
Appendix: Learning discrete distributions: user vs item-level
privacy

A Proof of Lemma 1

Note that p̂i = (Ni + Zi)/(sm). Thus,

E[`1(p, p̂)] = E
k∑
i=1

|p̂i − pi|

=

k∑
i=1

E
∣∣∣∣Ni + Zi

sm
− pi

∣∣∣∣
≤

k∑
i=1

E
∣∣∣∣Nism − pi

∣∣∣∣+
1

sm
E

k∑
i=1

|Zi|.

The first term is upper bounded by
√
k/(sm) from classic learning bounds for discrete dis-

tribution, which can be obtained by applying the Cauchy-Schwartz inequality, and noting that
Ni ∼ Bin(sm, pi),(

E
k∑
i=1

∣∣∣∣Nism − pi
∣∣∣∣
)2

≤ E

[
k ·

k∑
i=1

∣∣∣∣Nism − pi
∣∣∣∣2
]

= k

k∑
i=1

E

[∣∣∣∣Nism − pi
∣∣∣∣2
]

= k

k∑
i=1

V ar(Ni)

(sm)2
= k ·

k∑
i=1

pi(1− pi)
sm

≤ k
k∑
i=1

pi
sm

=
k

sm
.

For Laplace mechanism, Zi ∼ Lap(2m/ε), we have E|Zi| = 2m/ε. Thus,

E[`1(p, p̂)] ≤
√

k

sm
+

2k

sε
.

For Gaussian mechanism, Zi ∼ N(0, σ2) where σ2 = 4 log(1.25/δ)m2/ε2. Using Jensen’s inequal-
ity we have E|Zi| ≤

√
E[Z2] = σ. Thus,

E[`1(p, p̂)] ≤
√

k

sm
+O

(
k

sε

√
log

1

δ

)
.

Setting the right hand side of the above inequalities to be ≤ α and rearranging the terms we obtain
the desired lower bound on s.

B Lower bounds

B.1 Proof of Theorem 4

The proof of Assouad’s Lemma relies on Le Cam’s method [Le Cam, 1973, Yu, 1997], which provide
lower bounds for min-max error in hypothesis testing. Let P1 ⊆ P and P2 ⊆ P be two disjoint
subsets of distributions. Let θ̂ : X s 7→ {1, 2} be an estimator of the indices, which receives s samples
and predicts whether the samples come from P1 or P2. We are interested in the worst case error
probability

Pe(θ̂,P1,P2) = max
i∈{1,2}

max
p∈Pi

Pr
Xs∼ps

(θ̂(Xs) 6= i).
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Theorem 9 ((ε, δ)-DP Le Cam’s method for restricted tests). Let ps1 ∈ co(Ps1) and ps2 ∈ co(Ps2)
where co(Psi ) represents the convex hull of Psi := {ps : p ∈ Pi}. Let (Xs, Y s) be an f−coupling
between ps1 and ps2 with E[dh(Xs, Y s)] = D. Then for ε ≥ 0, δ ≥ 0, any f -restricted (ε, δ)-DP
hypothesis testing algorithm θ̂ must satisfy

Pe(θ̂,P1,P2) ≥ 1

2
max{1− dTV (ps1, p

s
2), 0.9e−10εD − 10Dδ}.

Proof. The first term follows from the classic Le Cam’s lower bound (see [Yu, 1997, Lemma 1]).
For the second term, let (Xs, Y s) be an f -coupling of ps1, p

s
2 with E[dh(Xs, Y s)] ≤ D. Define

W := {(xs, ys)|dh(xs, ys) ≤ 10D} as the set of realizations with Hamming distance at most 10D.
By Markov’s inequality, ∑

(xs,ys)/∈W

Pr(xs, ys) = Pr(dh(Xs, Y s) > 10D) < 0.1 (6)

Let xs, ys be the realizations of Xs and Y s respectively and define
Pr(xs, ys) := Pr(Xs = xs, Y s = ys).

To avoid confusion, we let (X ′)s and (Y ′)s be random variables from ps1 and ps2 respectively. Let

β1 = Pr
(X′)s∼ps1

(θ̂((X ′)s) = 2)

be the error probability when the underlying data is from distribution ps1. Similarly define β2 =

Pr(Y ′)s∼ps2(θ̂((Y ′)s) = 1). Then

β1 = Pr
(X′)s∼ps1

(θ̂((X ′)s) = 2) = Pr(θ̂(Xs) = 2)

=
∑
xs,ys

Pr(Xs = xs, Y s = ys) Pr(θ̂(Xs) = p2|Xs = xs)

≥
∑

xs,ys∈W
Pr(Xs = xs, Y s = ys) Pr(θ̂(Xs) = p2|Xs = xs).

Next we need the group property of differential privacy.

Lemma 3 (Acharya et al. [2020] Lemma 18). Let θ̂ be an (ε, δ)-DP algorithm, then for sequences
xs, ys ∈ X s such that dh(xs, ys) ≤ t, we have for all subset S of the output domain,

Pr(θ̂(ys) ∈ S) ≤ etε Pr(θ̂(xs) ∈ S) + δteε(t−1).

Note that
1− β2 = Pr

(Y ′)s∼ps2
(θ̂((Y ′)s) = 2) = Pr(θ̂(Y s) = 2).

By Lemma 3 and (6),

1− β2 =
∑

(xs,ys)/∈W

Pr(xs, ys) Pr(θ̂(Y s) = 2|Y s = ys) +
∑

(xs,ys)∈W

Pr(xs, ys) Pr(θ̂(Y s) = 2|Y s = ys)

≤ 0.1 +
∑

(xs,ys)∈W

Pr(xs, ys)(e10εD Pr(θ̂(Xs) = 2|Xs = xs) + 10Dδeε(10D−1))

≤ 0.1 + β1e
10εD + 10Dδe10εD.

Similarly we have
1− β1 ≤ 0.1 + β2e

10εD + 10Dδe10εD.

Adding the two inequalities and rearranging the terms we obtain

β1 + β2 ≥
1.8− 10Dδe10εD

1 + e10εD
≥ 0.9e−10εD − 10Dδ,

which yields the desired lower bound.
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We now have the necessary ingredients for the Assouad’s lower bound. The final step is to apply the
classic Assouad’s Lemma [Yu, 1997]:
Theorem 10 (Assouad’s Lemma). Consider a set of distributions PV indexed by the hypercube
V := {±1}k. Using the same definitions as in Theorem 4, ∀i ∈ [k], let φi : X s 7→ {−1, 1} be test
for ps+i and ps−i. Then for any estimator θ̂

sup
p∈P

EXs∼ps`(θ(p), θ̂(Xs)) ≥ τ

2

k∑
i=1

inf
φi

( Pr
Xs∼ps+i

(φi(X
s) 6= 1) + Pr

Xs∼ps−i
(φi(X

s) 6= −1)). (7)

Note that the summand in (7) is the error probability of hypothesis testing between the mixtures ps+i
and ps−i. Applying Theorem 9 completes the proof.

B.2 Detailed proof of Theorem 1

Proof. Let PV be given by (5). For pv ∈ PV , let qv = θ(pv) be the underlying discrete distribution
over k symbols. Then for u, v ∈ V ,

`1(θ(pu), θ(pv)) = `1(qu, qv) =
12α

k

k/2∑
i=1

1[ui 6= vi],

as one different coordinate between qu and qv leads to l1 distance of 12α/k. Therefore τ = 6α/k.
Define the mixtures as

ps+i =
2

|V|
∑

v∈V:vi=+1

psv, ps−i =
2

|V|
∑

v∈V:vi=−1

psv.

It is helpful to look at the underlying distribution of all samples from users.

qsm+i =
2

|V|
∑

v∈V:vi=+1

qsmv , qsm−i =
2

|V|
∑

v∈V:vi=−1

qsmv .

Note that ps±i, q
s
±i are not necessarily product distributions.

By [Acharya et al., 2020, Lemma 14 ], there exists a coupling (Usm, V sm) between qsm+i and qsm−i
such that E[dh(Usm, V sm)] ≤ 6αsm/k (each Ui, Vi ∈ [k]). We construct Xs = [X1, ..., Xs] and
Y s = [Y1, ..., Ys] using this coupling (each Xi, Yi ∈ Rk is the count of symbol i ∈ [k]).

For each realization of Usm, V sm, suppose there are l different coordinates, i.e. dh(Usm, V sm) = l,
we move all different coordinates to the front so that only the first dl/me ≤ l/m + 1 users would
have different data. Name the rearranged sequence as (U ′)sm, (V ′)sm. Then we let user u get data
from the m(u−1)+1 to mu coordinates of (U ′)sm and (V ′)sm respectively and compute the counts
of each symbol to obtain Xs, Y s. Therefore,

E[dh(Xs, Y s)] ≤ 1

m
E[dh(Usm, V sm)] + 1 ≤ 6sα

k
+ 1.

Rearranging the coordinates of Usm, V sm would not change the total count N , and hence (Xs, Y s)
is an N -coupling. As a result.

sup
p∈P

E[`1(p, p̂)] ≥ 3α(0.9e−10ε(6sα/k+1) − 10δ(6sα/k + 1)).

Choosing α = min{ 0.1k
60s(ε+δ) ,

1
3} yields,

sup
p∈P

E[`1(p, p̂)] ≥ min

{
k

200s(ε+ δ)
, 1

}(
0.9 exp

{
− 0.1ε

ε+ δ
− 10ε

}
− 0.1δ

ε+ δ
− 10δ

)
.

When ε+ δ ≤ 0.07,

sup
p∈P

E[`1(p, p̂)] ≥ min

{
k

200s(ε+ δ)
, 1

}(
0.9

(
1− 0.1ε

ε+ δ
− 10ε

)
− 0.1δ

ε+ δ
− 10δ

)
≥ min

{
k

200s(ε+ δ)
, 1

}
(0.9− 0.1− 10(ε+ δ))

≥ 0.1 min

{
k

200s(ε+ δ)
, 1

}
.
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Setting the left hand side to be at most α and rearranging the terms, we obtain the desired lower
bound for s.

B.3 Fano’s Lower bound for restricted differentially-private estimators

In this section we provide learning lower bound for restricted estimators under pure differential
privacy using Fano’s method. First we provide a theorem for restricted estimators like the one we
proposed for Assouad’s, which might be of general interest.
Theorem 11 (ε-DP Fano’s lower bound for restricted estimators). Given a family of distributions P
over X parameterized by θ : P 7→ Θ, and let θ̂ be an f -restricted estimator. Let V = {p1, ..., pM} ⊆
P such that for all i 6= j,

1. `(θ(pi), θ(pj)) ≥ α

2. dKL(psi , p
s
j) ≤ β

3. there exists an f -coupling (Xs, Y s) of psi , p
s
j such that E[dh(Xs, Y s) ≤ D]

then

L(P, l, ε, 0) := inf
θ̂

sup
p∈P

EXs∼ps
[
`(θ̂(Xs), θ(p))

]
≥ max

{
α

2

(
1− β + log 2

logM

)
, 0.4αmin

{
1,

M

e10εD

}}
. (8)

Proof. The first term of (8) follows from the non-private Fano’s inequality. We now prove the second
term. For an observation Xs ∈ X s

p̂(Xs) := arg min
p∈V

`(θ(p), θ̂(Xs))

is the distribution in P closest to the output of our estimator. Since we require that θ̂ to be ε-DP, p̂ is
also ε-DP. By triangle inequality, for all p ∈ P

`(θ(p̂), θ(p)) ≤ `(θ(p̂), θ̂(Xs)) + `(θ(p), θ̂(Xs)) ≤ 2`(θ(p), θ̂(Xs)).

Thus

sup
p∈P

EXs∼ps
[
`(θ̂(Xs), θ(p))

]
≥ max

p∈V
EXs∼ps

[
`(θ̂(Xs), θ(p))

]
≥ 1

2
max
p∈V

EX∼p [`(θ(p̂), θ(p))]

≥ α

2
max
p∈V

Pr
X∼p

(p̂(Xs) 6= p)

≥ α

2M

∑
p∈V

Pr
X∼p

(p̂(Xs) 6= p). (9)

Let βi = PrXs∼psi (p̂(X
s) 6= pi). For a fixed j 6= i, let (Xs, Y s) be the f -coupling of psi , p

s
j in

condition 3. By definition, for (X ′)s ∼ psi , we have (X ′)s ∼f Xs so that p̂((X ′)s) and p̂(Xs) have
the same distributions, i.e. for all p ∈ V ,

Pr
(X′)s∼psi

(p̂((X ′)s) = p) = Pr(p̂(Xs) = p).

Same holds for p̂(Y s) and p̂((Y ′)s) such that (Y ′)s ∼ psj .
By Markov’s inequality,

Pr(dh(Xs, Y s) > 10D) < 1/10.

LetW := {(xs, ys)|dh(xs, ys) ≤ 10D} and Pr(xs, ys) := Pr(Xs = xs, Y s = ys). Then
1− βj = Pr

(Y ′)s∼psj
(p̂((Y ′)s) = pj) = Pr(p̂(Y s) = pj)

≤
∑

(xs,ys)∈W

Pr(xs, ys) Pr(p̂(Y s) = pj |Y s = ys) +
∑

(xs,ys)/∈W

Pr(xs, ys) · 1.
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Therefore ∑
(xs,ys)∈W

Pr(xs, ys) Pr(p̂(Y s) = pj |Y s = ys) ≥ 0.9− βj .

Furthermore

Pr
(X′)s∼psi

(p̂((X ′)s) = pj) = Pr(p̂(Xs) = pj)

≥
∑

(xs,ys)∈W

Pr(xs, ys) Pr(p̂(Xs) = pj |Xs = xs)

≥
∑

(xs,ys)∈W

Pr(xs, ys)e−10εD Pr(p̂(Y s) = pj |Y s = ys)

≥ (0.9− βj)e−10εD,

where the second inequality is due to p̂ is ε-DP and dh(xs, ys) ≤ 10D. The above inequality holds
for all j 6= i. Thus summing over all j 6= i we obtain

βi =
∑
j 6=i

Pr
Xs∼psj

(p̂(Xs) = pj) ≥

0.9(M − 1)−
∑
j 6=i

βj

 e−10εD.

Summing over all i ∈ {1, ...,M}
M∑
i=1

βi ≥

(
0.9M(M − 1)− (M − 1)

M∑
i=1

βi)

)
e−10εD.

Rearranging the terms
M∑
i=1

βi ≥
0.9M(M − 1)

M − 1 + e10εD
≥ 0.8M min

{
1,

M

e10εD

}
.

Combining with (9) gives the desired lower bound.

Proof of Theorem 3. We apply Theorem with f as the identity mapping. In this case it is the same as
[Acharya et al., 2020, Theorem 2].

Assume k is even. From Yu [1997], there exists V ⊆ {−1, 1}k/2 and a universal c0 > 0 such that
|V| ≥ exp(c0k/2), each pair at least k/6 apart in Hamming distance. Given α ∈ (0, 1/6), define
a family of multinomial distributions Pν which consists of the following distributions indexed by
ν = (ν1, ..., νk/2) ∈ V ,

pν = Mul
(
m,

1

k
(1 + 3αν1, 1− 3αν1, ..., 1 + 3ανk/2, 1− 3ανk/2)

)
.

For v ∈ V , let qv = θ(pv) be the underlying k-ary distribution. Thus for each pair of distributions
pu, pv from this family we have `1(θ(pu), θ(pv)) = `1(qu, qv) ≥ 12α/k · k/6 = 2α. Furthermore,

dKL(qu||qv) ≤ χ2(qu||qv) =

k∑
x=1

(qu(x)− qv(x))2

qv(x)
≤ 100α2,

dKL(pu||pv) = mdKL(qu||qv) ≤ 100mα2,

dKL(psu||psv) = sdKL(pu||pv) ≤ 100smα2.

Since f is set to be the identity, we just need to design a coupling with appropriate Hamming distance
for each pair psu, p

s
v, u, v ∈ ν. To this end we need the following lemma from den Hollander [2012].

Lemma 4 (Maximal coupling, den Hollander [2012]). Given distributions q1, q2 over some domain
X , there exists a coupling (Xs, Y s) between qs1 and qs2 such that

E[dh(Xs, Y s)] = s · dTV (q1, q2).
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From Lemma 4 there exists a coupling (Xs, Y s) between psu and psv such that
E[dh(Xs, Y s)] = s · dTV (pu, pv).

Using Pinsker’s inequality, we have

dTV (pu, pv) ≤
√

1

2
dKL(pu||pv) ≤ 10

√
mα.

Therefore E[dh(Xs, Y s)] ≤ 10s
√
mα. Applying Lemma 11 yields,

sup
p∈P

E[`1(p̂, p)] ≥ max

{
α

(
1− 100smα2 + log 2

c0k/2

)
, 0.8αmin

{
1,

ec0k/2

e100εs
√
mα

}}
.

Note that this holds for all α. Choose α = min{ 1
6 ,
√

k
sm} and α = min{ 1

6 ,
c0k

200s
√
mε
} respectively

we get

sup
p∈P

E[`1(p̂, p)] ≥ max

{
C1

√
k

sm
,C2

k

sε

}
= Ω

(√
k

sm
+

k

s
√
mε

)
.

Given desired accuracy α, setting supp∈P E[`1(p̂, p)] ≤ α gives the desired user complexity bound.

C Bounds on total variation between binomial distributions

We divide the proof of Theorem 5 into two parts. We prove the upper bound in Lemma 5 and the
lower bound in Lemma 8.

We first prove an upper bound on the total variation distance between binomial distributions in terms
of the parameters.
Lemma 5. There is a constant b such that for all m and p, q,

`1(Bin(m, p),Bin(m, q)) ≤ 2 min

(
m|p− q|,

√
m|p− q|√
p(1− p)

, 1

)
.

Proof. First observe that by definition,
`1(Bin(m, p),Bin(m, q)) ≤ 2. (10)

Secondly, since `1 distance of product distributions is at most the sum of `1 distances,
`1(Bin(m, p),Bin(m, q)) ≤ m · `1(Ber(p),Ber(q)) ≤ 2m|p− q|. (11)

Finally, by Pinkser inequality and the fact that KL divergence of product distributions is the sum of
individual KL divergences,

`1(Bin(m, p),Bin(m, q)) ≤
√

1

2
·D(Bin(m, q)||Bin(m, p))

=

√
m

2
·D(Ber(q)||Ber(p))

≤

√
m(p− q)2

2p(1− p)
, (12)

where the last inequality follows by observing that

D(Ber(q)||Ber(p)) = q log
q

p
+ (1− q) log

1− q
1− p

= q log

(
1 +

q − p
p

)
+ (1− q) log

(
1 +

p− q
1− p

)
≤ q · q − p

p
+ (1− q) · p− q

1− p

=
(q − p)2

p(1− p)
. (13)

Combining (10), (11),and (12) yields the lemma.
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Lemma 6. Let c be a constant. If mp < c and p ≤ 1/2, then

`1(Bin(m, p),Bin(m, q)) ≥ e−
3c
2

2
min (m|p− q|, 1) .

Proof. By definition,

`1(Bin(m, p),Bin(m, q)) ≥ |(1− p)m − (1− q)m|.
We first consider the case q ≥ p. Simplifying the above bound,

(1− p)m − (1− q)m = (1− p)m
(

1− (1− q)m

(1− p)m

)
= (1− p)m

(
1−

(
1− q − p

1− p

)m)
(a)

≥ (1− p)m
(

1− e
−m(q−p)

1−p

)
(b)

≥ (1− p)m
(

1− e−2m(q−p)
)

≥(1− p)m
(

1− e−1.5m(q−p)
)

≥(1− p)m
(

1− e−1.5 min(m(q−p),0.5)
)

(c)

≥ (1− p)m min(m(q − p), 0.5)

(d)

≥ e−1.5mp min(m(q − p), 0.5)

(e)

≥ e−1.5c min(m(q − p), 0.5).

(a) follows by 1− x ≤ e−x and (b) follows as p ≤ 1/2. (c) and (d) follows as e−1.5x ≤ 1− x for
x ≤ 1/2. (e) follows by the bound on p. For q ≤ p,

(1− q)m − (1− p)m = (1− p)m
(

(1− q)m

(1− p)m
− 1

)
= (1− p)m

((
1 +

p− q
1− p

)m
− 1

)
≥ (1− p)m ((1 + p− q)m − 1)

(a)

≥ (1− p)mm(p− q)
≥ e−1.5mpm(p− q)
≥ e−1.5cm(p− q),

(a) follows from the Bernoulli inequality: (1 + x)n ≥ 1 + nx for x ≥ −1. The last inequalities are
similar to the last two inequalities for q ≤ p case. Combining the above two results, we get

|(1− q)m − (1− p)m| ≥ e−1.5c min(m|q − p|, 0.5). (14)

Lemma 7. Let c > 2, m ≥ 3, and p ≤ 1/2. If mp ≥ c, then

`1(Bin(m, p),Bin(m, q)) ≥ 1

350
min

(√
m|p− q|√
p(1− p)

, 1

)
.

Proof. Let q′ = p+
√

p
8m if q > p+

√
p

8m , q′ = p−
√

p
8m if q ≤ p−

√
p

8m , else q′ = q. Since q′
lies in between p and q,

`1(Bin(m, p),Bin(m, q)) ≥ `1(Bin(m, p),Bin(m, q′)).
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Furthermore, observe that

3

4
≤ 1− 1√

8c
≤ 1−

√
1

8pm
≤ q′

p
≤ 1 +

√
1

8pm
≤ 1 +

1√
8c
≤ 5

4
.

By [Adell and Jodrá, 2006, Proposition 2.3], for any two binomial distributions,

`1(Bin(m, p),Bin(m, q′)) = m

∫ max(p,q′)

u=min(p,q′)

Pr(Bin(m− 1, u) = k − 1)du,

, where dmmin(p, q′)e ≤ k ≤ dmmax(p, q′)e. Furthermore, observe that

dmmin(p, q′)e ≥ dmmin(mp, 3mp/4)e ≥ d3/2e ≥ 2.

Similarly,

m−k ≥ m−dmmax(p, q′)e ≥ m−d5mp/4e ≥ m−1−5mp/4 ≥ m−1−5m/8 ≥ 3m/8−1 ≥ 1/8.

Since m− k is an integer, m− k ≥ 1. In order to bound the above quantity further, we first lower
bound Binomial coefficients.

Pr(Bin(m, p) = k) =

(
m

k

)
pk(1− p)m−k.

Recall that by Sterling’s approximation, for all m ≥ 1,
√

2πmm+0.5e−m ≤ m! ≤ emm+0.5e−m.

Hence for 1 ≤ k ≤ m− 1,(
m

k

)
=

m!

k!(m− k)!

≥
√

2π

e2

mm+0.5e−m

kk+0.5e−k(m− k)m−k+0.5e−m+k

=

√
2π

e2
√
m
· 1√

k/m
√

1− k/m
· 1

(k/m)k(1− k/m)m−k
.

Hence,

Pr(Bin(m, p) = k) ≥
√

2π

e2
√
m
· 1√

k/m
√

1− k/m
· pk(1− p)m−k

(k/m)k(1− k/m)m−k

=

√
2π

e2
√
m
· 1√

k/m
√

1− k/m
· e−mD(k/m||p)

≥
√

2π

e2
√
m
· 1√

k/m
√

1− k/m
· e−m

(k/m−p)2
p(1−p)

≥
√

2π

e2
· 1√

k
· e−m

(k/m−p)2
p(1−p) .

The second inequality follows from (13). Hence for dmmin(p, q′)e ≤ k ≤ dmmax(p, q′)e,

Pr(Bin(m,u) = k − 1) ≥
√

2π

e2
· 1√

k − 1
· e−m

((k−1)/(m−1)−u)2
u(1−u)

(a)

≥ 2
√

2π

5e2
· 1
√
mp
· e−m

((k−1)/(m−1)−u)2
u(1−u)

≥ 2
√
π

5e2
· 1√

mp(1− p)
· e−m

((k−1)/(m−1)−u)2
u(1−u) ,
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where (a) follows by observing that k − 1 ≤ dmmax(p, q′)e − 1 ≤ mmax(p, q′) ≤ 5mp/4.
Furthermore, since 3p/4 ≤ q′ ≤ 5p/4 and the minimum of u(1− u) occurs in the extremes,

min
min(p,q′)≤u≤max(p,q′)

u(1− u) ≥ min
3p/4≤u≤5p/4

u(1− u)

≥ min(
(1− 3p/4)3p

4
,

(1− 5p/4)5p

4
)

≥ 15p

32
.

We now bound ((k − 1)/(m− 1)− u)2.

max
u

k − 1

m− 1
− u ≤ k

m
− u ≤ max(p, q′) +

1

m
−min(p, q′).

Similarly,

min
u

k − 1

m− 1
− u ≥ k − 1

m− 1
−min(p, q′)

=
k

m
+

m− k
m(m− 1)

−max(p, q′)

≥ k

m
+

1

m
−max(p, q′)

≥ min(p, q′) +
1

m
−max(p, q′).

Hence, since (a+ b)2 ≤ 2a2 + 2b2,

max
u

(
k

m
− u
)2

≤ 2 (max(p, q′)−min(p, q′))
2

+
2

m2
.

Hence,

e−m
((k−1)/(m−1)−u)2

u(1−u) ≥ e−
8m
p ( 1

m2 +(p−q′)2) ≥ e−
64m
15p ( 1

m2 + p
8m ) ≥ e− 32

15−
8
15 ≥ e−8/3.

Combining the results, we get

`1(Bin(m, p),Bin(m, q′)) = m

∫ max(p,q′)

u=min(p,q′)

Pr(Bin(m− 1, u) = k − 1)du

≥ m
√
πe−8/3

2e2

∫ max(p,q′)

u=min(p,q′)

m√
mp(1− p)

≥
√
πe−8/3

2e2

√
m|p− q′|√
p(1− p)

≥
√
πe−8/3

2e2
min

(√
m|p− q|√
p(1− p)

,
1√
8

)

≥
√
πe−8/3

2
√

8e2
min

(√
m|p− q|√
p(1− p)

, 1

)

≥ 1

350
min

(√
m|p− q|√
p(1− p)

, 1

)
.

Lemma 8. For all m and p, q,

`1(Bin(m, p),Bin(m, q)) ≥ 1

350
min

(
m|p− q|,

√
m|p− q|√
p(1− p)

, 1

)
.
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Proof. For m ≤ 700,

`1(Bin(m, p),Bin(m, q)) ≥ `1(Ber(p),Ber(q)) = 2|p−q| ≥ 1

350
min

(
m|p− q|,

√
m|p− q|√
p(1− p)

, 1

)
,

Hence, in the rest of the proof, we focus on m ≥ 700. Furthermore, since
`1(Bin(m, p),Bin(m, q)) = `1(Bin(m, 1− p),Bin(m, 1− q)).

and the bound 1
350 min

(
m|p− q|,

√
m|p−q|√
p(1−p)

, 1

)
is symmetric in p and 1− p, it suffices to prove the

result for p ≤ 1/2.

Let c = 2. The proof for mp ≥ c is a direct consequence of Lemma 7. The proof for c ≤ 2 follows
from Lemma 6.

D Analysis of the algorithms

D.1 Proof of Theorem 6

We first state the following guarantee on private hypothesis selection from Bun et al. [2019].
Lemma 9 (Bun et al. [2019]). Given d distributions p1, p2, . . . , pd and n independent samples from
an unknown distribution p, such that mini `1(pi, p) ≤ α, Algorithm 1 returns a distribution pi such
that E[`1(pi, p)] ≤ 4α, with probability ≥ 1− β, if the number of samples satisfies,

n ≥ 8 log(4m/β)

α2
+

8 log(4m/β)

αε
.

Furthermore, Algorithm 1 is (ε, 0)-differentially private.

Proof. The privacy guarantee follows by [Bun et al., 2019, Lemma 3.2]. The utility guarantee is
obtained by applying the high probability utility bounds from [Bun et al., 2019, Lemma 3.3] and
setting ζ = 1.

Let c be the constant in the lower bound of Theorem 5. Let P = {0, cα
20m ,

2cα
20m , . . . , 1e} be a cover

of [0, 1] Note that such that for every p, there exists a p′ ∈ P such that

min

(
m|p− p′|,

√
m|p− p′|√
p(1− p)

, 1

)
≤ cα

10
.

Let Q = {Bin(m, p) : p ∈ P}. Then by Theorem 5, for every Bin(m, p) there exists a Bin(m, p′) in
Q such that

`1(Bin(m, p),Bin(m, p′) ≤ cα

5
.

Hence, by Lemma 9, if

s = Ω

(
8 log(20m/αβ)

α2
+

8 log(20m/αβ)

αε

)
there is an algorithm that returns a distribution Bin(m, p̂) ∈ Q such that

`1(Bin(m, p),Bin(m, p̂) ≤ 4cα

5
,

with probability ≥ 1− β. Therefore, by the lower bound in Theorem 5, the resulting p̂ satisfies

min

(
m|p− p̂|,

√
m|p− p̂|√
p(1− p)

, 1

)
≤ 4α

5
,

with probability ≥ 1− β. Since 4α
5 ≤ 1, this implies that with probability ≥ 1− β,

|p− p̂| ≤ 4α

5
max

(
1

m
,

√
p(1− p)√
m

)
.

The expectation bound follows by setting β = α/5m:

E[|p− p̂|] ≤ 4α

5
max

(
1

m
,

√
p(1− p)√
m

)
+

α

5m
≤ αmax

(
1

m
,

√
p(1− p)√
m

)
.
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D.2 Proof of Theorem 7

Let ε′ = ε

4
√
k log 1

δ

and α′ = min
(√

mα

2
√
k
, 1
)

We apply Theorem 6 for each symbol k with ε = ε′

and α = α′ Then, we have an estimate p̂1, p̂2, . . . , p̂k such that

E[`1(p, p̂)] =
∑
i

E[|pi − p̂i|]

≤ α′
∑
i

max

(
1

m
,

√
pi(1− pi)√

m

)

≤ α′
∑
i

1

m
+

√
pi√
m

≤ α′k

m
+
α′
√
k√
m

≤ 2
α′
√
k√
m

≤ α,
where the penultimate follows from Jensen’s inequality. The differential privacy bound follows
from strong composition theorem (see [Kairouz et al., 2017, Theorem 3.4]) and using the fact that
eε
′ ≤ 2ε′.

D.3 Proof of Lemma 2

Let p̂ be such that

(1− p̂)m = max

(
min

(
1

s

∑
u

1N(u)=0 +
Z

s
, 1

)
, 0

)
, (15)

Where Z is a Laplace noise with parameter 1/ε. Hence the algorithm is (ε, 0)-DP. Hence,

|(1− p̂)m − (1− p)m| ≤

∣∣∣∣∣1s∑
u

1N(u)=0 +
Z

s
− (1− p)m

∣∣∣∣∣ .
Hence, by the tail bounds of the Laplace distribution, with probability ≥ 1− 2β,

|(1− p̂)m − (1− p)m| ≤
log 1

β

sε
+

∣∣∣∣∣1s∑
u

1N(u)=0 − (1− p)m
∣∣∣∣∣ .

Furthermore, by Bernstein’s inequality with probability ≥ 1− 2β,∣∣∣∣∣1s∑
u

1N(u)=0 − (1− p)m
∣∣∣∣∣ ≤ 4

log 1
β

s
+ 4

√
log 1

β

s
· (1− p)m(1− (1− p)m).

Since 1− (1− p)m ≤ mp, we have with probability ≥ 1− 4β,

|(1− p̂)m − (1− p)m| ≤ 4

√
mp log 1

β

s
+ 4

log 1
β

s
+

log 1
β

sε
.

Combining with (14), with probability ≥ 1− 4β,

e−1.5c min(m|p̂− p|, 0.5) ≤ 4

√
mp log 1

β

s
+ 4

log 1
β

s
+

log 1
β

sε
.

If s ≥ 64e3cm log 3
β , then the RHS is at most e−1.5c/2. hence,

e−1.5cm|p̂− p| ≤ 4

√
mp log 1

β

s
+ 4

log 1
β

s
+

log 1
β

sε
.
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If s ≥ 16e3c

α2 log 3
β + 16e3c

γε log 3
β

|p− p̂| ≤
√
pα2

m
+
α2

m
+
γ

m
.

D.4 Proof of Theorem 8

Parameters: We first define few parameters. Let ε′ = ε

8
√

min(k,m) log 1
δ

, β = α
40k , α′ =

min
(√

mα

8
√
k
, 1
)

, α′′ = α
240 , and γ = mα

8k . Let c = 4/m.

Algorithm: For every symbol we first calculate the probability using the algorithm in Theorem 6
with ε = ε′, α = α′′ and error probability β. If the estimated probability is less than 2/m, we use the
algorithm from Lemma 2 with ε = ε′, α = α′, γ = γ, and error probability β. Let p′ be the output
of the first step and the p′′ be the output of Lemma 2. The error of the algorithm is

|p− p̂| = |p− p′|1p′>2/m + |p− p′′|1p′≤2/m.

Sample complexity: The sample complexity would be the sum of sample complexities of Theorem
6 and Lemma 2 with appropriate parameters. Hence,

s ≥ 16 log(20m/α′′β)

α′′2
+

16 log(20m/α′′β)

α′′ε′
+

16e3c

α′2
log

3

β
+

16e3c

γε′
log

3

β
.

Hence, for a sufficient large constant b, if

s ≥ b log
km

α
·

(
k

mα2
+

k√
mεα

√
log

1

δ

)
Note that since k ≥ m, the above bound implies that s ≥ b

√
m, hence the bound also satisfies

conditions in Lemma 2.

Differential privacy: We first provide the privacy guarantee for this algorithm. First observe that
since p′, p′′ → p̂ is a Markov chain, by the postprocessing theorem it suffices to provide privacy
guarantee for releasing p′, p′′. Consider releasing one of them, say p′. For any two neighboring
datasets differ in at most min(m, k) symbols. Let these datasets be D and D′ and S(D,D′) be the
set of symbols where they differ. For these datasets,

Pr(p′|D)

Pr(p′|D′)
=

∏
i∈S(D,D′)

Pr(p′i|D)

Pr(p′i|D′)
.

Hence it suffices to apply strong composition theorem for this subset of size min(m, k) and the rest
of the proof is similar to that of [Kairouz et al., 2017, Theorem 3.4]). The proof is similar for p′′ and
hence the result.

Utility: To analyze the utility, we divide the symbols into three sets A1 = {i : pi ≥ 4
m}, A2 = {i :

4
m ≥ pi ≥

1
4m}, and A3 = {i : pi ≤ 1

4m}.
Utility-large: Consider the set A1 with symbols whose probability is greater than 4/m, for such a
symbol, by Theorem 6, with probability ≥ 1− β,

|p− p′| ≤ α′′
√

p

m
.

Hence p′ ≥ p− α′′
√

p
m > 2

m . Hence, for such a symbol with probability ≥ 1− β,

|p− p̂| = |p− p′| ≤ α′′
√

p

m
.

Utility-medium: Consider the set A2 with symbols whose probability in [1/4m, 4/m]. For such a
symbol, then with probability ≥ 1− 2β,

|p− p̂| ≤ max(|p− p′|, |p− p′′|)

≤ 2α′′

m
+ α′′

√
p

m
+ α′

√
p

m
+
α′2

m
+
γ

m

≤ 5α′′

m
+
α′

m
+
γ

m
.
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Utility-small: Finally consider symbols whose probabilities are smaller than 1/4m, for these sym-
bols, with probability ≥ 1− β,

|p− p′| ≤ α′′

2m
.

and hence p′ ≤ p + α′′

m ≤ 3/2m ≤ 2/m. Hence only the second algorithm is used. Hence with
probability ≥ 1− 2β, the error is at most,

|p− p̂| = |p− p′′| ≤ α′
√

p

m
+
α′2

m
+
γ

m
.

Summing over all symbols yield,

`1(p, p̂) ≤
∑
i

|pi − p̂i|

≤
∑
i∈A1

|pi − p̂i|+
∑
i∈A2

|pi − p̂i|+
∑
i∈A3

|pi − p̂i|

≤
∑
i∈A1

α′′
√
pi
m

+
∑
i∈A2

5α′′

m
+
α′

m
+
γ

m
+
∑
i∈A3

α′
√

p

m
+
α′2

m
+
γ

m

≤ 28α′′ + α′

(√
k

m
+ 1

)
kα′2

m
+
kγ

m
+

≤ α

8
+
α

8
+
α

8
+
α

8

≤ α

2
.

Hence, by the union bound, with probability with 1− 20kβ,

`1(p, p̂) ≤ α

2
.

Therefore in expectation,
E[`1(p, p̂)] ≤ α

2
+ 20kβ ≤ α.

E Extensions

In this section, we modify our algorithms for the scenario when users have different number of
samples. Let mmax be a known upper bound on the number of samples a user has. For a value m, let
sm be the number of users such that mu ≥ m. Let m̄ be the median values of mu. We first state the
main result, an analog of Theorem 2.
Theorem 12. Let ε ≤ 1. There exists a polynomial time algorithm (ε, δ)-differentially private
algorithm A such that

SAm,α,ε,δ = O

(
log2 kmmax

α
·max

(
k

m̄α2
+

k√
m̄αε

√
log

1

δ
,

√
k

ε

√
log

1

δ

))
. (16)

First we use ε/2 privacy budget find m̂, a private estimate of m̄, and ŝ, an estimate of sm̂ (the quantile
of m̂). We only keep the users with at least m̂ samples, and select m̂ samples from each of them.
Hence we reduce the problem to the case when users have the same number of samples. Then we
modify the algorithms for both the dense and sparse regimes so that they are differentially private
even if the number of samples of a particular user changes. We use the remaining privacy budget for
the modified algorithms. The privacy guarantee follows by the composition theorem.

We first provide the algorithm for privately estimating m̄ and the quantile of estimated m̄, which
serves as a stepping stone for extending our algorithms to variable number of samples per user.

Lemma 10. Let s ≥ 16 log2mmax/β
ε . There exists a polynomial time (ε, 0)-algorithm that returns m̂

and ŝ such that with probability ≥ 1− β, the following holds,

|ŝ− sm̂| ≤
2 log2mmax/β

ε
, m̂ ≥ m̄

2
, sm̂ ≥

s

4
, ŝ ≥ 3s

8
. (17)
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Proof. Divide {0, 1, 2, . . . ,mmax} to bins bi such that b0 = 0, b1 = 1 and bi = 2 ∗ bi−1 for i ≥ 1.
There are v = logmmax buckets.

For any two adjacent datasets, [t0, t1, t2, . . . , tv] differ by two. Hence, we can add Laplace noise with
parameter η = 2/ε to each of them to obtain DP estimates. Let this be [t′0, t

′
1, . . . , t

′
v].

By the tail bounds of Laplace distribution and the union bound, for each i with probability 1− β,

|ti − t′i| ≤ η log
v

β
.

Furthermore, for any cumulative sets,∣∣∣∣∣∣
∑
i≥j

ti −
∑
i≥j

t′i

∣∣∣∣∣∣ ≤
∑
i≥j

|ti − t′i| ≤ ηv log
v

β
.

Let j∗ be the largest j such that ∑
i≥j

t′i ≥
s

2
− ηv log

v

β
.

The algorithms return ŝ =
∑
i≥j∗ t

′
i and m̂ = bj∗ . Then by the assumption on s:

ŝ ≥ s

2
− 2

ε
logmmax log

logmmax

β
≥ s

2
− s

8
=

3s

8
.

By the above cumulative equation sum,

|ŝ− sm̂| =

∣∣∣∣∣∣
∑
i≥j∗

ti −
∑
i≥j∗

t′i

∣∣∣∣∣∣ ≤ ηv log
v

β
.

sm̂ =
∑
i≥j∗

ti =
∑
i≥j∗

t′i −
∑
i≥j∗

(t′i − ti) ≥
s

2
− ηv log

v

β
− ηv log

v

β
≥ s

4
.

Note that by definition of j∗,
∑
i≥j∗+1 t

′
i < s/2− v log(v/β), and that bj∗+1 = 2bj∗ = 2m̂, thus:

s2m̂ =
∑

i≥j∗+1

ti =
∑

i≥j∗+1

t′i −
∑

i≥j∗+1

(t′i − ti) ≤
s

2
− ηv log

v

β
+ ηv log

v

β
=
s

2
.

Hence 2m̂ ≥ m̄. This completes the proof.

We proceed to discuss the algorithms for dense and sparse regimes. After we obtain ŝ, m̂ from
Lemma 10, we choose the algorithm depending on the relation between k and m̂: if k ≤ m̂, we use
the algorithm for the dense regime; otherwise we use the one for the sparse regime.

E.1 Dense regime

We first modify the hypothesis selection algorithm in Bun et al. [2019]. We cannot apply it directly
because to ensure privacy, we cannot use the true number of users sm̂ and need to replace it with its
private estimate ŝ. Hence we prove the following lemma to cope with this situation.

Lemma 11. Let ŝ, m̂ satisfy (17) with ε = ε′. Given d distributions p1, p2, . . . , pd and s independent
samples from an unknown distribution p, such that mini `1(pi, p) ≤ α, there exists an (ε, 0)-DP
polynomial time algorithm that returns a distribution pi such that `1(pi, p) ≤ 4α, with probability
≥ 1− β, if the number of samples satisfies,

s ≥ 128 log2(mmax/β)

3αε′
+

32 log(4d/β)

α2
+

64 log(4d/β)

3αε
.

Proof. Let H and H ′ be two distributions over the domain X and define the Scheffe set

W1 = {x ∈ X : H(x) > H ′(x)}.
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Define p1 = H(W1), p2 = H ′(W1), for some distribution P define τ = P (W1). Note that p1 > p2

and p1 − p2 = dTV (H,H ′).

Let D be a dataset of size sm̂ drawn i.i.d. from P . Define the following quantities which serve as
empirical estimates of P (W1),

P̂ (W1) := τ̂ :=
1

ŝ
|{x ∈ D : x ∈ W1}|, Pm̂(W1) := τm̂ :=

1

sm̂
|{x ∈ D : x ∈ W1}|.

Let ζ > 0 be the approximation parameter. Consider the function

Γ̂ζ(H,H
′, D) =

{
ŝ p1 − p2 ≤ (2 + ζ)α;

ŝ ·max{0, τ̂ − (p2 + (1 + ζ/2)α)} otherwise.

According to [Bun et al., 2019, Lemma 3.1, Lemma 3.3], Γ̂ζ has the following properties,

Lemma 12 (Bun et al. [2019], Lemma 3.1). If dTV (P,H) ≤ α and |τ̂ − τ | < ζα/4, then
Γ̂ζ(H,H

′, D) > ζαŝ/4.

Lemma 13 (Bun et al. [2019], Lemma 3.3). If dTV (P,H ′) ≤ α , |τ̂ − τ | < ζα/4, and
Γ̂ζ(H,H

′, D) > 0, then dTV (H,H ′) ≤ (2 + ζ)α.

Define the score functions for each Hj ∈ H

Ŝ(Hj , D) = min
Hk∈H

Γ̂ζ(Hj , Hk, D).

Output a random hypothesis Ĥ according to the distribution

Pr[Ĥ = Hj ] ∝ exp

(
Ŝ(Hj , D)

2ε

)
.

First note that if dTV (P,H) < α, then using Hoeffding’s inequality, we have with probability at least
1− 2 exp(−sm̂ζ2α2/32),

|τm̂ − τ | < ζα/8.

Assume that there exists H∗ ∈ H such that dTV (P,H∗) ≤ α. DefineWj = {x ∈ X : H∗(x) >
Hj(x)}. Conditioned on that the inequalities in Lemma 10 hold, by the union bound, with probability
at least 1− 2d exp(−sm̂ζ2α2/8) ≥ 1− 2d exp(−sζ2α2/32) over the draws of D, for all j we have

|P (Wj)− Pm̂(Wj)| ≤ ζα/8.

Due to the inequalities in Lemma 10, the following holds uniformly for all j,

|P̂ (Wj)− Pm̂(Wj)| ≤
∣∣∣∣1ŝ − 1

sm̂

∣∣∣∣ sm̂ =
|ŝ− sm̂|

ŝ
≤ 16 log2(mmax/β)

3sε′

Hence as long as s > 128 log2(mmax/β)
3ζαε′ , the above quantity is bounded by ζα/8. We have

|P (Wj)− P̂ (Wj)| ≤ |P (Wj)− Pm̂(Wj)|+ |P̂ (Wj)− Pm̂(Wj)| ≤
ζα

4
.

By Lemma 12 we have Γ̂ζ(H
∗, Hj , D) > ζαŝ/4 ≥ 3ζαs/32. This implies Ŝ(H∗, D) > 3ζαs/32.

By the utility of the exponential mechanism, with probability at least 1− β/2, the output hypothesis
Ĥ satisfies

Ŝ(Ĥ,D) ≥ Ŝ(H∗, D)− 2 log(2d/β)

ε

≥ 3ζαs

32
− 2 log(2d/β)

ε
.

As long as s ≥ 32 log(4d/β)
ζ2α2 + 64 log(2d/β)

3ζαε , together with probability at least 1 − β , Ŝ(Ĥ,D) > 0,

which implies that Γ̂ζ(Ĥ,H
∗, D) > 0. Since in addition dTV (P,H∗) ≤ α, we have dTV (Ĥ,H∗) ≤

(2+ζ)α by Lemma 13 and hence dTV (Ĥ, P ) ≤ (3+ζ)α. Setting ζ = 1 gives the desired result.
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Theorem 13. Suppose there are s users such that user u has mu i.i.d. samples from Ber(p). Let
ŝ, m̂ satisfy (17) with ε = ε′. Let s ≥ 128 log2(mmax/β)

3αε′ + 32 log(80mmax/αβ)
α2 + 64 log(80mmax/αβ)

3αε .
There exists a polynomial time (ε, 0) differentially private algorithm that returns p̂ such that with
probability at least 1− β,

|p− p̂| ≤ 4

5
αmax

(
1

m̂
,

√
p(1− p)√
m̂

)
.

Proof. We sample m̂ samples from all users that have least m̂ samples. Hence we obtain sm̂
i.i.d samples from Bin(m̂, p). Let c be the constant in Theorem 5. We then apply the modified
hypothesis selection algorithm in Lemma 11 with the hypothesis class Q = {Bin(m̂, p), p ∈ P}
where P = {0, cα

20m̂ ,
2cα
20m̂ ..., 1}. The total number of hypotheses is d = 20m̂

cα . The sample complexity
comes from Lemma 11 and utility follows by the argument in Theorem 6 with m replaced by m̂.

By Theorem 5, for every Bin(m̂, p) there exists a Bin(m̂, p′) in Q such that

`1(Bin(m̂, p),Bin(m̂, p′) ≤ cα

5
.

Hence, by Lemma 11, if

s = Ω

(
128 log2(mmax/β)

3αε′
+

32 log(80mmax/αβ)

α2
+

64 log(80mmax/αβ)

3αε

)
,

there is an algorithm that returns a distribution Bin(m, p̂) ∈ Q such that

`1(Bin(m̂, p),Bin(m̂, p̂) ≤ 4cα

5
,

with probability ≥ 1− β. Therefore, by the lower bound in Theorem 5, the resulting p̂ satisfies

min

(
m̂|p− p̂|,

√
m̂|p− p̂|√
p(1− p)

, 1

)
≤ 4α

5
,

with probability ≥ 1− β. Since 4α
5 ≤ 1 and m̂ ≥ m̄/2, this implies that with probability ≥ 1− β,

|p− p̂| ≤ 4α

5
max

(
1

m̂
,

√
p(1− p)√
m̂

)
≤ 4α

5
max

(
2

m̄
,

√
2p(1− p)√

m̄

)
.

The expectation bound follows by setting β = α/5mmax,

E[|p− p̂|] ≤ 4α

5
max

(
2

m̄
,

√
2p(1− p)√

m̄

)
+

α

5mmax
≤ αmax

(
2

m̄
,

√
2p(1− p)√

m̄

)
.

Theorem 14 (Dense regime). Let k ≤ m̂ and ε ≤ 1. There exists a polynomial time (ε, δ)-
differentially private algorithm A such that

SAm,α,ε,δ = O

(
log2 kmmax

α
·max

(
k

m̄α2
+

k√
m̄αε

√
log

1

δ
,

√
k

ε

√
log

1

δ

))
.

Proof. Let β > 0 be the probability guarantee to be chosen later. Use ε1 = ε/2 budget to obtain ŝ, m̂
using Lemma 10, which satisfy (17) with probability at least 1− β as long as s ≥ 16 log2mmax/β

ε/2 .

Define ε2 = ε

8
√

(k+1) log(2/δ)
, α′ = min

(√
m̂α

2
√
k
, 1
)

. Under the condition above, by union bound and

applying Theorem 13 with ε′ = ε1, ε = ε2, α = α′, with probability at least 1− kβ, for all p̂i we
have

|pi − p̂i| ≤
4

5
α′max

(
1

m̂
,

√
p(1− p)√
m̂

)
,
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as long as

s = Ω

(
log2 mmax

αβ
max

(
k

m̄α2
+

√
k

αε2

√
m̄
,

1

ε2

))
(18)

≥ 128 log2(mmax/β)

3α′ε1
+

32 log(80mmax/α
′β)

(α′)2
+

64 log(80mmax/α
′β)

3α′ε2
.

Note that this satisfies the condition on s in Lemma 10. Together with probability at least 1−(k+1)β:

`1(p, p̂) =
∑
i

|pi − p̂i|

≤ 4

5
α′
∑
i

max

(
1

m̂
,

√
pi(1− pi)√

m̂

)

≤ 4

5
α′
∑
i

1

m̂
+

√
pi√
m̂

≤ 4

5

(
α′k

m̂
+
α′
√
k√
m̂

)

≤ 2
4

5

α′
√
k√
m̂

≤ 4

5
α,

Choosing β = α
40k ,

E[`1(p̂, p)] ≤ 4α

5
+ 2(k + 1)β = α.

Plug in ε2 and β in (18) we obtain the desired user complexity. Privacy guarantee follows by the
composition theorem.

E.2 Sparse regime

Lemma 14. Let ŝ, m̂ satisfy (17) with ε = ε′. Let p ≤ min(c/m̂, 1/2). Let s ≥
64e3c max(c, 1) log 3

β and s ≥ 128e3c

α2 log 3
β + 32e3c

γε′ log2 3mmax

β + 16e3c

γε log 3
β . There exists a poly-

nomial time (ε, δ)-estimator p̂ such that with probability at least 1− β,

|p− p̂| ≤
√
pα2

m̂
+
α2

m̂
+

γ

m̂ε
.

Proof. We modify the algorithm for the sparse regime as follows.

Let Um̂ be the users who have at least m̂ samples. Similar to (15), we find p̂ such that,

(1− p̂)m̂ = max

(
min

(
1

ŝ

∑
u∈Um̂

1N(u)=0 +
Z

ŝ
, 1

)
, 0

)
,

where Z = Lap(1/ε). Therefore,

|(1− p̂)m̂ − (1− p)m̂| ≤

∣∣∣∣∣1ŝ ∑
u∈Um̂

1N(u)=0 +
Z

ŝ
− (1− p)m̂

∣∣∣∣∣
≤

∣∣∣∣∣1ŝ ∑
u∈Um̂

1N(u)=0 −
1

sm̂

∑
u∈Um̂

1N(u)=0

∣∣∣∣∣+
|Z|
ŝ

+

∣∣∣∣∣ 1

sm̂

∑
u∈Um̂

1N(u)=0 − (1− p)m̂
∣∣∣∣∣ .

29



From Lemma 10, with probability at least 1− β, the first term is upper bounded by∣∣∣∣1ŝ − 1

sm̂

∣∣∣∣
∣∣∣∣∣ ∑
u∈Um̂

1N(u)=0

∣∣∣∣∣ ≤
∣∣∣∣ ŝ− sm̂ŝ

∣∣∣∣ ≤ 16 log2(mmax/β)

3sε′
.

The second and third term are bounded similar to Lemma 2 using Laplace tail bounds and Bernstein’s
inequality. With probability 1− 4β,

|Z|
ŝ

+

∣∣∣∣∣ 1

sm̂

∑
u∈Um̂

1N(u)=0 − (1− p)m̂
∣∣∣∣∣ ≤ log(1/β)

ŝε
+ 4

√
m̂p log 1

β

sm̂
+ 4

log 1
β

sm̂
.

Together with probability at least 1− 5β,

e−1.5c min{m̂|p̂− p|, 0.5} ≤ |(1− p̂)m̂ − (1− p)m̂|

≤ 16 log2(mmax/β)

3sε′
+

log(1/β)

ŝε
+ 4

√
m̂p log 1

β

sm̂
+ 4

log 1
β

sm̂

≤ 16 log2(mmax/β)

3sε′
+

8 log(1/β)

3sε
+ 8

√
m̂p log 1

β

s
+

16 log 1
β

s
.

The last inequality is due to ŝ ≥ 3s/8 and sm̂ ≥ s/4.

If s ≥ 256e3cpm̂ log(3/β), then the right hand side is upper bounded by e−1.5c/2. Thus,

e−1.5cm̂|p̂− p| ≤ 16 log2(mmax/β)

3sε′
+

8 log(1/β)

3sε
+ 8

√
m̂p log 1

β

s
+

16 log 1
β

s
.

If s ≥ 128e3c

α2 log 3
β + 32e3c

γε′ log2 3mmax

β + 16e3c

γε log 3
β ,

|p̂− p| ≤
√
pα2

m̂
+
α2

m̂
+
γ

m̂
.

In the end we get a result similar to Lemma 3.

Theorem 15. Let ε ≤ 1 and k ≥ m̂. There exists a polynomial time (ε, δ)-differentially private
algorithm A such that

SAm,α,ε,δ = O

(
log2 kmmax

α
·

(
k

m̄α2
+

k√
m̄εα

√
log

1

δ

))
.

Proof. Like the algorithm for the dense regime, we first use ε1 = ε
2 budget to estimate ŝ, m̂. Then

we define the following parameters,

ε2 =
ε/2

8
√

min(k, m̂) log 1
δ/2

, β =
α

40k
, α′ = min

(√
m̂α

8
√
k
, 1

)
, α′′ =

α

240
, γ =

m̂α

8k

The proof follows similarly as Theorem 8.

Algorithm: For every symbol we first calculate the probability using the algorithm in Theorem 13
with ε′ = ε1, ε = ε2, α = α′′ and error probability β. If the estimated probability is less than 2/m̂,
we use the algorithm from Lemma 14 with ε′ = ε1, ε = ε2, α = α′, γ = γ, and error probability β.
Let p′ be the output of the first step and the p′′ be the output of Lemma 14. The error of the algorithm
is

|p− p̂| = |p− p′|1p′>2/m + |p− p′′|1p′≤2/m.
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Sample complexity: The sample complexity would be the sum of sample complexities of Theorem
13 and Lemma 14 with appropriate parameters. Hence,

s ≥ 128 log2(mmax/β)

3α′′ε1
+

32 log(80mmax/cα
′′β)

α′′2
+

64 log(80mmax/cα
′′β)

3α′′ε2

+
128e3c

α′2
log

3

β
+

32e3c

γε1
log2 3mmax

β
+

16e3c

γε2
log

3

β
.

Hence, for a sufficient large constant b, if

s ≥ b log2 kmmax

α
·

(
k

m̄α2
+

k√
m̄εα

√
log

1

δ

)
.

Note that since k ≥ m̂, the above bound implies that s ≥ b
√
m̂, hence the bound also satisfies

conditions in Lemma 14 and Lemma 10.

Following the same argument as Theorem 8, the algorithm after we obtain ŝ, m̂ is (ε/2, δ/2) private.
Using the naive composition theorem, the entire algorithm is (ε, δ) private.

Utility follows by the argument in Theorem 8 with m replaced by m̂.
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