
Every View Counts: Cross-View Consistency in 3D
Object Detection with Hybrid-Cylindrical-Spherical

Voxelization

Qi Chen∗
Johns Hopkins University

Baltimore, MD, USA

Lin Sun∗
Samsung Semiconductor, Inc.

San Jose, CA, USA

Ernest Cheung
Samsung Semiconductor, Inc.

San Jose, CA, USA

Alan Yuille
Johns Hopkins University

Baltimore, MD, USA

Abstract

Recent voxel-based 3D object detectors for autonomous vehicles learn point cloud
representations either from bird eye view (BEV) or range view (RV, a.k.a. perspec-
tive view). However, each view has its own strengths and weaknesses. In this paper,
we present a novel framework to unify and leverage the benefits from both BEV
and RV. The widely-used cuboid-shaped voxels in Cartesian coordinate system only
benefit BEV feature map. Therefore, to enable learning both BEV and RV feature
maps, we introduce Hybrid-Cylindrical-Spherical voxelization. Our findings show
that simply adding detection on another view as auxiliary supervision will lead to
poor performance. We proposed a pair of cross-view transformers to transform
the feature maps into the other view and introduce cross-view consistency loss on
them. Comprehensive experiments on the challenging NuScenes Dataset validate
the effectiveness of our proposed method which leverages joint optimization and
complementary information on both views. Remarkably, our approach achieved
mAP of 55.8%, outperforming all published approaches by at least 3% in overall
performance and up to 16.5% in safety-crucial categories like cyclist.

1 Introduction

With a great surge of autonomous vehicles and accessibility of cheaper laser sensors, e.g. LiDAR,
learning directly from 3D LiDAR point clouds has become increasingly popular. Among LiDAR-
based 3D object detectors, a line of works [1, 2, 3, 4] borrow the success of convolutional neural
networks on 2D images, and group the unordered, irregular and sparse point clouds into cuboid-
shaped volumetric grids, i.e. voxels. 3D feature maps are memory-consuming, and therefore most of
the recent works [4, 5, 6, 2, 7, 8] project the feature maps into 2D at different stages in their pipelines.
When choosing 2D representations, it is important that objects in the input point cloud are still visible
in the projected view. In autonomous driving scenarios, object do not overlap in the bird’s-eye-view
(BEV) and the size of the objects are consistent regardless of its distance from the ego-vehicle. Hence
each object projected into BEV remains visible. Alternatively, RV projection suffers from occlusion
and object size variation with respect to distance but it generates dense features. Both BEV and RV
representation are suitable for 3D detection. State-of-the-art voxel based detectors [4, 5, 2, 7] detect
objects based on features from either BEV or RV.

* indicates equal contributions

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Features in each view has their strengths and weaknesses. From BEV, rigid objects are usually kept
a distance from each other so it is easy to separate the objects. However, some important targets
(e.g. traffic cones) are tiny when viewed from BEV, and thus are hard to detect. From RV, similar to
2D images, objects may be partially occluded and appear as difference sizes at different ranges, i.e.,
distances to the sensor. Furthermore, existing RV-based detectors [5] lose depth information during
projection, making it hard to localize accurately.

Main Contributions We present a novel Cross-view Consistent Network (CVCNet) which lever-
ages the advantages of both range view (RV) and Bird’s-eye-view (BEV) in 3D detection. We
highlight two main contributions in this work. Firstly, to the best of our knowledge, we are the first
work that introduces the concept of Cross-view Consistency to 3D detection task. We discover that
the performance will degrade if we simply add detection on another view as an auxiliary supervisory
signal. We posit that object appearances on two views are different and it’s hard for the network to
learn the latent correlation and extract common features from two views. Based on the observation
that the correspondences between two views have similar properties to Hough Transform, we propose
a pair of Hough-Transform-like cross-view transformers that explicitly incorporate the correlation
between two views and enforce consistency on the transformed features. We have conducted ablation
studies and in-depth discussions to show that such consistency is a key factor to benefit from joint
learning in BEV and RV.

Secondly, we designed a new Voxel representation, Hybrid-Cylindrical-Spherical (HCS) Voxels,
which enables us to extract features for both RV and BEV in a unified coordination system. In
contrast, the commonly used cuboid-shaped voxels based on Cartesian coordinates provide benefits
to feature learning on BEV. Driven by outstanding performance of shared models that are applied to
extract common low-level features across different tasks, our model uses the shared 3D network and
two light-weight branches to adapt into different views. Our HCS Voxels play an essential role in this
design as it contains all the dimensions needed for projection to RV and BEV.

Extensive experiments on NuScenes dataset [9] demonstrate that CVCNet outperforms all the
published approaches in overall average precision (mAP). In particular, our mAP on pedestrians,
motorcyclist and cyclist are 83.0%, 61.8%, 38.8%, which is at least 2.9%, 10.3%, and 16.5% better
than existing published methods. These results signify substantial safety improvement when our
algorithm is applied to autonomous vehicles.

2 Related Work

2.1 Voxelization for Point Clouds

To transform point clouds into image-like grid structures so that convolutional neural networks can be
applied, several works group point clouds into volumetric grids. Commonly used volumetric grids are
cuboid-shaped ones under Cartesian coordinate system. VoxNet [10] represents the cuboid-shaped
voxels as occupancy grids: if there are no points in that voxel, the grid value is 0, or 1 otherwise. To
avoid quantization effects of occupancy grids and extract richer voxel features, VoxelNet [1] samples
a fix number of points within each voxel and applies Voxel Feature Extractor (VFE, a small PointNet
[11] made of fully connected layers and a max pooling layer) to points in each voxel to extract voxel
features. For efficiency, PointPillars [3] discretizes the 3D space into pillars so there is only one voxel
along the height dimension.

Some recent works start to explore voxel shapes other than cuboids. Alsfasser et al [12] voxelizes
points under the Cylindrical Coordinate System. PolarNet [13] groups points into 2D polar grids on
BEV for semantic segmentation. MVF [14] adopts both cuboid-shape voxels and spherical voxels.

2.2 3D Detectors based on Single View

3D Detection on BEV Detection on BEV is popular among voxel-based detectors. Approaches,
e.g. PIXOR [4], based on 2D CNNs project point clouds into BEV. However, projection suffers from
3D structural information loss. To mitigate information loss, recent voxel-based detectors, such as
VoxelNet [1], SECOND [2], PartA2 [7] and Fast Point R-CNN [8], preserve the 3D structure during
voxelization and adopt 3D CNNs at early or intermediate stages and finally project features to BEV
and detect objects from BEV.

2

Figure 1: Overview of our approach: (a) Using HCS Voxelization, input point clouds are converted
to voxel feature maps, and (b) passed into a 3D network shared between Ranged View (RV) and
Bird's-Eye-View (BEV). The feature maps are then (c) squeezed and passed into (d) RV branch and
(d) BEV branch with light-weight detection heads. (f) A pair of Cross-View Transformers align
feature maps to alternative views. (g, h) In the green and blue box, we illustrate how we train our
network and inference, respectively. (i) For the feature maps illustrated in this �gure, we illustrate
only the spatial dimensions, the full feature map sizes are shown in the white box. Note that the color
of the voxels in (a, 2, 3, 4, 5) are consistent to illustrate our HCS voxels.

3D Detection on RV There are very few works (LaserNet [5]) that learn representations from
RV. RV is a compact representation that aligns with LiDAR scan pattern. But current RV detectors
requires more data to perform well [5] and are outperformed BEV detectors on public datasets [15].
Occlusion and different scales of objects in RV also pose challenges to detection.

2.3 Other 3D Detectors

Point-based detectors generate proposals in 3D. PointRCNN [16], STD [17] and 3DSSD [18] generate
proposals around segmented foreground points. Point-GNN [19] employs Graph Neural Networks
as the feature extractor and proposals are generated around vertices. The complexity of point-based
algorithms grows with the number of points so they have not gained popularity on datasets [9, 20]
with a large number of points. MVF [14] uses a mixture of point and voxel representations. It fuses
Cartesian and Spherical voxel features point-wisely by mapping them to the raw points and generate
proposals around 3D points.

Relation to MVF MVF also considers BEV and RV features in their pipeline but our approach is
more ef�cient than MVF in following ways: 1) we voxelize points in a single shot thanks to HCS
voxelization but MVF does it twice which consumes more time and memory; 2) in MVF, Cartesian
voxels and Spherical voxels have different local contexts and thus it's basically a two-stream network
that requires two separate 3D backbones to aggregate different local contexts for two views. Only
point-wise features are shared. Ours has one sort of local context since we only have one type of
voxels. This allows us to ef�ciently utilize shared 3D CNN to extract common low-level features
for both views; 3) MVF �nds cross-view correspondences by mapping voxels back to raw point
clouds while we propose a neat solution - learnable cross-view transformers that densely align high
level features on both views; 4) MVF simply do 3D detection on points, but we explicitly introduce
supervision from RV and exploits the underlying cross-view consistency for joint optimization.

2.4 Multi-View Learning and Consistency

A stream of works incorporate multi-view inputs by aggregating the features. MV3D [6] and AVOD
[21] fuse ROI features from point clouds and camera image for 3D object detection. For single-

3

Table 1: Different Voxelization Methods
Cartesian Cylindrical Spherical HCS

3D Voxel (x; y; z; � x; � y; � z) (r; �; z; � r; � �; � z) (R; �; �; � R; � �; � �) (r; �; �; � r; � �; � �)
BEV Voxel (x; y; � x; � y) (r; �; � r; � �) N/A (r; �; � r; � �)
RV Voxel N/A N/A (�; �; � �; � �) (�; �; � �; � �)
Details r =

p
x2 + y2 R =

p
x2 + y2 + z2 r =

p
x2 + y2

� = arctan y=x � = arctan y=x � = arctan y=x
� = arccosz=R � = arctan z=r

References VoxelNet [1], MVF [14] Alsfasser et al [12] MVF [14] Ours

modal inputs, MVCNN [22] utilizes a shared CNN to extract common features of object images
rendered from different view angles. Consistency is widely used in multi-view geometry. Some depth
estimation methods [23, 24, 25] rely on stereo image pairs and enforce photometric consistency. In
multi-task learning, cross-task consistency such as the geometric constraints between depth, motion
and optical �ow [26] empirically improves generalization and stabilize model training.

3 Cross-View Consistent Network

The object detection problem is composed of two separate sub-problems: object classi�cation,
and bounding box regression. Therefore detectors often train two sets of feature maps to conduct
classi�cation to recognize objects, and bounding box regression to localize objects. According to the
prior arts [5], detection on RV is dif�cult and requires more training data to achieve good performance.
We also verify this on NuScenes dataset [9] where we observe that detection on RV is16%inferior to
detection on BEV in overall mAP. Therefore, we design our network to take advantages from both
BEV and RV to determine the object categories, but only use BEV feature maps to solve bounding
box regression. Our overall approach is described in Figure 1.

3.1 Input Representation

The LiDAR point clouds consists ofN points, and each point is represented by a vector of point
featuref p = (r p; � p; � p; xp; yp; zp; i p; tp), where(xp; yp; zp) is its location in Cartesian coordinates.
r p is the range of the point on the horizontal plane.� p, � p are the azimuth and elevation of the
point observed from the LiDAR sensor.i p is the re�ection intensity andtp is the timestamp when
the LiDAR point is captured. Points are accumulated from maximum 10 successive frames in
total to obtain denser point clouds. The points from previous frames are motion-compensated and
transformed to the current frame.

3.2 Voxelization

The mathematical formulations of the common voxelization methods are presented in Table 1. The
N/A entries in the table indicates that the original papers did not apply their work to the corresponding
view. We design our proposed coordinate system by replacingR =

p
x2 + y2 + z2 in Spherical

coordinates system withr =
p

x2 + y2 which is adopted in Cylindrical coordinate system. This
newly designed HCS system enables us to extract features for both RV and BEV in a uni�ed
coordination. The RV in the proposed coordinate system provides a wedge-shape frustum which
can better handle the occlusion issues that commonly exist in the RV detection problem. Moreover,
the wedge-shape voxel in HCS is more aligned with our perceptual system. Voxel partitions have
�ne grid in close range and coarse grid in the distance. The formulations of HCS in BEV and RV is
shown in the table as well. We represent voxel features by randomly samplingT points in each voxel
and taking the mean of point features.

3.3 Shared 3D Backbone and Dual-View Branches

The low-level features are then extracted by a shared 3D Convolution Neural Network (CNN). We
use the same 3D feature extractor as in CBGS [27], the start-of-the-art detector on NuScenes dataset
[9]. Its architecture is made of sparse 3D convolution layers and similar to ResNet [28]. The output
3D feature map is squeezed to BEV and RV by mergingr dimension and� dimension into channels
of the feature maps, respectively.

4

BEV and RV branch are each composed of a 2D CNN. We adopt the same architecture for these
two branches. It's a UNet-like architecture [29] which is widely adopted in recent state-of-the-art
detectors [2, 27, 1]. Similar to CBGS [27], we add multi-group classi�cation heads and bounding box
regression heads to BEV branch and multi-group classi�cation heads to RV branch. All the group
heads are lightweight1 � 1 convolutions. Additional details of the shared 3D CNN and the 2D CNN
are provided in the supplementary materials.

3.4 Cross-View Transformers

When detecting the 3d objects in one scene, features from RV and BEV have the same semantic
meaning, and therefore should be consistent across both views. To align the features from both
views, rather than regarding detection on each view as independent supervisory signals, we design
cross-view transformers to map RV features to BEV space and vice versa. We introduce new losses to
enforce matching between the transformed features and target view labels, which we call cross-view
consistency losses and is later de�ned in Section 4.2.

The size of classi�cation con�dence maps for BEV and RV areK � � f � Rf andK � � f � � f ,
respectively, whereK is the number of categories excluding background, andRf ; � f ; � f are the
dimensions for ranger on the horizontal plane, azimuth� and elevation� . To align features from
both views, we transform classi�cation con�dences from RV to BEV usingf RV ! BEV and from
BEV to RV by applyingf BEV ! RV . Interestingly, we �nd the correspondences between locations
in BEV and RV have similar properties to Hough Transform: a location(kc; � c; r c), i.e. a point, on
BEV corresponds to a column of locationsf (kc; � c; �)j� = 1 ; 2; :::; � f g, i.e. a line segment, on RV,
wherekc; � c; r c denote constants. A location on RV also maps to a column of locations on BEV.
This property is similar to one of the properties of Hough Transform, i.e. a point in one domain
corresponds to a line in another. Inspired by Hough Transform, we propose a voting scheme to
accumulate con�dences on a column of locations on a source view to its corresponding location on
target view. Takingf RV ! BEV as an example, the transform is a linear function:

f RV ! BEV : CBEV
(k c ;� c ;r c) =

X

� =1 ;2;:::; � f

wr c ;� c ;� � CRV
(k c ;� c ;�) (1)

whereC denotes the con�dence score in each location and the weightwr c ;� c ;� can be either positive
or negative which can be learned from a1 � 1 convolution layer so the entire framework is fully
convolutional.

4 Target Encoding and Joint Training

4.1 Target Encoding

We follow HotSpotNet [30] to assign targets. HotSpotNet adopts an anchor-free detection head that
is �exible and can be easily adapted to feature maps with different voxel shapes. We brie�y visit the
target assignment policy below.

Classi�cation We assign locations in ground-truth bounding boxes as positive examples. To
balance the number of positive examples in each ground-truth box (bk) of different sizes,M is set
as the maximum number of positive examples inbk , wherek denotes the category index. If there
are more thanM positive examples insidebk , only the topM nearest locations of points to the
bounding box center(xb; yb; zb) are chosen as postive examples. Denote this neighboring region as
NM (xb; yb; zb). For a location(i; j) on the feature mapF v (v 2 f BEV; RV g), the target assignment
policy is:

label(i;j) =

(
k; (i; j) 2 bv

k & (i; j) 2 N M (xb; yb; zb)
0; (i; j) =2 8bv

k
� 1; else

(2)

wherebv
k is projectedbk to view v. We setM as a constant number. Labels with� 1 will be ignored

and do not contribute to the gradient descent. These refer to locations that are insidebgt
k but not

in NM (xb; yb; zb) or inside more than one ground-truth bounding boxes. The label is encoded as a
K -dimension one-hot vector.

5

Bounding Box Regression We regressBgt = (dx ; dy ; z; log l; logw; logh; cos(rot); sin(rot); vx ;
vy) as a 10-dimension vector, wheredx ; dy are the deviation from the positive example to ground-
truth bounding box center in Cartesian coordinates,rot is bounding box orientation andvx ; vy are
the velocities of target object alongx; y axis. HopSpotNet regressesdx ; dy ; z as the outputs of soft
argmin to mitigate regression target scale imbalance. In order to allow our network to handle more
categories, we further addlog l; logw; logh as the outputs of softargmin .

4.2 Joint Training

Denotex as the input,y as the ground-truth labels,� , � , and� to be the loss weights.

Loss on BEV is the weighted sum of classi�cation loss and regression loss:

L BEV = D(yBEV ; f BEV) + D(Bgt ; B̂) = � L BEV
cls + � L BEV

loc (3)

whereD is the loss function calculator between the ground truth and the predictions, e.g. it can
be the cross-entropy loss or focal loss for classi�cation, smooth-L1 or L1 loss for bounding boxes
regression.B̂ is the predicted bounding boxes. Loss on RV only contains classi�cation loss :

L RV = D(yRV ; f RV) = L RV
cls (4)

Cross-view consistency loss When using the Cross-View Transformers described in Section 3.4 to
transform feature maps from a source view to its target view, we constrain them to be consistent with
the labels in the target view. Therefore, we de�ne the cross-view consistency losses as:

L cvc =
X

v;v 02f BEV;RV g;v 6= v0

D(yv ; f v0! v � f v0(x)) (5)

wheref v0! v denotes a cross-view transformer and� is the function composition operator. Cross-View
Consistency Loss is a classi�cation loss where the predictions are the transformed con�dence scores
from source viewv0 to target viewv and the targets are the labels on target viewv, as below:

D(yv ; f v0! v � f v0(x)) = � L v0! v
cls (6)

Overall loss We apply Focal loss [31] to classi�cation and Smooth-L1 loss [32] for bounding box
regression. The �nal loss is the sum of losses on BEV, RV and cross-view consistency losses:

L , L BEV + L RV + L cvc (7)

4.3 Testing Phase

In testing time, �nal con�dence score is obtained by blending BEV scores and RV! BEV scores,
with weightswBEV = 0 :8 andwR 2B = 0 :2 respectively.

5 Implementation

Network Details r , � , and� range is[0:5; 51:1], [� 3:141; 3:141], and[� 1:3; 0:8] and the shell
voxel size is(0:1; 0:003; 0:0125). The max number of points per voxel is 8. We set loss weights
� = � = = � = 1 . Additional details can be found in the supplementary materials.

Augmentation Class-balanced grouping and sampling is adopted as CBGS [27]. We conduct
random �ip in the� -axis, scaling with a scale factor sampled from [0.95, 1.05], rotation aroundz axis
between [-0.3925, 0.3925] rad and translation in range[0:2; 0:2; 0:2] m in x; y; z axis. To increase
the ratio of positive examples in the training data, we adopt database sampling in SECOND [2]. We
create a ground-truth database using ground-truth points in the annotated frames. During training we
randomly drop half of points off gt database and �lter gt boxes with less than 5 points inside.

6

	Introduction
	Related Work
	Voxelization for Point Clouds
	3D Detectors based on Single View
	Other 3D Detectors
	Multi-View Learning and Consistency

	Cross-View Consistent Network
	Input Representation
	Voxelization
	Shared 3D Backbone and Dual-View Branches
	Cross-View Transformers

	Target Encoding and Joint Training
	Target Encoding
	Joint Training
	Testing Phase

	Implementation
	Experiments and Results
	Dataset and Evaluation Metrics
	Comparison with state-of-the-art approaches
	Ablation Studies
	Understanding Cross-View Transformers
	Comparisons with MVF

	Conclusions

