Appendix: Learning discrete distributions: user vs item-level
privacy

A Proof of Lemma 1

Note that p; = (N; + Z;)/(sm). Thus,
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The first term is upper bounded by +/k/(sm) from classic learning bounds for discrete dis-
tribution, which can be obtained by applying the Cauchy-Schwartz inequality, and noting that
N; ~ Bin(sm, p;),
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For Laplace mechanism, Z; ~ Lap(2m/e), we have E|Z;| = 2m/e. Thus,

) k 2k
E[t(p,p)] </ — + —.
sm  se
For Gaussian mechanism, Z; ~ N (0, 02) where 02 = 41og(1.25/8)m? /e2. Using Jensen’s inequal-
ity we have E|Z;| < \/E[Z?] = 0. Thus,

E[l1(p,p)] < \/ % + 0 (Skg log ;) )

Setting the right hand side of the above inequalities to be < o and rearranging the terms we obtain
the desired lower bound on s.

B Lower bounds

B.1 Proof of Theorem 4

The proof of Assouad’s Lemma relies on Le Cam’s method [Le Cam, 1973, Yu, 1997], which provide
lower bounds for min-max error in hypothesis testing. Let P; C P and P2 C P be two disjoint
subsets of distributions. Let f : X {1, 2} be an estimator of the indices, which receives s samples
and predicts whether the samples come from P; or P,. We are interested in the worst case error
probability

P.(6,P;,P2) = max max Pr (0(X®)#1).

i€{1,2} pEP; Xs~p*
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Theorem 9 ((z, §)-DP Le Cam’s method for restricted tests). Let p; € co(P;) and p§ € co(Ps)
where co(P?) represents the convex hull of P? := {p® : p € P;}. Let (X*,Y?®) be an f—coupling
between p; and p§ with E[dy,(X*®,Y®)] = D. Then fore > 0,6 > 0, any f-restricted (¢, )-DP
hypothesis testing algorithm 0 must satisfy

. 1
P.(0,P1,P2) > 3 max{1 — drv (p},p3),0.9¢ P —10Ds}.

Proof. The first term follows from the classic Le Cam’s lower bound (see [Yu, 1997, Lemma 1]).
For the second term, let (X*,Y?®) be an f-coupling of p§, p5 with E[d,(X?®,Y*)] < D. Define
W = {(2z%,y®)|dn(2®,y°) < 10D} as the set of realizations with Hamming distance at most 10D.
By Markov’s inequality,

> Pr(a®,y°) =Pr(da(X*,Y*) > 10D) < 0.1 (6)

(z,y*)¢W
Let x°, y°® be the realizations of X *® and Y ® respectively and define
Pr(z®,y®) := Pr(X°® = 2°,Y?° = ¢°).

To avoid confusion, we let (X’)* and (Y”)* be random variables from p; and p§ respectively. Let

pr=_Pr (6((x'))=2)

(X7)*~pi
be the error probability when the underlying data is from distribution p§. Similarly define S =
Pryrysmps (0((Y')*) = 1). Then

B = (X/EI‘NP;(H((X/)S) — 2) — PY(Q(XS) _ 2)

= ) Pr(X* =2"Y" =) Pr(0(X°) = po| X* = 2°)
l\b yé

> Y Pr(X° =2V =y) Pr(f(X*) = po| X* = 2*).
s, ysew
Next we need the group property of differential privacy.

Lemma 3 (Acharya et al. [2020] Lemma 18). Let 6 be an (¢, §)-DP algorithm, then for sequences
x®,y® € X® such that dp(x®,y®) < t, we have for all subset S of the output domain,

Pr(A(y®) € S) < e Pr(A(z*) € S) + otes* Y,

Note that

1—B,= Pr (B((Y")®)=2)=Pr(B(Y*) =2).
(Y7)s~p3
By Lemma 3 and (6),
1— 5= Z Pr(z®,y°) Pr(é(YS) =2|Y* = y%) + Z Pr(z®,y°) Pr(é(YS) =2Y* = y*)
(z°,y°)gW (z=,y°)EW
<01+ Y Pra®y)(e! P Pr(f(X®) = 21X* = #*) + 10D5e510PY)
(z=,y°)ew
< 0.1+ B1e'P +10Dse! =P,
Similarly we have
1= B1 < 0.1+ Bee'%P + 10D <P
Adding the two inequalities and rearranging the terms we obtain
1.8 — 10D6e!0sP
1+ el0eD

By + B2 > > 0.9¢71%°P _10Ds,

which yields the desired lower bound.
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We now have the necessary ingredients for the Assouad’s lower bound. The final step is to apply the
classic Assouad’s Lemma [Yu, 1997]:

Theorem 10 (Assouad’s Lemma). Consider a set of distributions Py indexed by the hypercube
V = {£1}*. Using the same definitions as in Theorem 4, Vi € [k], let ¢; : X — {—1,1} be test
for p%; and p® ;. Then for any estimator ¢

sup Exerpe L(0(p), g inf( Pr (6:(X*) £ 1)+ P (ei(X*) £-1). ()
peEP i—1 bi X Np+1

Note that the summand in (7) is the error probability of hypothesis testing between the mixtures p? ;
and p® ;. Applying Theorem 9 completes the proof.

B.2 Detailed proof of Theorem 1

Proof. Let Py be given by (5). For p, € Py, let ¢, = 6(p,,) be the underlying discrete distribution
over k symbols. Then for u,v € V,
12a L2
el(a(pu)a a(pv)) = él(‘]uv QU) = k ; [uz # 'Uz}

as one different coordinate between ¢, and ¢, leads to [; distance of 12a/k. Therefore 7 = 6a/k.
Define the mixtures as

s 2 s 2 s
Py = M Z Py p— ‘Vl Z Py-

veEViv;=+1 veEViv;=—1
It is helpful to look at the underlying distribution of all samples from users.

2 2
L L A (R SR
VI W
veEViv;=+1 veEViv;=—1

Note that p3 ;, g5, are not necessarily product distributions.

By [Acharya et al., 2020, Lemma 14 ], there exists a coupling (U*™, V*™) between ¢77' and ¢°'}'
such that E[dh(U“m V™) < 6asm/k (each U;, V; € [k]). We construct X° = [Xl,.. Xs] and
Y® = [Y1, ..., Y] using this coupling (each X, Y; € R* is the count of symbol i € [k]).

For each realization of U™ V*™ suppose there are [ different coordinates, i.e. dj, (U™, V*™) =,
we move all different coordinates to the front so that only the first [{/m] < [/m + 1 users would
have different data. Name the rearranged sequence as (U’)*™, (V/)*™. Then we let user u get data
from the m(u — 1) + 1 to mu coordinates of (U’)*™ and (V')*™ respectively and compute the counts
of each symbol to obtain X*, Y*. Therefore,

1
E[d (X7, V)] < —E[d, (U™, V)] +1 < GSTa +1.

Rearranging the coordinates of U*"™, V*™ would not change the total count N, and hence (X*,Y®)
is an N-coupling. As a result.

sup E[t1(p, p)] > 30(0.9¢~105(052/k+1) _106(6s50r/k + 1)).

Choosing o = mln{m, 1} yields,

k 0.1¢e 0.16
E[¢ p)| > mi — 1 0.9 — —10e p — —— — 108
,S,Eg [ (p,P)) = mm{2003(€+6)’ } ( exp{ e+d E} e+4d >
When € + § < 0.07,

k 0.1e 0.16
E[¢ p)| > min{ ——. 1 911- -1 - —— —108
Egg [£1(p, )] _mm{ZOOS(E—i—é)7 }<09< e+4 05) e+4d 0 >

k
> mi P E——
= i { 200s(c + 0)’

k
>01mind - 1%,
=0 mln{2003(5+5)’ }

1} (0.9 — 0.1 —10(c + 4))

15



Setting the left hand side to be at most « and rearranging the terms, we obtain the desired lower
bound for s. O

B.3 Fano’s Lower bound for restricted differentially-private estimators

In this section we provide learning lower bound for restricted estimators under pure differential
privacy using Fano’s method. First we provide a theorem for restricted estimators like the one we
proposed for Assouad’s, which might be of general interest.

Theorem 11 (¢-DP Fano’s lower bound for restricted estimators). Given a family of distributions P

over X parameterized by 0 : P — ©, and let 0 be an f-restricted estimator. Let V = {p1,...,pm} C
‘P such that for all i # j,

1. £(0(pi), 0(p;)) =

2. drr(pi,p;) < B

3. there exists an f-coupling (X°,Y®) of pi, p§ such that E[dy(X®,Y?) < D]
then

L(P,l,e,0) := inf sup Exsps {E(@A(Xs), H(p))}
6 peP

o B+ log2 . M
>maX{2 (1—10g]\4>,04am1n{176105[)}} (8)

Proof. The first term of (8) follows from the non-private Fano’s inequality. We now prove the second
term. For an observation X*® € X*
p(X?) := argmin £(0(p),0(X?))
peEV
is the distribution in P closest to the output of our estimator. Since we require that 0 to be e-DP, pis
also e-DP. By triangle inequality, for all p € P

L(0(p), 6(p)) < L(B(H), B(X?)) + L(B(p), H(X?)) < 26(6(p),H(X*)).
Thus

sup Exe pe [Z(é(XS), o(p))] > max Exenpe [e(é(XS), 0(p))
peEP pe

v

% max Ex, [(6(0). 6(0))]

a ~ s
5 max Pr ((X7) # p)

> 537 2 P (6(X7) £ ). ©)
peEY

v

Let 8; = Prxs~p: (B(X®) # pi). For a fixed j # i, let (X*,Y?) be the f-coupling of p;, p] in
condition 3. By definition, for (X")® ~ pf, we have (X')® ~; X so that p((X’)*) and p(X*) have
the same distributions, i.e. for all p € V,

WP (B = p) = PrH(X) = p).

Same holds for p(Y*) and p((Y”)*) such that (Y')* ~ ps.
By Markov’s inequality,
Pr(d,(X°,Y*) > 10D) < 1/10.
Let W := {(z°,y°)|dn(2®,y®) < 10D} and Pr(z®,y°) := Pr(X?® = 2°,Y® = ¢*). Then

1-Bj=_Pr (p((Y')")=p;) =Pr(p(Y") = p;)

(Y7)s~p3
< > Pty )Pr(p(Y) =plY =y )+ > Pr(a®y’) - L
(z,y°)EW (z°,y%)¢W
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Therefore
> Pr(ay) Pr(p(Y*) = p,[V* =y*) > 0.9 - ;.
(zs,y%)ewW
Furthermore

Pr (p((X')*) = p;) = Pr(p(X*) = p;)

(X7)s~p?
> > Pr(a®, ") Pr(p(X®) = p;|X* = 2°)

> > Pr(atyt)e P Pr(p(Y?) = p, [V =)

> (0.9 — B;)e 10D,

where the second inequality is due to p is e-DP and dp, (2*,y*) < 10D. The above inequality holds
for all j # 4. Thus summing over all j # i we obtain

B = Pr (p(X*)=p;) > [0.9(M —1) = > 8; | e 0P
j#i I J#i
Summing over all ¢ € {1, ..., M}

M
Zﬂz =z (O 9M 1) — (M — 1) Zﬂ») e~ 10D

Rearranging the terms

0.9M (M — 1) M
ZBZMOSMHHH{ elOED}

Combining with (9) gives the desired lower bound. O

Proof of Theorem 3. We apply Theorem with f as the identity mapping. In this case it is the same as
[Acharya et al., 2020, Theorem 2].

Assume k is even. From Yu [1997], there exists V C {—1, 1}’“/2 and a universal ¢y > 0 such that
[V| > exp(cok/2), each pair at least k/6 apart in Hamming distance. Given « € (0,1/6), define
a family of multinomial distributions P,, which consists of the following distributions indexed by
v= (V1. Vgs2) €V,

1
p, = Mul (m, —(1+43avy,1 —3avy, ..., 1+ 3avy, 1 — 3auk/2)> .

7

Forv € V, let ¢, = 6(p,) be the underlying k-ary distribution. Thus for each pair of distributions
Du, Py from this family we have ¢1(0(py), 0(pv)) = ¢1(qu, qw) > 12a/k - k/6 = 2a. Furthermore,

k
dicr(aulla0) < X2 (qullan) = Y~ —)) < 10002,

=1
dir(pullpe) = mdkr(qullgs) < 1007710427
dr(P3|Ip}) = sdir(pullpy) < 100sma’.

Since f is set to be the identity, we just need to design a coupling with appropriate Hamming distance
for each pair p;,, p;, u,v € v. To this end we need the following lemma from den Hollander [2012].

Lemma 4 (Maximal coupling, den Hollander [2012]). Given distributions qi, g2 over some domain
X, there exists a coupling (X°,Y?®) between ¢; and 5 such that

E[dn(X*,Y?)] = s -drv(q1,q2)-
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From Lemma 4 there exists a coupling (X *, Y®) between p?, and p? such that
E[dh(Xsu YS)] =S dTV(pu7p'u)~
Using Pinsker’s inequality, we have
1
dry (puspo) <4/ 5dicr(pullpe) < 10vma.

Therefore E[dp, (X *,Y*)] < 10sy/ma. Applying Lemma 11 yields,

. 100sma? + log 2 . ecok/2
IsjggE[fl(p,p)] > max {a (1 B — ,0.8amin< 1, to0ssvima [ [

Note that this holds for all ow. Choose o = min{3, 4/ *Yanda = min{, 200‘;"%5} respectively
we get

k k [k k
"N [k k| _ k. .
EggE[ﬁl(p,p)] > max {CH Sm702 Se} Q ( iy sﬁe)

Given desired accuracy a, setting sup,, p E[¢1(p, p)] < « gives the desired user complexity bound.
O

C Bounds on total variation between binomial distributions

We divide the proof of Theorem 5 into two parts. We prove the upper bound in Lemma 5 and the
lower bound in Lemma 8.

We first prove an upper bound on the total variation distance between binomial distributions in terms
of the parameters.

Lemma 5. There is a constant b such that for all m and p, q,

£1(Bin(m,p), Bin(m, q)) < 2min <m|p —ql, m, 1) .
p(1—p)
Proof. First observe that by definition,
¢1(Bin(m, p), Bin(m, q)) < 2. (10)
Secondly, since /7 distance of product distributions is at most the sum of ¢; distances,
41 (Bin(m, p), Bin(m, q)) < m - {1 (Ber(p), Ber(q)) < 2m|p — ¢|. (11)

Finally, by Pinkser inequality and the fact that KL divergence of product distributions is the sum of
individual KL divergences,

£1(Bin(m, p), Bin(m, q)) < \/; - D(Bin(m, ¢)||Bin(m, p))

_ \/Tg - D(Ber(q)||Ber(p))

— )2
< m(p —q) : (12)
2p(1 —p)
where the last inequality follows by observing that

D(Ber(q)|[Ber(p)) = glog -+ (1~ q)log

= qlog (1+qp) +(1—q)log <1+pq)
p L—p

q—p p—q
S q- —— + 1— q) ——
’ 1-9)-7 —
)2
_a-pn" (13)
p(1—p)
Combining (10), (11),and (12) yields the lemma. O
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Lemma 6. Let c be a constant. If mp < cand p < 1/2, then

3c

. . € 2 .
£4(Bin(m, p), Bin(m, 4)) = < min (mip — g, 1).

Proof. By definition,
¢1(Bin(m, p), Bin(m, q)) > |(1 —p)™ — (1 — ¢)™|.
We first consider the case ¢ > p. Simplifying the above bound,

I-p"-1-g¢m=00-p™ (1 - 8 Tﬁ;:)

(-15))

> (1= p)™ min(m(q — p),0.5)

@
> e 5P min(m(q — p), 0.5)

(e)
> e~ min(m(q — p),0.5).

(a ) follows by 1 — x < e~® and (b) follows as p < 1/2. (c) and (d) follows as e 1°% < 1 — x for
x < 1/2. (e) follows by the bound on p. For ¢ < p,

" 1)

— p)m

a—@M—u—mmzu—mm(

(1
(1
o ((+2) 1)
>(1-p)™ 1+p—61)m—1)
(g (1=p)"m(p—q)
> e ™ Pm(p — q)
> e m(p — q),

(a) follows from the Bernoulli inequality: (1 + z)™ > 1 + na for ¢ > —1. The last inequalities are
similar to the last two inequalities for ¢ < p case. Combining the above two results, we get

(1—g)™ = (1—=p)™| > e~ 15 min(m|g — p|,0.5). (14)

O
Lemma?7. Letc>2,m >3, andp < 1/2. If mp > ¢, then

£1(Bin(m, p), Bin(m, q)) > ﬁmn <\/>(|f_q)| )

Broqf Letq' =p+ /& ifqg>p+ & d =p— /& ifa<p— /&, else ¢ = q. Since ¢

lies in between p and ¢,

£1(Bin(m, p), Bin(m, q)) > ¢1(Bin(m, p), Bin(m, ¢)).
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Furthermore, observe that

3 1 1 q 1 1 5
Sl ——<1l—y/—<E <14/ —— <1+ —=< 5.
47 VB~ 8pm ~ p ~ 8pm V8c ~ 4
By [Adell and Jodrd, 2006, Proposition 2.3], for any two binomial distributions,
max(p,q’)
{1 (Bin(m, p), Bin(m,q")) = m Pr(Bin(m — 1,u) = k — 1)du,
u=min(p,q’)

, where [mmin(p, ¢')] < k < [mmax(p,q’)]. Furthermore, observe that
[mmin(p,q')] > [mmin(mp, 3mp/4)] > [3/2] > 2.
Similarly,
m—k > m—[mmax(p,q')] > m—[bmp/4] > m—1-5mp/4 > m—1-5m/8 > 3m/8—1 > 1/8.

Since m — k is an integer, m — k > 1. In order to bound the above quantity further, we first lower
bound Binomial coefficients.

. m m—
Pr(Bin(in,p) = 1) = ('} )1 = )",
Recall that by Sterling’s approximation, for all m > 1,
V2rm™mT0%e™™m <l < em™ 0™,

Henceforl <k <m —1,

(0) = mom

- \/ﬂ mm+0.567m
62 kk+0.5e—k(m _ k)m—k-‘r()ﬁe—m-‘rk:
V2T 1 1
eQ\F Vk/m «/1—k:/m (k/m)*k(1 — k/m)m—
Hence,
/9 1 k 1— m—k
Pr(Bin(m,p) = k) > — . : P ]5 r) —
2 im SR =k (k)R — kjm)™
_ VT 1 . e=mD(k/mllp)
e2vm  \/k/my\/1—k/m
> vV 21 1 7m(k/gt—1>))2
. .e p(l—p
= aym ki kjm
S V2T ) i e (k/g: p))2
=2 Uk

The second inequality follows from (13). Hence for [mmin(p, ¢')] < k < [mmax(p, ¢')],

V2 1 m (=D /(m=1) —u)?
Pr(Bin(m,u) =k —1) > ;T : e w(i—w)
e k-1
(@) 24/27 1 =1/ (m—1)—u)?
> . e w(l—w)
— b5ez2 . /mp
Q\f 1 m =1/ Gn =)= )

. e u(l—u) ,

= 32 mp(1 —p)
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where (a) follows by observing that k — 1 < [mmax(p,q¢’)] — 1 < mmax(p,q’) < 5mp/4.
Furthermore, since 3p/4 < ¢’ < 5p/4 and the minimum of u(1 — «) occurs in the extremes,

min uw(l—w)> min  u(l—u)
min(p,q") Su<max(p,q’) 3p/4<u<5p/4
1-— 4 1-— 4
> min(( 3p/4)3p (1—5p/ )5p)
4 4
S 15p.
- 32
We now bound ((k —1)/(m — 1) — u)?.
k-1 k , 1 ) ,
max 2Ly < &y < max(p,q') + = — min(p, ).
v m—1 m m
Similarly,
k-1 k—1 in(p, )
min - — min
TR m— b,q
k m—k (p.q)
= — — max
m  m(m—1) P4
ko1
> — 4 — —max(p,q)
m
1
> min(pv q/) + == ma‘X(pa q/)

Hence, since (a + b)? < 2a? + 2b2,

k 2 2 | 2
T_u) <2 ,¢') — min(p, ¢’ —.
max (m u) < 2(max(p,q') — min(p,q’))” + 3
Hence,

o (k=) /(m—1)—w)? _8m(_1_ 2 _64m (_1 P 32 _ 8
e m w(I—w) >e p (m2+(P q’) ) 2 e 1517(7n,2+8m) Z e 15 15 Z 678/3,

Combining the results, we get

max(p,q’)
{1 (Bin(m, p), Bin(m, q')) =m Pr(Bin(m — 1,u) = k — 1)du

u=min(p,q’)
N @ /max(p,q’) o om
- 2¢2 u=min(p,q’) m
S \/77'678/3 vmlp — |
= 2¢2 p(1—p)

L mete (Wl)

52 min m, 7R

>Mmin m 1
T 2y/8e? p(I—p)’

1 —
> Lo (YRl )
350 i-p)
Lemma 8. For all m and p, q,

. . 1 Vmlp —q
¢1(Bin(m, p), Bin(m,q)) > 350 0 (m|p —ql, \/ﬁa 1) .
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Proof. Form < 700,

¢1(Bin(m, p), Bin(m, q)) > £1(Ber(p), Ber(q)) = 2|p—q| > 350 min <m|p al, \F|P q| ) 7

p(1—p)
Hence, in the rest of the proof, we focus on m > 700. Furthermore, since
£, (Bin(m, p), Bin(m, q)) = ¢1(Bin(m, 1 — p), Bin(m, 1 — q)).

and the bound min ( m|p — VAT ] 1 ) is symmetric in p and 1 — p, it suffices to prove the
o ( lp—ql, Jrip) y p p p

result for p < 1/2.

Let ¢ = 2. The proof for mp > cis a direct consequence of Lemma 7. The proof for ¢ < 2 follows
from Lemma 6. O

D Analysis of the algorithms

D.1 Proof of Theorem 6

We first state the following guarantee on private hypothesis selection from Bun et al. [2019].
Lemma 9 (Bun et al. [2019]). Given d distributions p1, ps, . . ., pq and n independent samples from
an unknown distribution p, such that min; ¢1(p;, p) < «, Algorithm 1 returns a distribution p; such
that E[¢1(p;, p)] < 4a, with probability > 1 — (3, if the number of samples satisfies,

_ Slog(dm/B) _ 8log(4m/p)

- a? ag '
Furthermore, Algorithm 1 is (e, 0)-differentially private.

Proof. The privacy guarantee follows by [Bun et al., 2019, Lemma 3.2]. The utility guarantee is
obtained by applying the high probability utility bounds from [Bun et al., 2019, Lemma 3.3] and

setting ¢ = 1. O
Let c be the constant in the lower bound of Theorem 5. Let P = {0, 55, 225%, ..., 1]} be a cover
of [0, 1] Note that such that for every p, there exists a p’ € P such that
win (mlp — 1, Y21 1)
p(1— p) 10

Let Q = {Bin(m, p) : p € P}. Then by Theorem 3, for every Bin(m, p) there exists a Bin(m, p) in
Q such that

¢, (Bin(m, p), Bin(m, p') < g‘"
Hence, by Lemma 9, if

P <810g(20;n/aﬁ) N 810g(20m/aﬁ))
o Qe
there is an algorithm that returns a distribution Bin(m, p) € Q such that

4
£1(Bin(m, p), Bin(m, p) < %,

with probability > 1 — . Therefore, by the lower bound in Theorem 5, the resulting p satisfies
vmlp —pl 4 e
p(1—p) 5

with probability > 1 — 3. Since ¢ < 1, this implies that with probability > 1 — 3,

da 1 vp(l—p)
lp — p|<5max<m m)

The expectation bound follows by setting 5 = «/5m:
. 4o 1 +/p(1—0p) « 1 +/p(1—p)
E — < —m —_ |+ — < am .
lIp = 1] 5 X (m’ vm 5m T\ T Vm
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D.2 Proof of Theorem 7
! £ \/Ra : =
Let e = T m and @' = min (—2 R 1) We apply Theorem 6 for each symbol k with e = ¢

and o = o’ Then, we have an estimate py, po, . . ., Pr, such that

Elt1(p, p)] ZEIPZ Pil]

1 pi(1—pi)
< o I A S
—O‘ZZ_ ma"(w Jm
1
<o

/ /
<ak‘+a\/E
~m vm

< a,
where the penultimate follows from Jensen’s inequality. The differential privacy bound follows
from strong composition theorem (see [Kairouz et al., 2017, Theorem 3.4]) and using the fact that
e < 2¢.
D.3 Proof of Lemma 2

Let p be such that
(1 -p)™ = max | min L E 1 + z 11,0 (15)
_ — max - B =
p s o N (u)=0 57 ) )

Where Z is a Laplace noise with parameter 1/¢. Hence the algorithm is (£, 0)-DP. Hence,

(1=p)" = (1 =p)"| <

1Zl 42 (1—p)™
s & N(u)=0 S p

Hence, by the tail bounds of the Laplace distribution, with probability > 1 — 23,

ZlNu) o—(1—p)".

Furthermore, by Bernstein’s inequality with probability 2 1-—2p,

1 . log + log +
22 Ivw—o = (1-p)"| <4 ﬁ+4\/ S (1=p)m(1 = (1= p)m),

s s
Since 1 — (1 — p)™ < mp, we have with probability > 1 — 44,

o - mplog 1 logi logi
(A=) = (1 -p)" <4 St —
S S se

Combining with (14), with probability > 1 — 4/,

mplog L logi log+
e~ 15 min(m|p — p|,0.5) < 44/ Byg—0 4 66 .
S s S

If s > 64e3“mlog %, then the RHS is at most e ~1°¢ /2. hence,

mplog £ logl logl
671'5Cm|ﬁ—p|§4\/ P g5+4 gﬁ—i— gB.
s s se

23

lo
(1 —p)™ — (1 p)"| < gﬂ




If s > %fclog%JrLesclogﬁ

e B
R a2 a2
-l <y
m
D.4 Proof of Theorem 8
Parameters: We first define few parameters. Let ¢/ = ———=—— 3 = ﬁ, o =
84/min(k,m) log %

min (‘gmﬁj‘,l), o = 5. andy = 22 Letc = 4/m.

Algorithm: For every symbol we first calculate the probability using the algorithm in Theorem 6
with e = &/, & = & and error probability 3. If the estimated probability is less than 2/m, we use the
algorithm from Lemma 2 with e = ¢/, & = o/, v = =, and error probability 3. Let p’ be the output
of the first step and the p be the output of Lemma 2. The error of the algorithm is
p =l =p = 0'[Lps2/m + 0= P 1y </m.

Sample complexity: The sample complexity would be the sum of sample complexities of Theorem
6 and Lemma 2 with appropriate parameters. Hence,

16 log(20m/a”B)  16log(20m/a” B) e 3

o2 + alle! log B

Hence, for a sufficient large constant b, if

s>blo fem i +L\/10 E
=008, ma?  y/mea &5

Note that since k£ > m, the above bound implies that s > by/m, hence the bound also satisfies
conditions in Lemma 2.

16@301 3
—log —.
B

Differential privacy: We first provide the privacy guarantee for this algorithm. First observe that
since p’,p”" — p is a Markov chain, by the postprocessing theorem it suffices to provide privacy
guarantee for releasing p’, p”. Consider releasing one of them, say p’. For any two neighboring
datasets differ in at most min(m, k) symbols. Let these datasets be D and D" and S(D, D’) be the
set of symbols where they differ. For these datasets,

Pr(p'|D) 11 Pr(p| D)

ansl / AN

Pr(p'lDY) s by PE@ID)
Hence it suffices to apply strong composition theorem for this subset of size min(m, k) and the rest
of the proof is similar to that of [Kairouz et al., 2017, Theorem 3.4]). The proof is similar for p” and
hence the result.

Utility: To analyze the utility, we divide the symbols into three sets Ay = {i : p; > %}, Ay ={i:
2 >p; > =} and Ag = {i:p; <

Utility-large: Consider the set A; with symbols whose probability is greater than 4/m, for such a
symbol, by Theorem 6, with probability > 1 — 3,

| P
|p_p/‘ <o 2.
m

Hence p’ > p — o/ £ > = Hence, for such a symbol with probability > 1 — 3,

7”/
. p
p—pl=Ilp—p|<a"”y/=.
m

Utility-medium: Consider the set A5 with symbols whose probability in [1/4m,4/m]. For such a
symbol, then with probability > 1 — 24,

lp — p| < max(|p—p'l,|p—p

2all
,/ +a,/ +—+—

5a’ ¥

= 4m — 4m

//|

IN

IN

m m m
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Utility-small: Finally consider symbols whose probabilities are smaller than 1/4m, for these sym-
bols, with probability > 1 — £,
1

(67
Ip — p|<*-

and hence p’ < p + % < 3/2m < 2/m. Hence only the second algorithm is used. Hence with
probability > 1 — 2/, the error is at most,

2
. P« ~
p—pl=lp—p'|<dy/ =+ —+—.
m m m

Summing over all symbols yield,

t(p,p) < lez bil

s}jm—m+§:m—m+§:m—m

1€A; 1€A, 1€A3
i 5a
S S S N e
i€AL i€Ag i€A3
k ka? k
< 28a" + o <\/+1> <y
m
Lo o a a
-8 8 8 8
!
< —.
-2
Hence, by the union bound, with probability with 1 — 20k,
. o
bLpp) < 5.
Therefore in expectation,
@
E[t1(p,p)] < 5T 20kB < a.

E Extensions

In this section, we modify our algorithms for the scenario when users have different number of
samples. Let my,,x be a known upper bound on the number of samples a user has. For a value m, let
S be the number of users such that m,, > m. Let m be the median values of m,,. We first state the
main result, an analog of Theorem 2.

Theorem 12. Let ¢ < 1. There exists a polynomial time algorithm (e, 0)-differentially private
algorithm A such that

km k k 1 \f 1

A 2 max

=011 _ —_— 1 lo . 16
Sinae.d ( % & fax (ﬁwﬂ + Vmae \/ 85 i) 6)) (16)

First we use £/2 privacy budget find 712, a private estimate of 7, and §, an estimate of sy, (the quantile
of m). We only keep the users with at least 1m samples, and select /i samples from each of them.
Hence we reduce the problem to the case when users have the same number of samples. Then we
modify the algorithms for both the dense and sparse regimes so that they are differentially private
even if the number of samples of a particular user changes. We use the remaining privacy budget for
the modified algorithms. The privacy guarantee follows by the composition theorem.

We first provide the algorithm for privately estimating m and the quantile of estimated m, which
serves as a stepping stone for extending our algorithms to variable number of samples per user.

Lemma 10. Let s > w There exists a polynomial time (&, 0)-algorithm that returns M
and § such that with prabablltty > 1 — 3, the following holds,

. < 2log? mmax/67

3s
|§ — sm| <
€

;82> 3 a7)



Proof. Divide {0,1,2, ..., Mmax} to bins b; such that by = 0,5y = 1 and b; = 2% b;_; fori > 1.
There are v = log muy,ax buckets.

For any two adjacent datasets, [to, t1,t2, . . ., t,] differ by two. Hence, we can add Laplace noise with
parameter 77 = 2/¢ to each of them to obtain DP estimates. Let this be [t(, t], . . ., . ].

By the tail bounds of Laplace distribution and the union bound, for each i with probability 1 — 3,
v
|ti —ti] < nlog —.
< nlog g

Furthermore, for any cumulative sets,

v
;ti - gt; < ; |ti — ;] < nulog I
) 2] =}
Let 5* be the largest j such that
Zt; >2 m}log%.
(4]

The algorithms return § = 3, ... ¢; and 7 = b;-. Then by the assumption on s:

LS logMmax . S s 3s
>-——=1 log—=——"2 > - — — = —,
By the above cumulative equation sum,
15 — 85| = Zti* Ztg gnvlogg.
12>5% 127* B
s v v oS
Spy = Zti: Ztg— Z(t;—ti) > B —nvlogg—m)logg > T
125" 25" 25"

Note that by definition of j*, >°,- ..\, t; < /2 — vlog(v/B), and that bj 11 = 2bj» = 21h, thus:

s v voos
Som = Z t; = Z t, — Z (t;fti)gifnvlogEer)logB:i.

i>5*+1 i>7*+1 i>7*+1

Hence 2m > m. This completes the proof. O

We proceed to discuss the algorithms for dense and sparse regimes. After we obtain §,m from
Lemma 10, we choose the algorithm depending on the relation between k and m: if & < m, we use
the algorithm for the dense regime; otherwise we use the one for the sparse regime.

E.1 Dense regime

We first modify the hypothesis selection algorithm in Bun et al. [2019]. We cannot apply it directly
because to ensure privacy, we cannot use the true number of users s;, and need to replace it with its
private estimate 5. Hence we prove the following lemma to cope with this situation.

Lemma 11. Let 3, 1iv satisfy (17) withe = £'. Given d distributions p1, pa, . . . , pq and s independent
samples from an unknown distribution p, such that min; ¢1(p;,p) < «, there exists an (&,0)-DP
polynomial time algorithm that returns a distribution p; such that {1(p;,p) < 4«, with probability
> 1 — B, if the number of samples satisfies,

2
4> 128108 (mmus/6) | 32log(4d/3) | 641o5(1d/3)
3ae’ o? 3ae

Proof. Let H and H' be two distributions over the domain X" and define the Scheffe set
Wy={zxeX:H(x)>H(x)}
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Define p1 = H(W)), po = H' (W), for some distribution P define 7 = P(W);). Note that p; > po
andp1 — P2 = dT\/(H, H/).

Let D be a dataset of size sy drawn i.i.d. from P. Define the following quantities which serve as
empirical estimates of P(WV;),

. 1 1
PWy) =17 := §|{x eD:xeW}, PuW):=15:= S—|{x €D:xeW}.

Let ¢ > 0 be the approximation parameter. Consider the function

>

p1—Dp2 < (24 Qa;

I'«(H,H D)= {§ -max{0,7 — (p2 + (1 +(/2)a)} otherwise.

According to [Bun et al., 2019, Lemma 3.1, Lemma 3.3], f‘g has the following properties,
Lemma 12 (Bun et al. [2019], Lemma 3.1). If dpy (P, H) < «a and |7 — 7| < (a/4, then
[¢(H,H', D) > (ai/4.

Lemma 13 (Bun et al. [2019], Lemma 3.3). If drv(P,H') < «,
T(H,H',D) > 0, then dpy (H,H') < (2 + ()a.

7 — 17 < Ca/4, and

Define the score functions for each H; € H

S(H;,D) = }}Eier%{ U (H;, Hy, D).

Output a random hypothesis H according to the distribution

Pr[H = H;] « exp (S(h;jg’D)> .

First note that if dpy (P, H) < «, then using Hoeffding’s inequality, we have with probability at least
1 — 2exp(—sm(%a?/32),

|7 — 7| < Ca/8.
Assume that there exists H* € H such that dpy (P, H*) < . Define W, = {z € X : H*(x) >
H;(x)}. Conditioned on that the inequalities in Lemma 10 hold, by the union bound, with probability
at least 1 — 2d exp(—s,(%a?/8) > 1 — 2d exp(—s(2a?/32) over the draws of D, for all j we have

|P(W;) — Pa(W;)| < Ca/8.

Due to the inequalities in Lemma 10, the following holds uniformly for all j,

. 1 1 | —sm| 16 10g2(mmax/ﬁ)
P i) — Pm N<|=—— m — ~ S
POW;) — Pa (W] < |- Sm# - 5ot
128 log? (Mumax /8) P
Hence as long as s > T Sta the above quantity is bounded by (/8. We have

. . Ca
[POWV;) = POV))| < [P(W;) = Pa(Wi)l + [P(W;) = Pa(Wy)l < =
By Lemma 12 we have fg(H*,Hj,D) > (s /4 > 3Cas/32. This implies S(H*, D) > 3Cas/32.

By the utility of the exponential mechanism, with probability at least 1 — 3/2, the output hypothesis
H satisfies
S(H,D) > S(H*,D)
< 3Cas  2log(2d/B)
- 32 €
As long as s > 22 iczg.z((jgl/ﬁ) + & l%gc(jj/ﬁ), together with probability at least 1 — 3, S(ﬁ: D) >0,
which implies that I'-(H, H*, D) > 0. Since in addition dpv (P, H*) < «, we have dpv (H, H*) <
(2+¢)a by Lemma 13 and hence dpy (H, P) < (3+()a. Setting ¢ = 1 gives the desired result. [

_ 2loa(2d/5)
9
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Theorem 13. Suppose there are s users such that user u has m,, i.i.d. samples from Ber(p). Let
S m satlsfj) (]7) with & — 6 Let s > 128 log (mmlx/ﬂ) 32 log(SOn;mmx/aﬂ) + 6410g(80mm1x/aﬁ)

There exists a polynomial time (e,0) dlﬁ‘erentlally private algomhm that returns p such that wn‘h
probability at least 1 — 3,

4 L /p(1—p)
< _ .
lp — Dl 5amax (m =

Proof. We sample m samples from all users that have least m samples. Hence we obtain s,
i.i.d samples from Bin(7i2, p). Let ¢ be the constant in Theorem 5. We then apply the modified
hypothesis selection algorithm in Lemma 11 with the hypothesis class @ = {Bin(,p),p € P}
where P = {0, 2%, 2<@ 1}, The total number of hypotheses is d = %. The sample complexity

7 20Mm 7 20Mm
comes from Lemma 11 and utility follows by the argument in Theorem 6 with m replaced by .

By Theorem 5, for every Bin(7h, p) there exists a Bin(7i, p’) in Q such that
2(Bin(i, p), Bin(i, p') < .
Hence, by Lemma 11, if

128 log2 (Mmax/B) . 3210g(80mmax/af) = 6410g(80mmax/af)
=Q + + :
3ag’ o? 3ae

there is an algorithm that returns a distribution Bin(m, p) € Q such that

4
¢, (Bin(1h, p), Bin(1h, p) < %

with probability > 1 — . Therefore, by the lower bound in Theorem 5, the resulting p satisfies

Viilp — p|
m1n<m|p— Bl o= p) >§5,

with probability > 1 — . Slnce & < 1 and 1 > /2, this implies that with probability > 1 — g,

4o 1 p(1—p) 4o 2 2p(1 —p)
lp—p| < 5 max (m m) < - max (m’ﬁ) )

The expectation bound follows by setting 8 = a/5mmax,
4 2 2p(1 — 2 2p(1 —
EHp_ﬁ” < gmax — p(, p) + - < amax T7M .
) m Vi SMmax m Vi

Theorem 14 (Dense regime). Let k < 7 and ¢ < 1. There exists a polynomial time (g,9)-
differentially private algorithm A such that

km k k 1 vk 1
S 5= O [ log? Zlmax — \/1 \/1 51
0,0 <og o max (ma2 +\/mozg Ogé’ € Og6

Proof. Let 8 > 0 be the probability guarantee to be chosen later. Use €1 = ¢/2 budget to obtain §, i

16 log2 Mmax /B
e/2 .

O

using Lemma 10, which satisfy (17) with probability at least 1 — 3 as long as s >

£ !
8/ (k+1)log(2/6)’ @
applying Theorem 13 with &/ = £1,& = €9, @ = o, with probability at least 1 — k3, for all p; we

have
4 1 1-—
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Define 5 = = min (2@\/5, 1). Under the condition above, by union bound and



as long as

k vVE 1
— Q 1 2 mmax . 18
S <og o8 max (ma2 + 7@52\/%, 52)) (18)
128 log2 (Mmax/B) = 3210g(80mmax/a’B) = 641og(80mmax/a’'B)
> + + .
3a’eq (a)? 3alesy

Note that this satisfies the condition on s in Lemma 10. Together with probability at least 1 — (k+1)5:

6 (p, D) lez pil
20 max 1 vpil—pi)
5% 2 m
4,1 -

S5 %

A A
cA (kR
“ 5\ m N

!
<2§0“[

5 Vi

a,

IN

<

(ST

Choosing 3 = 40%,

B[ (5. p)] < 5+ 20k + 1) =

Plug in €5 and § in (18) we obtain the desired user complexity. Privacy guarantee follows by the
composition theorem. O

E.2 Sparse regime

Lemma 14. Let §,m satisfy (17) with e = €. Let p < min(c/rh 1/2). Let s >
64e3¢ max(c, 1) log% and s log [3 335C log

nomial time (g, §)-estimator p such that with probability at least 1 — B

128e 2 3Mgax 16e
> +

log <. There exists a poly-

pa oy

m ms

lp—p| <

Proof. We modify the algorithm for the sparse regime as follows.

Let U,; be the users who have at least m samples. Similar to (15), we find p such that,

) 1 z
(1 - p)™ = max (Inin (8 > In(w=o + 5 1) ,0) ,
u€EU,s,

where Z = Lap(1/¢). Therefore,

. N 1 Z 5
1-p)" -1 —-p)™ < |= 1 — ——(1=-p™
(1—p)™ = (1—p)™ < %; Nw=0+Z —(1-p)
1 A
< g Z 1N(u 0_7 Z 1N(u |A|
UEU, ueum
+ S p)™|.
muEUﬁL
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From Lemma 10, with probability at least 1 — f3, the first term is upper bounded by

Z 1IN (=0

uEU

1 1

< - <
3se!

S5 s

5 — s, ‘ < 1610g? (Mmax /)

The second and third term are bounded similar to Lemma 2 using Laplace tail bounds and Bernstein’s
inequality. With probability 1 — 44,

|Z

3

1 .
- Z IN@w=0 — (1 =p)™

m u€EU,s,

Ly

mplog L log L
_log(1/B) . [Mwloss  logg
se S S

S

Together with probability at least 1 — 50,
e~ min{m|p — p|,0.5} < |(1 - p)™ — (1 —p)™|

2 mplog % log &
< 1610g (mmax/ﬁ)+log(Al/B)+4 P gﬁ 44 gB

— /
3se Se S S

2 mplog L 16log &
< 16 log (mmax/ﬂ) 4 810g(1//8) + 8\/p7gﬁ+ & B .
3se! 3se s s

The last inequality is due to § > 3s/8 and s,;, > s/4.
If s > 256e3°pr log(3/3), then the right hand side is upper bounded by e~1->¢/2. Thus,

161082 (Max log(1 [1plog &+ 16log
3se’ 3se s s

128¢%° 3, 32e% 1002 Bmmay | 16e®° 3
IstT§10g5+ VZ, log 5+ fg logg,

a? o«
p-pl < B+ 4+ 2L
m m

In the end we get a result similar to Lemma 3. O

Theorem 15. Let ¢ < 1 and k > . There exists a polynomial time (e, d)-differentially private
algorithm A such that

km k k 1
S oes =0 | log? == \log = | |-
m,ae,d (og @ <ma2 + Vmea 85

Proof. Like the algorithm for the dense regime, we first use &1 = § budget to estimate 8, 7. Then
we define the following parameters,

€/2 o , . (\/%a ) " « mao
— a =min [ —,1 |, «

3

2 = , B= ) ) =5 7T on
8\/min(k, i) log 5 40k svk 240 8k

The proof follows similarly as Theorem 8.

Algorithm: For every symbol we first calculate the probability using the algorithm in Theorem 13
with ¢’ = €1, = €3, & = o’ and error probability /. If the estimated probability is less than 2 /17,
we use the algorithm from Lemma 14 with &’ = &1, = €9, @ = ', 7 = 7, and error probability 3.
Let p’ be the output of the first step and the p”’ be the output of Lemma 14. The error of the algorithm
is

lp =l =p =0 Npso/m + p— 1" Np<a/m:
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Sample complexity: The sample complexity would be the sum of sample complexities of Theorem
13 and Lemma 14 with appropriate parameters. Hence,

o 1281og” (Mumax/B) N 3210g(80mmax/ca’” B) n 64 10g(80mmax/ca’” B)

- 305”51 Of”2 30&”52
N 128@301 3 N 326301 9 3Mmax N 16e3c1 3
—F 1l0g — 0, og —.
o BT e T T e BB

Hence, for a sufficient large constant b, if

s>blo kamax k + k lo 1
- & « ma? \/%sa\/ ch ’

Note that since k£ > m, the above bound implies that s > b/, hence the bound also satisfies
conditions in Lemma 14 and Lemma 10.

Following the same argument as Theorem 8, the algorithm after we obtain §,m is (/2, §/2) private.
Using the naive composition theorem, the entire algorithm is (¢, §) private.

Utility follows by the argument in Theorem 8 with m replaced by m. O
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