ∈ Rd : ‖x‖2 = 1

}
. Then, for Θ ⊂ Sd−1, we have the strong

duality
max
θ∈Θ
W2 (θ]P, θ]Q)

2
= sup
f∈Bmax(Rd,Θ)

{EP [f (X)]− EQ [f c(X)]} , (5)

where the cost function c(x, y) = ‖x− y‖22 and

Bmax

(
Rd,Θ

)
=
{
f
(
θ>·
)

: f ∈ Cb(R), θ ∈ Θ
}
.

In particular, for the max-sliced distance, we have the strong duality

(max-W2 (P,Q))
2

= sup
f∈Bmax(Rd,Sd−1)

{EP [f (X)]− EQ [f c(X)]} .

The proof of Proposition 1 is provided in Appendix A.2. The key difference between the dualities
(1) and (5) is that Bmax

(
Rd,Θ

)
is not a vector space in general. Therefore, even if Θ = {θi}Ki=1 ,

LB(Rd) could be much larger than Bmax

(
Rd,Θ

)
.

3 Statistical Convergence

In this section, we present a formal central limit theorem result on the rate of statistical convergence for
Rn in the case of infinite dimensional constraints, which also extends and improves the corresponding
results in [3] for the finite dimensional case. This further extends conventional results on the rate
of statistical convergence for Wasserstein distances between an empirical distribution and the true
(unknown) distribution. Such central limit theorem results on the rate of statistical convergence for
Rn provide a critically important understanding that can inform and guide algorithms, computation,
and experiments.

Following the setting in Example 3, we consider a convex compact domain Ω and let Bi(Ω) be any
subclass of the function class

{
f(θ>i ·)|Ω : f ∈ C2(R)

}
. As an analog of LB(Ω), we define LBi(Ω)

to be

LBi(Ω) =

f(·) =

m∑
j=1

λjfj(·) : {fj(·)}mj=1 ⊂ Bi(Ω), λ ∈ Rm, and m ∈ Z+

 .

Notice that any function in LBi(Ω) can be written as f(θ>i x). We assume that the function classes
LBi(Ω) satisfy the following condition.

Assumption 2. For any f
(
θ>i ·
)
∈ LBi(Ω), i = 1, 2, . . . ,K, the ratio bound

supx∈Ω

∣∣f ′′(θ>i x)
∣∣√∫

Ω
f ′(θ>i x)2dx

≤M

holds for a universal constant M ∈ (0,+∞), where we use the convention 0/0 = 0.
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As in Example 3, we consider the function space B(Ω) = ∪Ki=1Bi(Ω). We make further assumptions
on the domain Ω, the data-generating probability measure P∗, and the linear projection vectors
θ1, θ2, . . . , θK in Assumption 3 as follows.
Assumption 3. 1. The sample space Ω is a convex and compact subset of Rd.

2. The data-generating probability measure P∗ has a non-zero density fP∗ with respect to
Lebesgue measure in Rd. The density has a uniform non-zero lower bound, i.e., fP∗(x) ≥
b > 0 for x ∈ Ω.

3. The vectors θ1, . . . , θK are linearly independent with ‖θi‖2 = 1 for i = 1, 2, . . . ,K.

Theorem 2. Suppose Assumptions 1, 2 and 3 are enforced. For the cost function c(x, y) = ‖x− y‖22,
we then have the central limit theorem result

nRn ⇒ sup
f∈LB(Ω)

{
−2Hf − EP∗

[
‖∇Xf(X)‖22

]}
,

where∇xf(x) is the gradient of f(·) evaluated at x and Hf is a Gaussian process indexed by f with

Hf ∼ N (0, var (f(X))) and cov(Hf1 , Hf2) = cov (f1(X), f2(X)) .

Sketch of Proof. Define UB(Ω) =
{
f(·) ∈ LB(Ω) : EP∗

[
‖∇xf(X)‖22

]
= 1, f(0) = 0

}
. By The-

orem 1, we have nRn is equal to

sup
λ∈R

sup
f∈UB(Ω)

{
−2λHf

n −
1

n

n∑
i=1

[
sup

Xi+∆/
√
n∈Ω

{
2λ
√
n
(
f
(
Xi + ∆/

√
n
)
− f(Xi)

)
− ‖∆‖22

}]}
,

where Hf
n = n−1/2 (

∑n
i=1 f(Xi)− EP [f(X)]) . Then, by the uniform convergence theory of the

P -Donsker class and the P -Glivenko-Cantelli class (see [21, Chapter 19]), we obtain for any b > 0

sup
|λ|≤b

sup
f∈UB(Ω)

{
λHf

n

}
⇒ sup
|λ|≤b

sup
f∈UB(Ω)

{
λHf

}
, and (6)

sup
|λ|≤b

sup
f∈UB(Ω)

∣∣∣∣∣ 1n
n∑
i=1

[
sup

Xi+∆/
√
n∈Ω

{
2λ
√
n
(
f(Xi + ∆/

√
n)− f(Xi)

)
− ‖∆‖22

}]
− λ2

∣∣∣∣∣→ 0.

(7)
Furthermore, we show that λ is bounded with high probability when n is large. Upon combining (6)
and (7) with the boundedness of λ, we obtain the desired central limit theorem.

Theorem 2 demonstrates a parametric rate of convergence, in contrast with the standardO
(
n−1/(d∨2)

)
convergence rate of Wasserstein distances (see, e.g., [8, Theorem 1]). The technical details and
complete proof are presented in Appendix A.3.

4 Extension to Non-Compact Spaces

Our previous discussions and results on strong duality and statistical convergence have been limited
to the case of compact domains. We now turn to consider results on strong duality and statistical
convergence for the case when the sample space Ω is not compact.

We start by considering our results on strong duality in the case of non-compact domains, and then
considering our results on the rate of statistical convergence in the case of non-compact domains,
both following along the lines of Example 3 above.
Theorem 3. Consider Ω = Rd and a continuous cost function c(·, ·) : Rd × Rd → [0,∞)
with c(x, x) = 0. Assume that EP∗ [c(X, y)] < ∞ for any y ∈ Rd, and that the set{
x ∈ Rd : c(x, x0) ≤ a

}
is compact for any a > 0. Following the setting in Example 3, for linearly

independent unit vectors θ1,...,θK and FB = Cb(R), we have the strong duality

Rn = sup
f∈LB(Rd)

{EP∗ [f(X)]− EPn
[f c (X)]} .
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Sketch of proof. Since we have the weak duality proven in Theorem 1, we only need to show

D := sup
f∈LB(Rd)

{EP∗ [f(X)]− EPn
[f c (X)]} ≥ Rn.

Our strategy for this proof is to pick a series of large compact sets, so that we can approximate the
solution to the primal problem by restricting the functions c(·, ·) and f on the compact set.

We then apply strong duality for the compact problem and subsequently show that the dual optimal
value D can be approximated by the dual optimal value of the compact problem, when we apply the
truncation to the cost function ca(x, y) = min {a, c(x, y)} . Finally, the optimal value with the cost
function ca(x, y) converges to the optimal value with the cost function c(x, y).

The detailed proof of Theorem 3 is provided in Appendix A.4. An important element which
distinguishes the proof of the results from standard strong duality in optimal transport is that the usual
technique to construct improving dual functions is not applicable since f c /∈ LB(Rd) in general.

We next study the rate of statistical convergence within the context of Example 3.

Theorem 4. Assume Ω = Rd and the cost function c(x, y) = ‖x − y‖22 with EP∗ [‖X‖4+ε
2 ] < ∞

for some ε > 0. Let M (P∗) = max
{

1,EP∗ [‖X‖4+ε
2 ]

}
. Following the setting in Example 3, for

linearly independent unit vectors θ1,...,θK and any FB ⊂ Cb(R), there exists a universal constant
C such that E [Rn] ≤ Cρ∗K(M (P∗))

2n−1/2, where ρ∗ denotes the spectral radius of the matrix
CK = [θ1, θ2, . . . , θK ]

>
.

The key to the proof is to perform the transformation YK = CKX and to apply the standard
convergence result in [8, Theorem 1]. The technical details and complete proof are provided in
Appendix A.5.
Remark 3. The convergence rate Op(1/

√
n) in Theorem 4 is slower than the rate Op(1/n) in

Theorem 2. We emphasize that the rate Op(1/
√
n) is also tight in situations where the support is

non-compact. It is consistent with the observation in the one-dimensional Wasserstein distance of
order 2 [6, Corollary 5.10].

5 Numerical Experiments

We provide experimental results on testing the hypothesis that a set of n samples {X1, X2, . . . , Xn} ⊂
Rd is compatible with a candidate distribution P∗ for a set of user-desired characteristics, specifically
the test described in Example 3. The projection directions {θ1, . . . , θK} could be viewed as the
characteristics of interest to the user (as discussed in the introduction). Theorem 4 shows that, if the
hypothesis is true, then the robust Wasserstein profile function Rn = Op(n

−1/2). We implement
the test by first estimating this distribution of Rn in its dual form (3). The hypothesis test can then
be conducted in a standard manner by constructing the test statistic Rn for the given empirical
distribution Pn = n−1

∑n
i=1 δXi and checking whether it is within the desired confidence level.

The key step in estimating Rn is to solve for f c(x). Let Ω = Rd, CK = [θ1, θ2, . . . , θK ]
>

and
ΓK = CKC

>
K . We then havef c(x) = supz∈RK

(∑K
j=1 fj(θ

>
j x+ z(j))− z>Γ−1

K z
)
, referring

to Appendix B.2 for the technical details. Therefore, the inner supremum is a K-dimensional
optimization problem instead of a d-dimensional problem.

We use Marr wavelet basis functions [13] to approximate the function class B(Ω). In particular, we
use a finite collection {bl}Ll=1 of Marr wavelet bases, where we provide the explicit expressions in
Appendix B.1. Hence, the Rn is approximated by :

R̂n = sup
wjl

EP∗

 K∑
j=1

L∑
l=1

wjlbl(θ
>
j X)

− 1

n

n∑
i=1

sup
zi

K∑
j=i

L∑
l=1

[
wjlbl(θ

>
j xi + z

(j)
i )− z>i Γ−1

k zi

] .

Stochastic approximation (SA, also known as SGD) iterations are used to obtain the optimal solution
of R̂n. Specifically, each SA iteration estimates expectations EP∗ using a mini-batch sample from P∗
of size 50. During each iteration, the n inner supremum problems are solved by Newton iterations
with 150 restarts (see Appendix B.5 for the details).
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To reject the hypothesis that the given set is from P∗, we use the 95% quantile of the distribution of
R̂n obtained when the empirical sets are indeed from P∗ as a threshold. We construct an estimate of
this quantile from the empirical distribution of R̂n obtained by from 50 instances of n sized samples
Pn generated from P∗. The P∗ distribution is an equal mixture of four standard Gaussians with
d = 20. Our n-sized test set P alt

n is from an alternate distribution P alt
∗ that is also a mixture of

standard Gaussians but with different centering points. The test statistic R̂alt
n computed for P alt

n

against P∗ is thus tested against the 95% quantile of R̂n to decide on the hypothesis that P alt
n is from

P∗. Three (K = 3) projection directions θj are carefully chosen to be linearly independent and such
that they can reveal the modes of P∗, the user-preferred characteristics of interest. We set n = 25 and
choose L ∼ 30 basis functions. Each computational run to estimate R̂n(R̂alt

n ) for a given Pn(P alt
n )

takes on average 10 minutes to compute on a dual AMD EPYC 7301 16-Core Processor machine
with 64GB of memory utilizing 50 subprocesses to solve the inner supremum problems in parallel.

We report the results in Figure 1. On the left we plot the projection of the two distributions P∗ (blue
shade) and P alt

∗ (red shade) on the three θj directions. Notice that each plot reveals that P∗ has at
least three modes along the projection direction θj ; while, on the other hand, these directions θj
reveal only one mode each for P alt

∗ . The right plot of Figure 1 shows the distributions of R̂n (blue
histogram) and R̂alt

n (red histogram) estimated by computing for R̂n and R̂alt
n repeatedly for 50 times

each. The black dashed line marks the estimated 95% quantile of R̂n. In this case, we control the type
I error as 5% and obtain a type II error as 32%. This shows that the method, based on our theoretical
results, can efficiently distinguish between two d = 20 distributions in terms of the user-preferred
characteristics while providing good accuracy even for relatively small values of n.

Figure 1: Left: projections of P ∗ (blue shade) and P alt
∗ (red shade) along the three θj directions;

Right: histograms of 50 samples of R̂n (blue histogram) and R̂alt
n (red histogram) with the 95%

quantile of R̂n marked as a dashed black line.

6 Discussion

Motivated by the intuition that decision makers may only be concerned with some characteristics
instead of all the details of the entire distribution, we consider the problem of projecting the empirical
measure under the Wasserstein distance to a set of probability measures that are constrained to satisfy
a family of expectations over a class of functions. In particular, we study theoretical aspects of the
robust Wasserstein profile functions Rn. We believe this work provides important insights into the
empirical success of the Wasserstein distance despite the curse of dimensionality. Interesting future
directions include studying statistical convergence for general function classes, developing efficient
algorithms to compute Rn, and applying our methods in practice leveraging our theoretical insights.
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Broader Impact

This is a theoretical contribution that, nevertheless, has the potential of impacting a wide range of
application domains in business, engineering and science. In particular, all of those in which the
Wasserstein distance has been extensively used as a statistical inference tool (e.g. image analysis and
computer vision, signal processing, operations research, and so on). Because our paper provides a
step towards breaking the curse of dimensionality in statistical rates of convergence, we believe that
we have the potential of enabling more applications to multiple hypothesis testing (e.g., certifying
Wasserstein GANs). In turn, we plan to improve human resource development by including some of
the main findings in this paper in Ph.D. courses.
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Appendix A Proofs of Main Results

Appendix A.1 Proof of Theorem 1

LetM(Ω),M+(Ω) andMa
+(Ω) denote the set of all signed measures, positive Borel measures and

positive Borel measures with total mass less than or equal to a on the underlying space Ω, respectively,
whereM(Ω),M+(Ω) andMa

+(Ω) are equipped with the weak topology. Recall that, in the weak
topology, πn ⇒ π if and only if, for every continuous and bounded function h : Ω → R, we have
that

∫
hdπn →

∫
hdπ as n→∞.

We will prove some of our duality results in this section, where we divide the proof into two steps:

1. Prove the weak duality in general spaces.

2. Prove the strong duality in compact spaces.

Let us first rewrite R0 as a linear programming problem:

R0 = inf
π∈M+(Ω×Ω),P∈M+(Ω)

∫
Ω×Ω

c(x, y)π(dx,dy), (A.1)

s.t. π(A× Ω) = P0 (A) , π(Ω×A) = P (A) for every measurable set A,
EP [f(X)] = EP∗ [f(X)] for all f ∈ B(Ω).

Appendix A.1.1 Weak Duality

We consider the set JL(c) = {(α, β) ∈ L1 (P∗)×L1 (P0) : α(x) + β(y) ≤ c(x, y)} . Notice that

R0 = inf
π∈M+(Ω×Ω),P∈M+(Ω)

sup
(α,β)∈L1(P∗)×L1(P0),f∈LB(Ω)


∫

Ω×Ω

c(x, y)π(dx, dy)+

(EP∗ [f(X)]− EP [f(X)]) + EP [α(X)] +

∫
Ω

β(y)P0(dy)−
∫

Ω×Ω

(α(x) + β(y))π(dx,dy)

 .

Letting α(x) = f(x), we obtain

R0 ≥ inf
π∈M+(Ω×Ω),P∈M+(Ω)

sup
β∈Cb(Ω),f∈LB(Ω)

EP∗ [f(X)]

+

∫
Ω×Ω

c(x, y)dπ(x, y) +

∫
Ω

β(y)P0(dy)−
∫

Ω×Ω

(f(x) + β(y))π(dx, dy)


≥ inf

π∈M+(Ω×Ω),P∈M+(Ω)
sup

(f,β)∈JL(c),f∈LB(Ω)

EP∗ [f(X)]

+

 ∫
Ω×Ω

c(x, y)π(dx, dy)−
∫

Ω×Ω

(f(x) + β(y))π(dx, dy)

+

∫
Ω

β(y)P0(dy)

≥ inf
π∈M+(Ω×Ω),P∈M+(Ω)

sup
(f,β)∈JL(c),f∈LB(Ω)

EP∗ [f(X)] +

∫
Ω

β(y)P0(dy)

= sup
(f,β)∈JL(c),f∈LB(Ω)

EP∗ [f(X)] +

∫
Ω

β(y)P0(dy).

It is readily verified that f(x)− f c(y) ≤ c(x, y) and f c(y) is lower semicontinuous (see, e.g., [24,
Remark 5.5]), and thus measurable. Since f c(x) ≥ f(x), we have EP0

[f c (X)] > −∞.Moreover, if
EP0

[f c (X)] = +∞, then EP∗ [f(X)]− EP0
[f c (X)] = −∞. By choosing f = β = 0, we obtain

sup
(f,β)∈JL(c),f∈LB(Ω)

EP∗ [f(X)] +

∫
Ω

β(y)P0(dy) ≥ 0.
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If f c(·) /∈ L1 (P0) , then f c(·) cannot be the optimizer, and therefore we have

sup
(f,β)∈JL(c),f∈LB(Ω)

(
EP∗ [f(X)] +

∫
Ω

β(y)P0(dy)

)
= sup
f∈LB(Ω)

(EP∗ [f(X)]− EP0
[f c (X)]) .

This completes the weak duality proof.

Appendix A.1.2 Strong Duality in Compact Spaces

We assume Ω is a compact space and consider the set J (c) =
{(α, β) ∈ C(Ω)× C(Ω) : α(x) + β(y) ≤ c(x, y)}. Notice that, in compact spaces, C(Ω) = Cb(Ω)
and thus C(Ω) ∈ L1(P ) for any probability measure P ∈ P(Ω). Sion’s minimax Theorem [19],
which will be useful for our proof, can be expressed as follows.

Theorem A1 (Sion’s minimax Theorem). Consider two convex spaces M and N, one of which is
compact, and let g : M ×N → R be such that, for each y ∈ N , g(·, y) is lower semicontinous and
convex and, for each x ∈ N , g(x, ·) is upper semicontinous and concave. Then,

inf
x∈M

sup
y∈N

g(x, y) = sup
y∈N

inf
x∈M

g(x, y).

We now apply Sion’s minimax Theorem. First define

g((π, P ) , (α, β)) =

∫
Ω×Ω

c(x, y)π(dx, dy) + (EP∗ [f(X)]− EP [f(X)])

+EP [α(X)] +

∫
Ω

β(y)P0(dy)−
∫

Ω×Ω

(α(x) + β(y))π(dx, dy).

Next, for each a ≥ 1, note that

R0 = inf
(π,P )∈Ma

+(Ω×Ω)×Ma
+(Ω)

sup
(α,β,f)∈C(Ω)×C(Ω)×B(Ω)


∫

Ω×Ω

c(x, y)π(dx, dy)+

(EP∗ [f(X)]− EP [f(X)]) + EP [α(X)] +

∫
Ω

β(y)P0(dy)−
∫

Ω×Ω

(α(x) + β(y))π(dx, dy)

 .

Let spaces M = Ma
+(Ω × Ω) ×Ma

+(Ω) and N = C(Ω)× C(Ω) × B(Ω) be equipped with the
product of weak topology and product of uniform topology, respectively. Both M and N are convex
spaces and M is compact by Prohorov’s Theorem (see, e.g., [21, Theorem 2.4]), since Ω is compact.

Clearly, the function g((π, P ) , (α, β, f)) is linear in (π, P ) and (α, β, f) so that g (·) is convex-
concave as required by Sion’s Theorem. We claim that g(·, (α, β)) is continous under the weak
topology. For any (πn, Pn)⇒ (π, P ) , we have for any continous and bounded functions φ1 and φ2∫

φ1πn +

∫
φ2Pn →

∫
φ1π +

∫
φ2P.

Since c(·), α(·), β (·) and g(·) are continuous functions on a compact space, they are all bounded and
therefore, by the definition of weak convergence, we immediately obtain that

g((πn, Pn) , (α, β))→ g((π, P ) , (α, β)).

On the other hand, for any (αn, βn, fn)→ (α, β, f) uniformly, we have

g ((π, P ) , (αn, βn, fn))→ g ((π, P ) , (α, β, f)) ,

given that π(Ω× Ω) <∞ and P (Ω× Ω) <∞, by the bounded convergence theorem.
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Hence, we now can apply Sion’s duality:

R0 = sup
(α,β,f)∈C(Ω)×C(Ω)×LB(Ω)

inf
(π,P )∈Ma

+(Ω×Ω)×Ma
+(Ω)


∫

Ω×Ω

c(x, y)π(dx, dy)+

(
EP∗ [f(X)]−

∫
Ω

f(x)P (dx)

)
+

∫
Ω

α(x)P (dx) +

∫
Ω

β(y)P0(dy)

−
∫

Ω×Ω

(α(x) + β(y))π(dx, dy)


= sup

(α,β,f)∈C(Ω)×C(Ω)×LB(Ω)

inf
(π,P )∈Ma

+(Ω×Ω)×Ma
+(Ω)
{(EP∗ [f(X)]− EP [f(X)]) +

EP [α(X)] +

∫
Ω

β(y)P0(dy) +

∫
Ω×Ω

(c(x, y)− α(x)− β(y))π(dx, dy)

 .

By choosing α = β = f = 0, we conclude that R0 ≥ 0.

We first claim that there is no incentive for the sup player to select functions α(·) and β (·) such that
α(x) + β(y) > c(x, y) for some (x, y) ∈ Ω × Ω. In that case, let π({x, y}) = a, π ({x, y}c) = 0
and P = P∗. With a ≥ 1 being chosen arbitrarily, this implies that

R0 ≤
∫

Ω

f(x)P (dx) +

∫
Ω

β(y)P0(dy)− (α(x) + β(y)− c(x, y)) a < 0.

Therefore, we conclude that

R0 = sup
(α,β,f)∈J (c)×LB(Ω)

inf
(π,P )∈Ma

+(Ω×Ω)×Ma
+(Ω)

{(
EP∗ [f(X)]−

∫
Ω

f(x)P (dx)

)
+

∫
Ω

α(x)P (dx) +

∫
Ω

β(y)P0(dy) +

∫
Ω×Ω

(c(x, y)− α(x)− β(y))π(dx, dy)

 .

We then claim that α(x) < f(x) for some x ∈ Ω is impossible. By choosing P ({x}) = a, we have
P ({x}c) = 0, π (Ω× Ω) = 0 and β(·) = 0. By choosing sufficiently large a, we obtain

R0 ≤ EP∗ [f(X)]− a (f(x)− α(x)) < 0.

Therefore, we conclude that

R0 = sup
(α,β,f)∈J (c)×LB(Ω),f≤α

inf
(π,P )∈Ma

+(Ω×Ω)×Ma
+(Ω)

{(
EP∗ [f(X)]−

∫
Ω

f(x)P (dx)

)
+

∫
Ω

α(x)P (dx) +

∫
Ω

β(y)P0(dy) +

∫
Ω×Ω

(c(x, y)− α(x)− β(y))π(dx,dy)

 .

For the inner infimum, we can always choose π (Ω× Ω) = 0 and P (Ω) = 0. Notice that αc(x) is a
continuous function in the compact space and thus

R0 ≤ sup
(α,β,f)∈J (c)×LB(Ω),f≤α

EP∗ [f(X)] +

∫
Ω

β(y)P0(dy)

= sup
(α,β,f)∈J (c)×LB(Ω),f≤α

EP∗ [f(X)]−
∫

Ω

αc (y)P0(dy)

≤ sup
f∈LB(Ω)

EP∗ [f(X)]−
∫

Ω

f c (y)P0(dy),

where the last inequality follows from

sup
x′∈Ω

{α(x′)− c(x′, x)} ≥ sup
x′∈Ω

{f(x′)− c(x′, x)} , if α (·) ≥ f (·) .
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Appendix A.2 Proof of Proposition 1

By the Kantorovich-Rubinstein duality [24, Theorem 5.10], we have

max
θ∈Θ
W2 (θ]P, θ]Q)

2

= max
θ∈Θ

max
f∈Cb(R)

(
EP
[
f
(
θ>X

)]
− EQ

[
sup
t∈R

f(t)−
(
θ>X − t

)2])
= max

θ∈Θ,f∈Cb(R)

(
EP
[
f
(
θ>X

)]
− EQ

[
sup
y∈Rd

f(θ>y)−
(
θ>X − θ>y

)2])
.

On the other hand, for any θ with ‖θ‖2 = 1 and f ∈ Cb(R), we obtain

sup
y∈Rd

(
f(θ>y)− ‖x− y‖22

)
= sup

y∈Rd

(
f(θ>y)− inf

y′:θ>y′=θ>y
‖x− y′‖22

)
= sup

y∈Rd

(
f(θ>y)−

(
θ>x− θ>y

)2)
.

Therefore, we have

max
θ∈Θ
W2 (θ]P, θ]Q)

2
= sup
f∈Bmax(Rd,Θ)

(
EP [f (X)]− EQ

[
sup
y∈Rd

(
f(y)− ‖x− y‖22

)])
,

which completes the proof.

Appendix A.3 Proof of Theorem 2

Define
UBi(Ω) =

{
f(θ>i ·) ∈ LBi(Ω) : EP∗

[
f ′(θ>i X)2

]
= 1, f(0) = 0

}
,

and accordingly

UB(Ω) =
{
f(·) ∈ LB(Ω) : EP∗

[
‖∇Xf(X)‖22

]
= 1, f(0) = 0

}
.

Since P∗ has a non-zero density, we have LB(Ω) = {λf(·) + c |λ, c ∈ R, f(·) ∈ UB(Ω)} .
By Theorem 1, we obtain

Rn = sup
λ∈R

sup
f∈UB(Ω)

{
EP [λf(X)]− 1

n

n∑
i=1

[
sup

∆+Xi∈Ω

{
λf(Xi + ∆)− ‖∆‖22

}]}

= sup
λ∈R

sup
f∈UB(Ω)

{
EP [λf(X)]− 1

n

n∑
i=1

λf(Xi)

− 1

n

n∑
i=1

[
sup

∆+Xi∈Ω

{
λf(Xi + ∆)− λf(Xi)− ‖∆‖22

}]}
.

Let Hf
n = n−1/2 (

∑n
i=1 f(Xi)− EP [f(X)]) . By rescaling the variables λ and ∆, we have

nRn =

sup
λ∈R

sup
f∈UB(Ω)

{
−2λHf

n −
1

n

n∑
i=1

[
sup

Xi+∆/
√
n∈Ω

{
2λ
√
n
(
f(Xi + ∆/

√
n)− f(Xi)

)
− ‖∆‖22

}]}
.

The following sequence of results will then be useful in proving Theorem 2. To simplify the notation,
we denote

Mn (λ, f) =
1

n

n∑
i=1

[
sup

Xi+∆/
√
n∈Ω

{
2λ
√
n
(
f(Xi + ∆/

√
n)− f(Xi)

)
− ‖∆‖22

}]
.

Henceforth, we refer to a function class as a Donsker class or a Glivenko-Cantelli class if the function
class is a P -Donsker class or P -Glivenko-Cantelli class for all Borel measure P supported on the
sample domain Ω.
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Proposition A1. There exists MB <∞ such that

UB(Ω) ⊂ FMB :=

{
K∑
i=1

ξifi
(
θ>i ·
)

: |ξi| ≤MB and fi
(
θ>i ·
)
∈ UBi(Ω)

}
,

and thus UB(Ω) is a Donsker class.

Proposition A2. The function class UB′(Ω) =
{
‖∇xf(·)‖22 : f ∈ UB(Ω)

}
is a Glivenko-Cantelli

class. Furthermore, UB′ε(Ω) =
{
‖∇xf(·)‖22 I{Bε(·) ⊂ Ω} : f ∈ UB(Ω)

}
are also Glivenko-

Cantelli classes, where Bε(x) is a closed ball around x with radius ε, i.e., Bε(x) = {y ∈ Rd :
‖x− y‖ ≤ ε}.
Proposition A3. For every ε > 0, there exists n0 > 0 and b ∈ (0,∞) such that

P

(
sup
|λ|>b

sup
f∈UB(Ω)

{
−2λHf

n −Mn (λ, f)
}
> 0

)
≤ ε,

for all n ≥ n0.

Proposition A4. We have

sup
|λ|≤b

sup
f∈UB(Ω)

(∣∣Mn (λ, f)− λ2
∣∣)→ 0,

almost surely.

Based on Propositions A1 – A4, we are now ready to present the proof of Theorem 2.

Proof of Theorem 2. By the uniform convergence property of Donsker classes and Glivenko-Cantelli
classes, we have

sup
|λ|≤b

sup
f∈UB(Ω)

{
−2λHf

n −Mn (λ, f)
}
⇒ sup
|λ|≤b

sup
f∈UB(Ω)

{
−2λHf − λ2

}
,

where Hf is a Gaussian process with Hf ∼ N (0, var (f(X))) and cov(Hf1 , Hf2) =
cov(f1(X), f2(X)). Furthermore, Proposition A3 implies

P

(
sup
λ∈R

sup
f∈UB(Ω)

{
−2λHf

n −Mn (λ, f)
}

= sup
|λ|≤b

sup
f∈UB(Ω)

{
−2λHf

n −Mn (λ, f)
})
≥ 1− ε.

Therefore, by Slutsky’s Theorem, we obtain

sup
λ∈R

sup
f∈UB(Ω)

{
−2λHf

n −Mn (λ, f)
}
⇒ sup

λ∈R
sup

f∈UB(Ω)

{
−2λHf − λ2

}
= sup

f∈LB(Ω)

{
−2Hf − EP∗

[
‖∇Xf(X)‖22

]}
.

Appendix A.3.1 Proofs of Propositions A1 – A4

Lemma A1. UBi(Ω) is a Donsker class.

Proof. By Assumptions 2 and 3, we have for any f(θ>i ·) ∈ UBi(Ω),

sup
x∈θ>i Ω

|f ′′(x)| ≤M

√∫
Ω

f ′(θ>i x)2dx ≤ M√
b

√
EP∗

[
f ′(θ>i X)2

]
= b−1/2M,

where θ>i Ω is defined as θ>i Ω = {θ>i x : x ∈ Ω}. Notice that |f ′(x)| =
∣∣f ′(0) +

∫ x
0
f ′′(s)ds

∣∣ and

|f ′(0)|+M |x| ≥ |f ′(x)| ≥ |f ′(0)| − b−1/2M |x| . (A.2)
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Recall that EP∗
[
f ′(θ>i X)2

]
= 1, and thus

1 = EP∗
[
f ′(θ>i X)2

]
≥ EP∗

[(
|f ′(0)| − b−1/2M

∣∣θ>i X∣∣)2
]
.

Since EP∗
[
f ′
(
θ>i X

)2]
is bounded, we have |f ′(0)| is bounded from above. Furthermore, by (A.2),

we conclude that |f ′(x)| is bounded from above in θ>i Ω, which means f(x) is a Lipschitz function
with a bounded Lipschitz constant. By Example 19.9 in [21], we have the space of one-dimensional
bounded Lipschitz functions with f(0) = 0 is a Donsker class for all Borel probability measures
supported in θ>i Ω. Recalling (θi)] P is the push-forward measure from P(Ω) to P

(
θ>i Ω

)
defined in

(4), we then obtain E(θi)]P
[f (X)] = EP

[
f
(
θ>i X

)]
. We conclude UBi(Ω) is also a Donsker class

for all Borel probability measures supported in Ω.

Lemma A2. For two positive semidefinite matrices A,B ∈ RK×K , define the Hadamard product
A ◦B as

(A ◦B)ij = AijBij .

Then, if Bii = 1,∀i, we have σK (A ◦B) ≥ σK (A) , where σK (·) denotes the smallest eigenvalue
of the matrix.

Proof. Denote the k-th leading principle minor of a matrix A as [A]1:k,1:k . Let µ = σK (A) . Then,
A−µI is positive semidefinite. By Oppenheim’s inequality (see, e.g., [14, Theorem 7.8.16]), we have
det
(

[A− µI]1:k,1:k ◦ [B]1:k,1:k

)
≥ det [A− µI]1:k,1:k ≥ 0. Hence, (A− µI) ◦B = A ◦B − µI

is also positive semi-definite and σK (A ◦B) ≥ µ.

We are now ready to present the proof of Proposition A1.

Proof of Proposition A1.

EP∗
[
‖∇xf(x)‖22

]
= EP∗

∥∥∥∥∥
K∑
i=1

λif
′
i(θ
>
i X)θi

∥∥∥∥∥
2

2

 = ξT (A ◦B) ξ,

where
Bij = E

[
f ′i(θ

>
i X)f ′j(θ

>
j X)

]
and Aij = θ>i θj .

Since, by construction, A and B are both positive semidefinite matrices, then by Lemma A2 we have

1 = ξT (A ◦B) ξ ≥
(
ξ>ξ

)
σK (A) .

Since θ1, . . . , θK are linearly independent, σK (A) > 0. Letting MB =
√

1/σK (A), we then have
|ξi| ≤

√
1/σK (A) and FMB is a Donsker class by Theorem 2.10.3 in [22]. Therefore, by Theorem

2.10.1 in [22], we have UB(Ω) is a Donsker class.

Lemma A3. For any function f ∈ UB(Ω), define the Hessian matrix of Hf (x) as
Hf
ij(x) = ∂

∂xi∂xj
f(x). Then, there exist universal constants M1 and M2 such that

supf∈UB(Ω) supx∈Ω ‖∇xf(x)‖2 ≤M1 and supf∈UB(Ω) supx∈Ω

∥∥Hf (x)
∥∥
F
≤M2.

Proof. For f(x) =
∑K
i=1 λifi(θ

>
i x), we have

‖∇xf(x)‖2 ≤
K∑
i=1

∥∥λif ′i(θ>i x)θi
∥∥

2
≤ KMB sup

1≤i≤K
sup
x∈θ>i Ω

|f ′i(x)| ,

where, by Lemma A1, sup1≤i≤K supx∈θ>i Ω |f ′i(x)| <∞. Furthermore, we obtain∣∣∣Hf
ij(x)

∣∣∣ ≤ K∑
k=1

∣∣∣λkf ′′k (θ>k x)θ
(i)
k θ

(j)
k

∣∣∣ ≤ b−1/2MKMB .

Let M1 = KMB sup1≤i≤K supx∈θ>i Ω |f ′i(x)| , M2 = d2b−1/2MKMB , and thus
supf supx ‖∇xf(x)‖2 ≤M1 and

∥∥Hf (x)
∥∥
F
≤M2 for any f ∈ UB(Ω) and x ∈ Ω.
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We are now ready to present the proof of Proposition A2.

Proof of Proposition A2. Consider

∂ ‖∇xf(x)‖22
∂xk

=
∂
∥∥∥∑K

i=1 λif
′
i(θ
>
i x)θi

∥∥∥2

2

∂xk

=

K∑
i=1

K∑
j=1

λiλjθ
>
i θj

(
f ′′i (θ>i x)f ′j

(
θ>j x

)
θ

(k)
i + f ′i(θ

>
i x)f ′′j

(
θ>j x

)
θ

(k)
j

)

≤ 2K2M2
B

(
sup

1≤i≤K
sup
x∈θ>i Ω

|f ′i(x)|

)
b−1M.

Therefore, the partial derivative ∂‖∇xf(x)‖22
∂xk

is bounded. By Example 19.9 and Theorem 19.4 in [21],
we have UB′(Ω) is a Glivenko-Cantelli class. Furthermore, since the bracketing number of UB′ε(Ω)
is bounded by that of UB′(Ω), we have UB′ε(Ω) are also Glivenko-Cantelli classes.

We are now ready to present the proof of Proposition A3.

Proof of Proposition A3. By Taylor expansion, we have∣∣∣∣f(Xi + ∆/
√
n)− f(Xi)−

1√
n

(∇Xf(Xi))
>

∆

∣∣∣∣ ≤M2 ‖∆‖22 /n.

By substituting ∆i = c1∇Xf(Xi), we obtain

sup
Xi+∆/

√
n∈Ω

{
2λ
√
n
(
f(Xi + ∆/

√
n)− f(Xi)

)
− ‖∆‖22

}
≥

(
2 |λ|

(
(∇Xf(Xi))

>
∆i −M2 ‖∆i‖22 /

√
n
)
− ‖∆i‖22

)
I{Xi + ∆i/

√
n ∈ Ω}

=
(
2 |λ| c1 − c21 − 2 |λ| c21M2/

√
n
)
‖∇Xf(Xi)‖22 I{Xi + c1∇Xf(Xi)/

√
n ∈ Ω}

≥
(
2 |λ| c1 − c21 − 2 |λ| c21M2/

√
n
)
‖∇Xf(Xi)‖22 I{Bc1M1/

√
n (Xi) ∈ Ω}.

We then derive

sup
|λ|>b

sup
f∈UB(Ω)

{
−2λHf

n −Mn (λ, f)
}

≤ sup
|λ|>b

sup
f∈UB(Ω)

{
−2λHf

n

− 1

n

n∑
i=1

(
2 |λ| c1 − c21 − 2 |λ| c21M2/

√
n
)
‖∇Xf(Xi)‖22 I{Bc1M1/

√
n (Xi) ∈ Ω}

}
≤ sup
|λ|>b

sup
f∈UB(Ω)

{
−2λHf

n

− |λ| 1

n

n∑
i=1

(
2c1 −

c21
b
− 2c21M2/

√
n

)
‖∇Xf(Xi)‖22 I{Bc1M1/

√
n (Xi) ∈ Ω}

}

≤ sup
|λ|>b

|λ|

(
2 sup
f∈UB(Ω)

∣∣Hf
n

∣∣
−
(

2c1 −
c21
b
− 2c21M2/

√
n

)
inf

f∈UB(Ω)

(
1

n

n∑
i=1

‖∇Xf(Xi)‖22

)
I{Bc1M1/

√
n (Xi) ∈ Ω}

)
,

where Bε(Xi) = {y ∈ Rd : ‖y −Xi‖2 ≤ ε}. Since UB(Ω) is a Donsker class, we have

sup
f∈UB(Ω)

∣∣Hf
n

∣∣⇒ sup
f∈UB(Ω)

∣∣Hf
∣∣ ,
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where supf∈UB(Ω)

∣∣Hf
∣∣ < ∞ almost surely. Hence, there exist n1 and b′ such that, for n ≥ n1,

P
(

supf∈UB(Ω)

∣∣Hf
n

∣∣ > b′
)
< ε/2.

Since P∗(Ω◦) = 1, we can choose ε′ > 0 such that

EP∗
[
‖∇Xf(Xi)‖22 I{Bε′ (Xi) ∈ Ω}

]
>

3

4
.

By Lemma A1, there exists n2 > n1 such that, for n ≥ n2,

P

(
inf

f∈UB(Ω)

(
1

n

n∑
i=1

‖∇Xf(Xi)‖22

)
I{Bε′ (Xi) ∈ Ω} ≤ 1/2

)
< ε/2.

Letting c1 = 4b′, b = 2c1 and for n > n0 = max{(4c1M2)
2
, (c1M1/ε

′)
2
, n2}, we then have

P

(
sup
|λ|>b

sup
f∈UB(Ω)

{
−2λHf

n −Mn (λ, f)
}
> 0

)

≤ P

(
inf

f∈UB(Ω)

(
1

n

n∑
i=1

‖∇Xf(Xi)‖22

)
I{Bε′ (Xi) ∈ Ω} ≤ 1/2

)

+ P

(
sup

f∈UB(Ω)

∣∣Hf
n

∣∣ > b′

)
< ε.

We are now ready to present the proof of Proposition A4.

Proof of Proposition A4. First note that, for |λ| ≤ b, we have

2λ
√
n
(
f(Xi + ∆/

√
n)− f(Xi)

)
− ‖∆‖22

= 2λ

∫ 1

0

(
∇Xf(Xi + n−1/2∆u)

)>
∆du− ‖∆‖22

≤ 2b

∫ 1

0

∥∥∥∇Xf(Xi + n−1/2∆u)
∥∥∥

2
‖∆‖2 du− ‖∆‖22

≤ 2bM1 ‖∆‖2 − ‖∆‖
2
2 .

Therefore, we only need to consider ‖∆‖2 ≤ 2bM1. Recalling the Taylor expansion

sup
‖∆‖≤2bM1

∣∣∣f(Xi + ∆/
√
n)− f(Xi)− n−1/2 (∇Xf(Xi))

>
∆
∣∣∣ ≤ M2

n
‖∆‖22 <

M2

n
(2bM1)

2
,

we then obtain

sup
|λ|≤b

sup
f∈UB(Ω)

(
sup

Xi+∆/
√
n∈Ω,‖∆‖≤2bM1

Mn (λ, f)

− 1

n

n∑
i=1

sup
Xi+∆/

√
n∈Ω,‖∆‖≤2bM1

(
2λ (∇Xf(Xi))

>
∆− ‖∆‖22

))
≤ M2 (2bM1)

2
/
√
n→ 0.

Furthermore, we have

λ2 ‖∇Xf(Xi)‖22 I{BλM1/
√
n (Xi) ∈ Ω}

≤ sup
Xi+∆/

√
n∈Ω,‖∆‖≤2bM1

(
2λ (∇Xf(Xi))

>
∆− ‖∆‖22

)
≤ λ2 ‖∇Xf(Xi)‖22 .
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Since P∗(Ω◦) = 1, we obtain

1

n

n∑
i=1

(
λ2 ‖∇xf(Xi)‖22 I{BλM1/

√
n (Xi) ∈ Ω} − λ2 ‖∇xf(Xi)‖22

)
→ 0,

almost surely. Therefore, we conclude

sup
|λ|≤b

sup
f∈UB(Ω)

∣∣∣∣∣Mn (λ, f)− 1

n

n∑
i=1

λ2 ‖∇xf(Xi)‖22

∣∣∣∣∣→ 0,

almost surely. By Lemma A2, we have the desired results.

Appendix A.4 Proof of Theorem 3

We apply a line of arguments similar to steps 2 and 3 in the proof of Theorem 1.3 in [23]. To simplify
the notation, we define V := Rn and

D := sup
f∈LB(Rd)

{EP∗ [f(X)]− EPn [f c (X)]} .

Since V ≥ D is proved in Appendix A.1.1, we only need to show D ≥ V . The strategy of this proof
is to pick a series of large compact sets, so that we can approximate the solution to the primal problem
by restricting the functions c(·, ·) and f on the compact set.

We next apply strong duality for the compact problem and then show that the dual optimal value D
can be approximated by the dual optimal value of the compact problem, when we apply the truncation
to the cost function ca(x, y) = min {a, c(x, y)} . Finally, we show that the optimal value with the
cost function ca(x, y) converges to the optimal value with the cost function c(x, y).

Appendix A.4.1 Primal Approximation

For any ε > 0, we pick a large compact set K such that

P∗ (K) > 1− ε, Pn (K) = 1 and
1

n

n∑
i=1

EP∗ [c(Xi, X)I{X ∈ Kc}] < ε.

Define the measure PK supported on K with PK(A) = P∗ (A) /P∗ (K) for any Borel measurable set
A ⊂ K. Then, consider the primal problem restricted in space K :

VK = inf
P∈P(K)

{
Dc(Pn, P ) : EP∗ [f(X)] = EPK [f(X)] for all f ∈ B(Rd)

∣∣
K

}
, (A.3)

where B(X )|K is the restriction of B(Rd) on set K. Notice that, for any feasible solution P ∈ P(K)
of problem (A.3), we can construct

P ′ (A) = P (A ∩ K)P∗ (K) + P∗ (A ∩ Kc) ,

which is a feasible solution of problem (1). Let πK be the coupling between Pn and P . Then, we can
define a coupling between Pn and P ′ as πε:

πε ({Xi}, A) = πK ({Xi}, A ∩ K)P∗ (K) +
1

n
P∗ (A ∩ Kc)

for i = 1, 2, . . . , n and any Borel measurable set A ⊂ X . Then, for every feasible P , we have

V ≤ Dc(Pn, P ′) ≤ P∗ (K)Dc(Pn, P ) +
1

n

n∑
i=1

EP∗ [c(Xi, X)I{X ∈ Kc}] .

Therefore, we obtain V ≤ VK + ε.
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Appendix A.4.2 Dual Approximation

We first find unit vectors θK+1, θK+2, . . . , θd such that θ1, θ2, . . . , θd are linearly independent and
thus are a basis of Rd. Define compact sets Km as

Km =

d⋂
i=1

{
x ∈ Rd | θ>i x ∈ [−m,m]

}
.

It is easy to see that Km is a nonempty compact set for m > 0, given θ1, θ2, . . . , θd are linearly
independent. We pick m sufficiently large such that Pn(Km) = 1. Define the dual problem

Dm = sup
f∈LB(Rd)|Km

{
EPKm

[f(X)]− EPn
[f c (X)]

}
. (A.4)

Then, for any f(x) =
∑K
i=1 fi

(
θ>i x

)
∈ LB(Rd)

∣∣
Km

, we define f̄(x) as the extension of f(x) to
Rd: for any z ∈ Rd, let x∗ be the unique solution of the linear equation system

θ>i x = max
{

min
{(
θ>i z

)
,m
}
,−m

}
, i = 1, 2, . . . , d;

then, x∗ ∈ Km and let f̄(z) = f(x∗) =
∑K
i=1 fi

(
θ>i x

∗) . Therefore, f̄(z) ∈ LB(Rd).

We consider the truncated cost function ca (·) = min {a, c (·)} for 0 < a < ∞. Let f be an ε-
optimizer of problem (A.4) with the cost function ca (·). Since Dm ≥ 0, there exist x0 ∈ Km and
y0 ∈ {Xi}ni=1 such that (assuming 0 < ε < 1)

f(x0)− f ca(y0) ≥ −1.

Without loss of generality, we assume fi(θ>i x0) ≥ −1/K for i = 1, 2, . . . ,K and f c(y0) ≤ 1. Then,
we obtain

f(x) ≤ f ca(y0) + ca(x, x0) ≤ a+ 1, for x ∈ Km,
f ca(x) ≥ f(x0)− ca(x, x0) ≥ −a− 1, and
f ca(x) = sup

y∈Km

f(y)− ca(x, y) ≤ a+ 1, for x ∈ {Xi}ni=1 .

By construction, we have f̄(x) ≤ a+ 1 for any x ∈ Rd. Since
{
x ∈ Rd : c(x, x0) ≤ a

}
is compact,

we are able to pick a sufficiently large Km such that
inf

x∈Kc
m,y∈{Xi}ni=1

ca(x, y) = a.

Therefore, we obtain f̄ ca(x) = f ca(x) for x ∈ {Xi}ni=1 .

Then, for z ∈ R and any j = 1, 2, . . . ,K, let x′ be the unique solution of the linear system

θ>j x = z;

θ>i x = θ>i x0, i = 1, 2, . . . j − 1, j + 1, . . . , d.

Since
∑K
i=1 f̄i(θ

>
i x
′) = f̄(x′) ≤ a+ 1, we have

f̄j(z) ≤ a+ 1−
K∑

i=1,i6=j

f̄i(θ
>
i x
′) ≤ a+ 2. (A.5)

Furthermore, we claim g(x) =
∑K
i=1 max

{
f̄i(θ

>
i x),−K(a+ 2)

}
is a valid ε-optimizer with

gca(x) = f̄ ca(x) for x ∈ {Xi}ni=1 . This is because for any y0 ∈ {Xi}ni=1, if f̄i
(
θ>i x

)
≤ −K(a+2),

we have
f̄(x)− c(x, y0) ≤ −K(a+ 2) + (K − 1)(a+ 2) = −(a+ 2) < f̄ ca(y0).

Therefore, EPKm
[g(x)|Km ] ≥ EPKm

[f(x)] with bounds a+ 1 ≥ g(x) ≥ −K2(a+ 2). Finally, by
picking sufficiently large Km with P∗(Km) > 1− ε, we obtain

EP∗ [g(X)]− EPn
[gca (X)]

≥ (1− ε)EPKm
[f(X)] + EP∗ [g(X)I{X /∈ Km}]− EPn

[f ca (X)]

≥ EPKm
[f(X)]− EPn

[f ca (X)]− ε (a+ 1)− εK2(a+ 2)

≥ Dm − ε
(
1 + a+ 1 +K2(a+ 2)

)
.

By the arbitrariness of ε, we complete the proof for the bounded cost function.
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Appendix A.4.3 Unbounded Cost Function

The following lemma is useful for finishing the last part of the proof.
Lemma A4. Let ca (·) = min {a, c (·)} . For any ε, let P ε(a) be an ε-optimizer for the problem

inf
P∈P(Rd)

{
Dca(Pn, P ) : EP∗ [f(X)] = EP [f(X)] for all f ∈ B(Rd)

}
.

Then, the set
{
P ε(a)

}∞
a=1

is relatively compact in the space P(Rd) equipped with the topology of
weak convergence.

Proof of Lemma A4. First, we have

Dca(Pn, P
ε
(a)) ≤ Dca(Pn, P∗) + ε ≤ Dc(Pn, P∗) + ε <∞.

If the set
{
P ε(a)

}∞
a=1

is not relatively compact, then by Prokhorov’s Theorem, there exists ε′ > 0

such that, for any compact set K and any a0 > 0, we can find an a > a0 with P ε(a)(K) > ε′.

We pick a0 = d(Dc(Pn, P∗) + ε) /ε′e and a sufficient large K such that

inf
x∈Kc,y∈{Xi}ni=1

c(x, y) > a0.

Then, for any a > a0, we have

Dca(Pn, P
ε
(a)) > a0ε

′ ≥ Dc(Pn, P∗) + ε,

which leads to a contradiction.

Next, we define the space Π
(
Pn, P∗,B(Rd)

)
as

Π
(
Pn, P∗,B(Rd)

)
:=
{
π ∈P(Rd × Rd) : π(A× Ω) = Pn (A) , π(Ω×A) = P (A)

for every measurable set A ⊂ Rd, and EP [f(X)] = EP∗ [f(X)] for all f ∈ B(Rd)
}
.

We then have
Rn = inf

π∈Π(Pn,P∗,B(Rd))

∫
Rd×Rd

c(x, y)π(dx,dy).

Now let I, Ia be respectively defined on Π
(
Pn, P∗,B(Rd)

)
by

Ia[π] =

∫
Rd×Rd

ca(x, y)π(dx, dy) and I[π] =

∫
Rd×Rd

c(x, y)π(dx, dy).

By Appendix A.4.2, we obtain

inf
π∈Π(Pn,P∗,B(Rd))

Ia[π] = sup
f∈LB(Rd)

{EP∗ [f(X)]− EPn
[f ca (X)]} .

We conclude the argument by showing that

inf
π∈Π(Pn,P∗,B(Rd))

I[π] = sup
a

inf
π∈Π(Pn,P∗,B(Rd))

Ia[π] (A.6)

and that, for each a,

sup
f∈LB(Rd)

{EP∗ [f(X)]− EPn [f ca (X)]} ≤ sup
f∈LB(Rd)

{EP∗ [f(X)]− EPn [f c (X)]} . (A.7)

Then, by the combination of (A.6), (A.7) and the weak duality, we will have the desired results.

Since inf Ia is a nondecreasing sequence, bounded above by inf I, we only need to prove that

lim
a→∞

inf
π∈Π(Pn,P∗,B(Rd))

Ia (π) ≥ inf
π∈Π(Pn,P∗,B(Rd))

I (π) .

Let πεa be an optimal coupling between Pn and P ε(a) defined in Lemma A4. By the tightness of{
P ε(a)

}∞
a=1

, we have that the sequence {πεa}
∞
a=1 is also tight. Therefore, by Prokhorov’s Theorem,
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we are able to extract a subsequence
{
πεak
}∞
k=1

, where πεak converges weakly to a probability measure
πε∗ ∈ P(Rd × Rd) as k →∞, in the sense that for any bounded continuous function θ on Rd × Rd∫

θ(x, y)dπεak (dx, dy)→
∫
θ(x, y)dπε∗ (dx, dy) .

From this we observe that πε∗ ∈ Π
(
Pn, P∗,B(Rd)

)
. Then, whenever a ≥ b, one has

Ia [πεa] ≥ Ib [πεa] .

By the boundedness of cb(·, ·), we obtain
lim sup
a→∞

Ia [πεa] ≥ lim sup
a→∞

Ib [πεa] ≥ Ib [πε∗] .

By monotone convergence, Ib [πε∗]→ I [πε∗] as b→∞, and thus
lim
a→∞

inf
π∈Π(Pn,P∗,B(Rd))

Ia (π) ≥ lim sup
a→∞

Ia [πεa]− ε ≥ I [πε∗]− ε ≥ inf
π∈Π(Pn,P∗,B(Rd))

I (π)− ε.

Then, by the arbitrariness of ε, we have the desired results and conclude the proof.

Appendix A.5 Proof of Theorem 4

Define DA (P,Q) = Dc (P,Q) with cost function c(x, y) = (x − y)>A(x − y) for any positive
definite matrix A. Then, we have
Rn ≤ inf

P∈P(Rd)

{
DI (P, Pn) : EP

[
f(θ>i X)

]
= EP∗

[
f(θ>i X)

]
,∀f ∈ Cb (R) , θ1, . . . , θK ∈ Rd

}
,

where K ≤ d and θ1, . . . , θK are linearly independent. We first find orthonormal vectors
θK+1, θK+2, . . . , θd such that θ1, θ2, . . . , θd are linearly independent and thus are a basis of Rd. Let
Yi = θ>i X for i = 1, 2, . . . , d, let PY∗ denote the distribution of Y , and let PYn denote the corre-
sponding empirical distribution. Further let C = [θ1, θ2, . . . , θd]

>, and then Y = CX. Therefore,
we obtain
Rn ≤ inf

P∈P(Rd)

{
DI (P, Pn) : EP

[
f(θ>i X)

]
= EP∗

[
f(θ>i X)

]
∀f ∈ Cb (R) , i = 1, 2, . . . ,K

}
= inf

P∈P(Rd)

{
DA

(
PY , PYn

)
: EPY [f(Yi)] = EPY

∗
[f(Yi)] ∀f ∈ Cb (R) , i = 1, 2, . . . ,K

}
where A =

(
CC>

)−1
. Then, notice that

DA
(
PY , PYn

)
= inf

π∈P(Rd×Rd)

{(∫
(y − v)>A(y − v)π (dy,dv)

)
:

∫
v∈Rd

π (dy,dv) = PY (dy) ,

∫
y∈Rd

π (dy,dv) = PYn (dv)}
}
.

Let ρ(A) denote the spectral radius of matrix A. We then have DA
(
PY , PYn

)
≤ ρ(A)DI

(
PY , PYn

)
and
Rn ≤ ρ(A) inf

P∈P(Rd)

{
DI
(
PY , PYn

)
: EPY [f(Yi)] = EPY

∗
[f(X)] ∀f ∈ Cb (R) , i = 1, . . . ,K

}
= ρ(A)

K∑
i=1

W2
2

(
PYi
∗ , P

Yi
n

)
, (A.8)

where PYi
∗ and PYi

n are the push-forward measures of PY∗ and PYn from P(Rd) to P (R) such that
for any Borel set A in R

PYi
∗ (A) = PY∗

({
x ∈ Rd : xi ∈ A

})
,

PYi
n (A) = PYn

({
x ∈ Rd : xi ∈ A

})
.

Notice that ρ(A) = ρ
((
CKC

>
K

)−1
)

for CK = [θ1, θ2, . . . , θK ]
>
. Therefore, ρ(A) does not depend

on our choices of θK+1, θK+2, . . . , θd. Finally, by Theorem 1 in [8], we obtain for the Wasserstein
distance in the one-dimension case:

E
[
W2

2

(
PYi
∗ , P

Yi
n

)]
≤ C

(
E
[
|Yi|4+ε

])2/(4+ε)

/
√
n ≤ CM (P∗)

2
n−1/2. (A.9)

By substituting (A.9) into (A.8), we have the desired results.
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Appendix B Appendix: Experiments

Appendix B.1 Marr Wavelet Basis for the fj

We call φ(t) as the “mother” function for the wavelet basis. A function f(t) is said to be written
using a continuous wavelet basis as

f(t) =

∫
s

∫
u

ws,u√
s
φ

(
t− u
s

)
duds with wu,s =

∫
t

f(t)
1√
s
φ

(
t− u
s

)
dt,

where the index u is called the translation, index s the scaling, and wu,s the weights. Let bu,s(t) =
φ((t − u)/s)/

√
s. Note that if f(t) is a density then w(u, s) = E[bu,s(t)]. We will use a discrete

version of this as our truncated basis, with a discrete set of {l = (u, s)}Ll=1. Each fj is thus
represented as

fj(v) =

L∑
l=1

wjlbl(v),

where the truncated sequence of the J terms gets us a finite dimensional variable w = (wjl, j =
1, . . . ,K, l = 1, . . . , L).

The discrete basis set is determined by user input on a desired domain [−M,M ] for the function
approximation and a granularity value G. If [−m0,m0] is the domain of the mother function φ, then
the discrete pairs are determined as:

(u, s) = (km02−g+1, 2g), ∀ k ∈ {−K(g), . . . ,K(g)} , g = 0, . . . , G, (B.10)

where K(g) =
⌈

M
m02−g

⌉
+ 1. These finite set of pairs of (u, s) over all g, k are used to constitute

the index l ∈ {1, . . . , L}.
We need a basis that yields relatively smooth values for the derivative:

dfj
dv

(v) =

L∑
l=1

wjl
dbl
dv

(v), (B.11)

and thus we do not use the popular Haar basis, which yields dbj/dv = 0 a.e. We experiment with the
Marr basis, also termed the (inverted) Mexican hat basis:

φ(t) =
2√

3π1/4
(1− t2)e−t

2/2, with
dφ(t)

dt
=

2√
3π1/4

(t3 − 3t)e−t
2/2. (B.12)

Appendix B.2 Re-formulation of f c(x)

For each x, we have that

f c(x) = sup
∆

 K∑
j=i

fj(θ
>
j (x+ ∆))− ‖∆‖22

 .

By Substituting z = CK∆, for CK defined in Appendix A.5, we obtain

f c(X0) = sup
∆∈Rd,v∈RK

 K∑
j=i

fj(θ
>
j x+ v(j)))− ‖∆‖22, s.t. v = CK∆

 .

Keeping v fixed and maximizing only over ∆, we can see that the ∆∗(z) is the projection of the origin
onto the linear subspace CK∆ = z. We can formally establish this by considering the Lagrangian
formulation:

L(v,∆, λ) =

K∑
j=1

fj(θ
>
j x+ z(j))− ‖∆‖22 + λ>(CK∆− z).
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Setting up the first order optimality conditions, we have:

∇zL = ∇zfj(CKx+ z)− λ = 0,

∇∆L = −2∆ + C>Kλ = 0,

∇λL = CK∆− z = 0,

where∇zf(CKx+z) = [f ′1(θ>1 x+z(1)) , . . . , f ′K(θ>Kx+z(K))]>. Taking the last two equations,
and recalling that ΓK = CKC

>
K , we obtain that

∆ =
1

2
C>Kλ, CK∆ =

1

2
ΓKλ = z,

λ = 2(ΓK)−1z, ∆ = C>K(ΓK)−1z,

‖∆‖22 = z>(ΓK)−1z.

Substituting in the first equation renders the first order equation to be satisfied as follows:

∇zf(CKx+ z) = 2(ΓK)−1z, (B.13)

which is also the first order condition for maximizing

sup
z

K∑
j=1

fj(θ
>
j x+ z(j))− z>(ΓK)−1z. (B.14)

This is an optimization problem in z, a K-dimensional variable. Hence, the true complexity of the
inner supremum is a K-dimensional problem. The rows of CK are linearly independent by selection,
so the inverse (ΓK)−1 exists.

Appendix B.3 Implementation of R̂n Computation

The R̂n problem has a suggestive sup-inf form: the wjl variables attempt to emphasize the mass
under P∗ to maximize the expectation EP∗ , while the zn variables provide a mechanism for the Pn
samples to attain the same high values by also moving themselves, thus negating the value of the
first term but at a quadratic penalty cost. This suggests why Rn → 0 as n grows and Pn is sampled
from P∗: the variables zn are able to attain the same expectations under Pn with low cost. On the
other hand, if Pn comes from a different distribution than P ∗, the weights wjl have more leeway to
emphasize the non-overlapping parts of P∗, thus driving the supremum higher.

The inner supremum over z is solved, as mentioned in the main body of the paper, using Newton
iterations. Following (B.13), the Hessian can similarly be obtained as

∇2
zf(CKx+ z)− 2(ΓK)−1.

The problem (B.14) is a general non-linear optimization problem, and thus the Newton iterations
return only locally optimal solutions. In order to obtain globally optimal solutions, this algorithm is
restarted multiple times with randomized starting points. A particularly good set of initial starting
points corresponds to samples from the P∗ (in Rd space) since the purpose of the v (and equivalently
∆) is to successfuly improve its optimal function value by moving close to the support of P∗.

The (stochastic estimate of the) gradient with respect to wjl for the stochastic approximation (SA)
iterations of the outer optimization problem is obtained as:

G(w) =
1

M

M∑
m=1

 K∑
j=1

L∑
l=1

bl(θ
>
j Xm)

− 1

n

n∑
i=1

 K∑
j=1

L∑
l=1

bl(θ
>
j Xi + z∗i )

 . (B.15)

Appendix B.4 Algorithm

Here is the complete algorithm to solve the optimization problem defining R̂n once for a given Pn.

• Given: set {Xi, i = 1, . . . , n} that form Pn, and a sampler for P∗.
• Given: gain sequence γr.
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• Initialize wavelet weights w(0) = (w
(0)
jl ) uniformly from [−1, 1].

• For r = 1, . . . (SA method for outer maximization of weights wjl)

1. Sample {Xm, m = 1, . . . ,M} from P∗ to estimate expectations under P∗.
2. Assemble m-th summand of the first term in (B.15) as:∇w

 K∑
j=1

fj(θ
>
j Xm)


jl

=

K∑
j=1

bl(θ
>
j Xm)

3. For each i = 1, . . . , n:
(a) Estimate optimal ∆∗i using deterministic Newton iterations and forming gradients

from (B.11) and (B.12).
(b) Return the i-th summand in the second term of (B.15) as∇w

 K∑
j=1

fj(θ
>
j (Xi + ∆∗i ))


jl

=

K∑
j=1

bl

(
θ>j Xi + z

(j)
i

)
,

for l = 1, . . . , L, and j = 1, . . . ,K.

4. Assemble gradient for outer SA as given in (B.15) from the components in Steps (2)
and (3b) above

5. Set w(r) = w(r−1) − γrGr(w(r−1))

Appendix B.5 Experimental Setup Details

The P∗ target distribution is set to be an equal weight mixture of four d = 20 dimensional unit-
covariance Gaussians. The centers of the four Gaussians are [−1, . . . ,−1], [−1, 1,−1, . . . , 1],
[1,−1, 1, . . . ,−1] and [1, 1, 1, . . . , 1]. The P alt

∗ is also an equal mixture of four Gaussians with their
centers obtained by applying an arbitrarily sampled rotation matrix to the centers of P∗.

We use the Marr wavelet basis, setting m0 = 4.5 and G = 3, which yields L = 28 from (B.10), and
in turn 84 weight parameters wjl.

The SA iterations for the outer optimization of wjl were conducted with mini-batches of size 50. A
gain sequence of γr = 100/(100 + r) was used. For each empirical set Pn or P alt

n (sampled from P∗
or P alt

∗ ), we ran the SA algorithm 5 times to compute R̂n or R̂alt
n , which are respectively defined by

R̂n := sup
wjl

EP∗
 K∑
j=1

L∑
l=1

wjlbl(θ
>
j X)


−EPn

 sup
z∈RK

 K∑
j=i

L∑
l=1

wjlbl(θ
>
j X + z(j))− z>(ΓK)−1z

 ,
R̂alt
n := sup

wjl

EP∗
 K∑
j=1

L∑
l=1

wjlbl(θ
>
j X)


−EP alt

n

 sup
z∈RK

 K∑
j=i

L∑
l=1

wjlbl(θ
>
j X + z(j))− z>(ΓK)−1z


and took their averages. This procedure seeks to average out the noise experienced in the SA method
due to the fixed batch size of 50 in estimating expectations under P∗.
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