
Appendices

A Preliminaries 13

B Analytic 1-d example 13

C Proof of Theorem 1 14

D Lower bound of online optimization with structured memory 17

E Proof of Theorem 2 19

F Optimistic ROBD with λ = 0 23

G Proof and example of Theorem 3 25

H A numerical issue in algorithm 3 and its solution 28

I Proofs for Appendix B 28

A Preliminaries

The appendices that follow provide the proofs of the results in the body of the paper. Throughout the
proofs we use the following notation to denote the hitting and movement costs of the online learner:
Ht := ft(yt) and Mt := c(yt:t−p), where yt is the point chosen by the online algorithm at time t.
Similarly, we denote the hitting and movement costs of the offline optimal as H∗t := ft(y

∗
t) and

M∗t := c(y∗t:t−p), where y∗t is the point chosen by the offline optimal at time t.

Before moving to the proofs, we summarize a few standard definitions that are used throughout the
paper.
Definition 1. A function f : X → R is m-strongly convex with respect to a norm ‖·‖ if for all x, y in
the relative interior of the domain of f and λ ∈ (0, 1), we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− m

2
λ(1− λ) ‖x− y‖2 .

Definition 2. A function f : X → R is l-strongly smooth with respect to a norm ‖·‖ if f is everywhere
differentiable and if for all x, y we have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
l

2
‖y − x‖2 .

Finally, Lemma 13 in Goel et al. [24] will be useful, and so we restate it here.
Lemma 1. If f : X → R is a m-strongly convex function with respect to some norm ‖·‖, and v is
the minimizer of f (i.e. v = arg miny∈X f(y)), then we have ∀y ∈ X ,

f(y) ≥ f(v) +
m

2
‖y − v‖2 .

B Analytic 1-d example

In this section we use simple examples to illustrate the contrast between the best linear controller
in hindsight, which is the predominant benchmark, and the optimal offline controller, which is
not necessarily linear or static. We highlight analytically that the optimal linear controller can be
arbitrarily worse than the optimal offline controller, and then illustrate that analytically that Optimistic
ROBD can obtain near-optimal cost.

13

Example: a scalar system. Consider the following scalar system:

min
ut

T∑
t=0

q|xt|2 + |ut|2

s.t. xt+1 = axt + ut + wt

where a > 1, x0 = 0 and wt is the disturbance. For this system, we have:

cost(LC)

cost(OPT)
>
q + (a− 1)2

4
,∀{wt}Tt=0,

where cost(LC) is the cost of the optimal linear controller in hindsight. Hence,
cost(LC)/cost(OPT) is arbitrarily large as q and a increase. We emphasize that this lower
bound holds for any disturbance sequence, and there exist many sequences making this lower bound
even bigger. For example, if wt is a constant (wt = w,∀t):

cost(LC)

cost(OPT)
≥ q + (a− 1)2

4
· q + (a− 1)2

q
.

Alternatively, if wt = (−1)t · w:

cost(LC)

cost(OPT)
≥ q + (a− 1)2

4
· q + (a+ 1)2

q
.

Proofs are given in Appendix I. This example highlights that the gap between cost(LC) and
cost(OPT) can be arbitrarily large for strongly convex costs. Thus, even if an algorithm has no
regret compared to the optimal linear controller, it has an unbounded competitive ratio.

Further, we can contrast the competitive ratio of the optimal linear controller derived above with
that of Optimistic ROBD. For convenience, assume cost(OPT) = T . First, notice that there exists
{wt}Tt=0 such that cost(LC) ≥ O(max{q, a4/q} · T) for big enough a and q. From Corollary 1, in
the case exact prediction of wt is possible, Optimistic ROBD has cost(ALG) ≤ O(max{1, a2/q} ·
T),∀{wt}Tt=0, which is orders-of-magnitude lower than cost(LC).

In the case exact prediction is impossible and the estimation error is εt = wt − w̃t, Optimistic
ROBD guarantees cost(ALG) ≤ O(max{1, a2/q} · T + max{a2, q} ·

∑T−1
t=0 ε2t) by Corollary 1.

Moreover, Corollary 2 gives a constant competitive ratio, cost(ALG) ≤ O(max{q, a4/q} · T) for
any {wt}Tt=0, which is the same as the lower bound of cost(LC) we found. Thus, even without any
estimate of the noise, our upper bound on the cost of Optimistic ROBD matches the lower bound on
the cost of the optimal linear controller.

C Proof of Theorem 1

Our approach is to make use of strong convexity and properties of the hitting cost, the switching cost,
and the regularization term to derive an inequality in the form of Ht +Mt + ∆φt ≤ C(H∗t +M∗t)

for some positive constant C, where ∆φt is the change in potential, which satisfies
∑T
t=1 ∆φt ≥ 0.

We will give the formal definition of ∆φt later. The constant C is then an upper bound for the
competitive ratio.

We use ‖·‖ to denote `2 norm or matrix norm induced by `2 norm throughout the proof.

By assumption, we have yi = y∗i for i = 0,−1, · · · ,−(p− 1).

For convenience, we define

φt =
λ1 + λ2 +m

2
‖yt − y∗t ‖

2
.

Recall that we define vt = arg miny ft(y). Since the function

gt(y) = ft(y) +
λ1
2

∥∥∥∥∥y −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

+
λ2
2
‖y − vt‖2

14

is (m+ λ1 + λ2)−strongly convex and ROBD selects yt = arg miny gt(y), we see that

gt(yt) +
m+ λ1 + λ2

2
‖yt − y∗t ‖

2 ≤ gt(y∗t),

which implies

Ht + λ1Mt +

(
φt −

p∑
i=1

‖Ci‖
α

φt−i

)

≤
(
H∗t +

λ2
2
‖y∗t − vt‖

2

)
+

λ1
2

∥∥∥∥∥y∗t −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

−
p∑
i=1

‖Ci‖
α

φt−i

 .

(3)

In the following steps, we bound the second term in the right-hand side of (3) by the switching cost
of the offline optimal.

p∑
i=1

‖Ci‖
α

φt−i

=
λ1 + λ2 +m

2α

p∑
i=1

‖Ci‖ ·
∥∥yt−i − y∗t−i∥∥2

≥ λ1 + λ2 +m

2α2

(
p∑
i=1

‖Ci‖ ·
∥∥yt−i − y∗t−i∥∥

)2

(4a)

≥ λ1 + λ2 +m

2α2

(
p∑
i=1

∥∥Ciyt−i − Ciy∗t−i∥∥
)2

(4b)

≥ λ1 + λ2 +m

2α2

∥∥∥∥∥
p∑
i=1

Ciyt−i −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥
2

, (4c)

where we use Jensen’s Inequality in (4a); the definition of the matrix norm in (4b); the triangle
inequality in (4c).

For notation convenience, we define

δt =

p∑
i=1

Ciyt−i −
p∑
i=1

Ciy
∗
t−i.

15

Therefore, we obtain that

λ1
2

∥∥∥∥∥y∗t −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

−
p∑
i=1

‖Ci‖
α

φt−i

≤ λ1
2

∥∥∥∥∥y∗t −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

− λ1 + λ2 +m

2α2
· ‖δt‖2 (5a)

=
λ1
2

∥∥∥∥∥
(
y∗t −

p∑
i=1

Ciy
∗
t−i

)
− δt

∥∥∥∥∥
2

− λ1 + λ2 +m

2α2
· ‖δt‖2

≤ λ1
2

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥
2

+ λ1

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥ · ‖δt‖
+
λ1
2
‖δt‖2 −

λ1 + λ2 +m

2α2
‖δt‖2 (5b)

=
λ1
2

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥
2

+ λ1

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥ · ‖δt‖
− (1− α2)λ1 + λ2 +m

2α2
‖δt‖2

≤ λ1
2

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥
2

+
α2λ21

2 ((1− α2)λ1 + λ2 +m)

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥
2

+
(1− α2)λ1 + λ2 +m

2α2
‖δt‖2 −

(1− α2)λ1 + λ2 +m

2α2
‖δt‖2 (5c)

=
λ1(λ1 + λ2 +m)

(1− α2)λ1 + λ2 +m
M∗t ,

where we use (4) in (5a); the triangle inequality in (5b); the AM-GM inequality in (5c).

We also notice that since ft is m-strongly convex, the first term in the right-hand side of (3) can be
bounded by

H∗t +
λ2
2
‖y∗t − vt‖

2 ≤ m+ λ2
m

H∗t . (6)

Substituting (5) and (6) into (3), we obtain that

Ht + λ1Mt + φt −
q∑
t=1

‖Ci‖
α

φt−i

≤ m+ λ2
m

H∗t +
λ1(λ1 + λ2 +m)

(1− α2)λ1 + λ2 +m
M∗t .

(7)

Define ∆φt = φt −
∑q
t=1

‖Ci‖
α φt−i. We see that

T∑
t=1

∆φt =
1

α

q−1∑
i=0

 q∑
j=i+1

‖Cj‖

φT−i −
1

α

q−1∑
i=0

 q∑
j=i+1

‖Cj‖

φ−i.

Since φt ≥ 0,∀t and φ0 = φ−1 = · · · = φ−q+1 = 0, we have
T∑
t=1

∆φt ≥ 0. (8)

Summing (7) over timesteps t = 1, 2, · · · , T , we see that
T∑
t=1

(Ht + λ1Mt) +

T∑
t=1

∆φt ≤
T∑
t=1

(
m+ λ2
m

H∗t +
λ1(λ1 + λ2 +m)

(1− α2)λ1 + λ2 +m
M∗t

)
.

16

Using (8), we obtain that

T∑
t=1

(Ht + λ1Mt) ≤
T∑
t=1

(
m+ λ2
m

H∗t +
λ1(λ1 + λ2 +m)

(1− α2)λ1 + λ2 +m
M∗t

)
, (9)

which implies

T∑
t=1

(Ht +Mt) ≤
T∑
t=1

(
m+ λ2
mλ1

H∗t +
λ1 + λ2 +m

(1− α2)λ1 + λ2 +m
M∗t

)
.

D Lower bound of online optimization with structured memory

Theorem 1 considers the problem setting where the hitting cost functions are m−strongly convex
in feasible set X and the switching cost is given by c(yt:t−p) = 1

2 ‖yt −
∑p
i=1 Ciyt−i‖

2

2
, where

Ci ∈ Rd×d and
∑p
i=1 ‖Ci‖2 = α. We prove that the competitive ratio provided in Theorem 1 is

optimal in parameters α and m by showing a lower bound for a specific sequence of hitting costs and
a specific form of switching cost, c(yt, yt−1) = 1

2 ‖yt − αyt−1‖
2
2.

Notice that making improvements on the competitive ratio is still possible if we consider more
specific matrix Ci or adding more assumptions on the hitting cost functions.
Theorem 4. When the hitting cost functions are m−strongly convex in feasible set X and the
switching cost is given by c(yt, yt−1) = 1

2 ‖yt − αyt−1‖
2
2 for a constant α ≥ 1, the competitive ratio

of any online algorithm is lower bounded by

1

2

1 +
α2 − 1

m
+

√(
1 +

α2 − 1

m

)2

+
4

m

 .

Theorem 4 is a generalization of [24][Theorem 1], which only considers the case when α = 1. Our
proof uses a parallel approach but extends it to general α. Before giving the proof of Theorem 4,
we first prove the generalization of [24][Lemma 7]. To simplify presentation in the proofs, we use
K(n, y) to denote the set {y ∈ Rn+2 | yi ∈ R, y0 = 0, yn+1 = y}.
Lemma 2. For m > 0 and α ≥ 1, define

an = 2 min
y∗∈K(n,1)

(
n∑
i=1

m

2
(y∗i)2 +

n+1∑
i=1

1

2
(y∗i − αy∗i−1)2

)
.

Then we have limn→∞ an =
−m−α2+1+

√
(m+α2−1)2+4m

2 .

Proof of Lemma 2. Using a parallel approach to [24][Lemma 7], we can show that sequence {an}
satisfies the recursive relationship

an+1 =
an +m

an +m+ α2
.

Solving the equation y = y+m
y+m+α2 , we find the two fixed points of the recursive relationship

an+1 = an+m
an+m+α2 are

y1 =
−m− α2 + 1 +

√
(m+ α2 − 1)2 + 4m

2
,

and

y2 =
−m− α2 + 1−

√
(m+ α2 − 1)2 + 4m

2
.

Notice that for i = 1, 2, we have

m− (m+ α2)yi = −(1− yi)yi.

17

Using this property, we obtain

an+1 − y1 =
an +m

an +m+ α2
− y1 =

(1− y1)an +m− (m+ α2)y1
an +m+ α2

=
(1− y1)(an − y1)

an +m+ α2
, (10)

and

an+1 − y2 =
an +m

an +m+ α2
− y2 =

(1− y2)an +m− (m+ α2)y2
an +m+ α2

=
(1− y2)(an − y2)

an +m+ α2
. (11)

Notice that an+1 − y2 > 0. By dividing equations (10) and (11), we obtain(
an+1 − y1
an+1 − y2

)
=

1− y1
1− y2

·
(
an − y1
an − y2

)
,∀n ≥ 0.

Solving this in a parallel way to [24][Lemma 7], we get

an =

(
1−

(
1− y1
1− y2

)n+1
)−1(

y1 − y2 ·
(

1− y1
1− y2

)n+1
)
.

Since 0 <
(

1−y1
1−y2

)
< 1, we have

lim
n→∞

an = y1 =
−m− α2 + 1 +

√
(m+ α2 − 1)2 + 4m

2
. (12)

Now we come back to the proof of Theorem 4.

Proof of Theorem 4. We consider the counterexample where the starting point of the algorithm and
the offline adversary is y0 = y∗0 = 0, and the hitting cost functions are

ft(y) =

{
m
2 y

2 t ∈ {1, 2, · · · , n}
m′

2 (y − 1)2 t = n+ 1

for some large parameter m′ that we choose later.

By a parallel approach to [24][Theorem 1], we can show the cost incurred by any online algorithm
has the lower bound

cost(ALG) ≥ min
y

(
1

2
y2 +

m′

2
(y − 1)2

)
=

1

2
(
1 + 1

m′

) . (13)

In contrast to the case when α = 1, the offline adversary can leverage the factor α to approach 1
quicker if α > 1.

Let the sequence of points the adversary chooses be y∗ = (y∗0 , y
∗
1 , · · · , y∗n+1) ∈ Rn+2. We compute

the cost incurred by the adversary as follows.

an = 2 min
y∗∈K(n,1)

n+1∑
i=1

(H∗i +M∗i)

= 2 min
y∗∈K(n,1)

(
n∑
i=1

m

2
(y∗i)2 +

n+1∑
i=1

1

2
(y∗i − αy∗i−1)2

)
.

In words, an is twice the minimal offline cost subject to the constraints y∗0 = 0, y∗n+1 = 1. Recall
that we have derived the limiting behavior of the offline costs as n→∞ for general α in the Lemma
2. Given Lemma 2, the total cost of the offline adversary will be an

2 . Finally, applying (13), we know
∀n and ∀m′ > 0,

cost(ALG)

cost(ADV)
≥

1
2(1+ 1

m′)

an
2

=
1

(1 + 1
m′)an

.

By taking the limit n→∞ and m′ →∞ and using Lemma 2, we obtain

cost(ALG)

cost(OPT)
= lim
n,m′→∞

cost(ALG)

cost(ADV)
≥ 1

2

1 +
α2 − 1

m
+

√(
1 +

α2 − 1

m

)2

+
4

m

 .

18

E Proof of Theorem 2

We use ‖·‖ to denote `2 norm or matrix norm induced by `2 norm throughout the proof. Before giving
the proof of Theorem 2, we first prove three lemmas that we use later.

Recall that ROBD with parameters λ1 = λ, λ2 = 0 minimizes a weighted sum of the hitting cost ft
and the switching cost c. To pick the appropriate estimation of vt from the set Ωt, we want to study
when the previous decision points ŷt−p:t−1 is fixed, how the position of vt will affect the minimum
of this weighted sum. By a change of variable, we see this is equivalent to study when the hitting cost
function is fixed, how the sum

∑p
i=1 Ciŷt−i will affect the weighted sum. We use x to denote the

sum
∑p
i=1 Ciŷt−i in Lemma 3.

Lemma 3. Suppose function f : Rd → R is m-strongly convex. Define function g : Rd → R as

g(x) = min
y
f(y) +

λ

2
‖y − x‖2 .

Then g is λm
λ+m -strongly convex.

Proof of Lemma 3. Due to the definition of strongly convexity, we only need to show that for all
x1, x2 ∈ Rd and η ∈ (0, 1), we have

g (ηx1 + (1− η)x2) ≤ ηg(x1) + (1− η)g(x2)− λm

2(λ+m)
η(1− η) ‖x1 − x2‖2 .

For convenience, we define

y1 := arg min
y

f(y) +
λ

2
‖y − x1‖2 ,

and

y2 := arg min
y

f(y) +
λ

2
‖y − x2‖2 .

We have that

ηg(x1) + (1− η)g(x2)− λm

2(λ+m)
η(1− η) ‖x1 − x2‖2

= ηf(y1) + (1− η)f(y2) +
ηλ

2
‖y1 − x1‖2 +

(1− η)λ

2
‖y2 − x2‖2 −

λm

2(λ+m)
η(1− η) ‖x1 − x2‖2

(14a)

≥ f(ηy1 + (1− η)y2) +
m

2
η(1− η) ‖y1 − y2‖2 −

λm

2(λ+m)
η(1− η) ‖x1 − x2‖2

+
ηλ

2
‖y1 − x1‖2 +

(1− η)λ

2
‖y2 − x2‖2 (14b)

≥ g(ηx1 + (1− η)x2) +
m

2
η(1− η) ‖y1 − y2‖2 −

λm

2(λ+m)
η(1− η) ‖x1 − x2‖2

+
ηλ

2
‖y1 − x1‖2 +

(1− η)λ

2
‖y2 − x2‖2 −

λ

2
‖η(y1 − x1) + (1− η)(y2 − x2)‖2 (14c)

≥ g(ηx1 + (1− η)x2) +
m

2
η(1− η) ‖y1 − y2‖2 −

λm

2(λ+m)
η(1− η) ‖x1 − x2‖2

+
η(1− η)λ

2
‖(y1 − y2)− (x1 − x2)‖2 ,

where in (14a) and (14c) we use the definition of function g; in (14b) we use the fact that f is
m−strongly convex; in (14c) we use function λ

2 ‖·‖
2 is λ−strongly convex.

19

Notice that

m ‖y1 − y2‖2 −
λm

λ+m
‖x1 − x2‖2 + λ ‖(y1 − y2)− (x1 − x2)‖2

≥ m ‖y1 − y2‖2 −
λm

λ+m
‖x1 − x2‖2 + λ ‖y1 − y2‖2 + λ ‖x1 − x2‖2 − 2λ ‖y1 − y2‖ · ‖x1 − x2‖

= (m+ λ) ‖y1 − y2‖2 +
λ2

m+ λ
‖x1 − x2‖2 − 2λ ‖y1 − y2‖ · ‖x1 − x2‖

≥ 0.
(15)

Substituting (15) into (14) finishes the proof.

In the second lemma, we show that if a function f is strongly smooth, the function value f(y) at
point y can be upper bounded by a weighted sum of the function value f(x) at another point x and
the squared distance between x and y.

Lemma 4. If f : Rd → R+ ∪ {0} is convex and l-strongly smooth, we have for all x, y ∈ Rd, the
inequality

f(y) ≤ (1 + η)f(x) +

(
1 +

1

η

)
· l

2
‖x− y‖2

holds for all η > 0.

Proof of Lemma 4. Let v := arg minz f(z).

Using the property of l-strongly smoothness, we see that

f(x) ≥ f(v) + 〈∇f(v), x− v〉+
1

2l
‖∇f(x)−∇f(v)‖2 (16a)

≥ 1

2l
‖∇f(x)‖2 , (16b)

where we use [13][Lemma 3.5] in (16a); we use f(v) ≥ 0,∇f(v) = 0 in (16b).

Therefore, we obtain that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
l

2
‖y − x‖2 (17a)

≤ f(x) + ‖∇f(x)‖ · ‖y − x‖+
l

2
‖y − x‖2 (17b)

≤ f(x) +
η

2l
‖∇f(x)‖2 +

l

2η
‖y − x‖2 +

l

2
‖y − x‖2 (17c)

≤ f(x) + ηf(x) +

(
1 +

1

η

)
· l

2
‖y − x‖2 (17d)

= (1 + η)f(x) +

(
1 +

1

η

)
· l

2
‖y − x‖2 ,

where we use that f is l-strongly smooth in (17a); Cauchy-Schwarz Inequality in (17b); AM-GM
inequality in (17c); (16) in (17d).

Recall that ŷt is the decision point of ROBD which knows tha exact vt before picking ŷt. yt is the
decision point of Optimistic ROBD which cannot observe the exact vt before picking yt. In the third
lemma, we show that yt and ŷt will be close to each other once the estimated minimizer ṽt computed
by Optimistic ROBD is close to the true minimizer vt.

Lemma 5. Under the same assumptions as Theorem 2, the distance between yt and ŷt can be upper
bounded by

‖yt − ŷt‖ ≤ 2 ‖ζt‖ ,
where ζt = vt − ṽt.

20

Proof of Lemma 5. Recall that by definition, the real hitting cost function which we used to pick ŷt
is ft(y) = ht(y − vt), and the estimated hitting cost function which we used to pick yt is given by
f̃t(y) = ht(y − ṽt). Therefore, we have f̃t(y) = ft(y + ζt).

Since ŷt = ROBD(ft, ŷt−1:t−q) = arg miny ft(y) + λc(y, ŷt−1:t−p), by strongly convexity, we
have that

ft(ŷt) +
λ

2

∥∥∥∥∥ŷt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

+
m+ λ

2
‖ŷt − yt − ζt‖2

≤ ft(yt + ζt) +
λ

2

∥∥∥∥∥yt + ζt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

.

(18)

Similarly, using yt = ROBD(f̃t, ŷt−1:t−q) = arg miny ft(y+ ζt) +λc(y, ŷt−1:t−p), we obtain that

ft(yt + ζt) +
λ

2

∥∥∥∥∥yt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

+
m+ λ

2
‖ŷt − yt − ζt‖2

≤ ft(ŷt) +
λ

2

∥∥∥∥∥ŷt − ζt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

.

(19)

Adding (18) and (19) together, we obtain that

(m+ λ) ‖ŷt − yt − ζt‖2

≤ λ

2

∥∥∥∥∥yt + ζt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

−

∥∥∥∥∥yt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

+

∥∥∥∥∥ŷt − ζt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

−

∥∥∥∥∥ŷt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2


= λζᵀt (yt + ζt − ŷt)
≤ λ ‖ζt‖ · ‖ŷt − yt − ζt‖ .

(20)
Therefore, we see that

‖ŷt − yt − ζt‖ ≤ ‖ζt‖ ,
which implies

‖yt − ŷt‖ ≤ 2 ‖ζt‖ .

Now we come back to the proof of Theorem 2.

Define function ψ : Rd → R+ ∪ {0} as

ψ(v) = min
y
ht(y − v) + λc(y, ŷt−1:t−q).

By a change of variable y ← z + v, we can rewrite function ψ as

ψ(v) = min
z
ht(z) +

λ

2

∥∥∥∥∥z −
(
−v +

p∑
i=1

Ciŷt−i

)∥∥∥∥∥
2

. (21)

By Lemma 3, we see that function ψ is λm
λ+m -strongly convex.

Recall that

yt = ROBD(f̃t, ŷt−1:t−q) = arg min
y

ht(y − ṽt) + λc(y, ŷt−1:t−q), (22)

and
ŷt = ROBD(ft, ŷt−1:t−q) = arg min

y
ht(y − vt) + λc(y, ŷt−1:t−q). (23)

21

Since ṽt minimizes ψ and ψ is λm
λ+m -strongly convex, using (22) and (23), we obtain that

ht(yt − ṽt) +
λ

2

∥∥∥∥∥yt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

+
1

2
· mλ

λ+m
‖vt − ṽt‖2

≤ ht(ŷt − vt) +
λ

2

∥∥∥∥∥ŷt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

.

(24)

Using Lemma 4, we see that for any η1 > 0,
1

1 + η1
ht(yt − vt) ≤ ht(yt − ṽt) +

l

2η1
‖vt − ṽt‖2 . (25)

Since function λ
2 ‖yt − y‖

2 is λ-strongly smooth in y, by Lemma 4, we see that for any η2 > 0,

1

1 + η2
· λ

2

∥∥∥∥∥yt −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

≤ λ

2

∥∥∥∥∥yt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

+
λ

2η2

∥∥∥∥∥
p∑
i=1

Ci(yt−i − ŷt−i)

∥∥∥∥∥
2

. (26)

Notice that

1

2

∥∥∥∥∥
p∑
i=1

Ci(yt−i − ŷt−i)

∥∥∥∥∥
2

≤ 1

2

(
p∑
i=1

‖Ci‖ · ‖yt−i − ŷt−i‖

)2

(27a)

≤ α

2

(
p∑
i=1

‖Ci‖ · ‖yt−i − ŷt−i‖2
)

(27b)

≤ 2α

(
p∑
i=1

‖Ci‖ · ‖ṽt−i − vt−i‖2
)
, (27c)

where we use the triangle inequality and the definition of matrix norm in (27a); Jensen’s inequality in
(27b); Lemma 5 in (27c).

Substituting (27) into (26) gives

1

1 + η2
· λ

2

∥∥∥∥∥yt −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

≤ λ

2

∥∥∥∥∥yt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

+
2αλ

η2

(
p∑
i=1

‖Ci‖ · ‖ṽt−i − vt−i‖2
)
.

(28)

Substituting (25) and (28) into (24), we obtain that

1

1 + η1
ht(yt − vt) +

λ

2(1 + η2)

∥∥∥∥∥yt −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

≤ ht(ŷt − vt) +
λ

2

∥∥∥∥∥ŷt −
p∑
i=1

Ciŷt−i

∥∥∥∥∥
2

+

(
l

η1
− mλ

λ+m

)
· 1

2
‖vt − ṽt‖2 +

2αλ

η2

(
p∑
i=1

‖Ci‖ · ‖ṽt−i − vt−i‖2
)
.

(29)

Summing up (29) over all time steps, we see that

min{ 1

1 + η1
,

λ

1 + η2
}

T∑
t=1

(Ht +Mt)

≤
T∑
t=1

(
Ĥt + λM̂t

)
+

(
l

η1
+

4α2λ

η2
− mλ

λ+m

)
·
T∑
t=1

1

2
‖vt − ṽt‖2 .

(30)

We pick η2 = η and η1 = 1+η−λ
λ so that 1

1+η1
= λ

1+η2
. Substituting into (30) gives

T∑
t=1

(Ht +Mt) ≤
1 + η

λ

T∑
t=1

(
Ĥt + λM̂t

)
+λ

(
l

1 + η − λ
+

4α2

η
− m

λ+m

)
·
T∑
t=1

1

2
‖vt − ṽt‖2 .

(31)

22

Algorithm 4: Optimistic ROBD with λ = 0

for t = 1 to T do
Observe: vt−1, ht,Ωt
st ←

∑p
i=1 Civt−i

Let yt be the projection of st on Ωt
Output: yt (the decision at time step t)

Recall that the point sequence {ŷt}1≤t≤T is identical with the one picked by ROBD, which has
parameters λ1 = λ, λ2 = 0 and has access to the exact vt before picking ŷt. Therefore, the same
upper bound of

∑T
t=1

(
Ĥt + λM̂t

)
given in (9) in the proof of Theorem 1 also applies here. It

shows that
T∑
t=1

(Ĥt + λM̂t) ≤
T∑
t=1

(
H∗t +

λ(λ+m)

(1− α2)λ+m
M∗t

)
. (32)

Substituting (32) into (31) finishes the proof.

F Optimistic ROBD with λ = 0

Although Theorem 2 does cover the case when λ = 0, it is possible to extend the analysis to cover
this setting. Notice that the agent may choose any point in Ωt in Algorithm 2 when λ = 0. Thus, a
tiebreaking rule is needed to cover the case of λ = 0. We break the tie by choosing the projection of∑p
i=1 Civt−i on Ωt, which is natural if we consider λ→ 0+. We give the pseudo for this specific

case in Algorithm 4.

As in Section 3, we first consider the case when Ωt is a one-point set, i.e. Ωt = {vt}.
Theorem 5. Suppose the hitting cost functions arem−strongly convex and the switching cost is given
by c(yt:t−p) = 1

2 ‖yt −
∑p
i=1 Ciyt−i‖

2

2
, where Ci ∈ Rd×d and

∑p
i=1 ‖Ci‖2 = α. When Ωt = {vt},

the competitive ratio of Algorithm 4 is upper bounded by 1 + (1+α)2

m .

Proof of Theorem 5. Notice that when Ωt = {vt}, Algorithm 4 will pick yt = vt for all time step t.

Since vt = arg miny ft(y) and ft is m−strongly convex, we have that

ft(vt) +
m

2
‖y∗t − vt‖

2 ≤ ft(y∗t). (33)

On the other hand, we can bound the switching cost of Algorithm 4 by

1

2

∥∥∥∥∥vt −
p∑
i=1

Civt−i

∥∥∥∥∥
2

=
1

2

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥
2

+ 〈y∗t −
p∑
i=1

Ciy
∗
t−i, vt −

p∑
i=1

Civt−i〉+
1

2

∥∥∥∥∥(vt − y∗t)−
p∑
i=1

Ci(vt−i − y∗t−i)

∥∥∥∥∥
2

≤ 1

2

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥
2

+

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥ ·
∥∥∥∥∥vt −

p∑
i=1

Civt−i

∥∥∥∥∥+
1

2

∥∥∥∥∥(vt − y∗t)−
p∑
i=1

Ci(vt−i − y∗t−i)

∥∥∥∥∥
2

(34a)

≤
(

1 +
(1 + α)2

m

)
· 1

2

∥∥∥∥∥y∗t −
p∑
i=1

Ciy
∗
t−i

∥∥∥∥∥
2

+

(
1 +

m

(1 + α)2

)
· 1

2

∥∥∥∥∥(vt − y∗t)−
p∑
i=1

Ci(vt−i − y∗t−i)

∥∥∥∥∥
2

,

(34b)

where we use Cauchy–Schwartz inequality in (34a); we use AM-GM inequality in (34b).

23

Notice that∥∥∥∥∥(vt − y∗t)−
p∑
i=1

Ci(vt−i − y∗t−i)

∥∥∥∥∥
2

≤

(
‖vt − y∗t ‖+

p∑
i=1

‖Ci‖ ·
∥∥vt−i − y∗t−i∥∥

)2

(35a)

≤ (1 + α) ·

(
‖vt − y∗t ‖

2
+

p∑
i=1

‖Ci‖ ·
∥∥vt−i − y∗t−i∥∥2

)
,

(35b)

where we use the triangle inequality in (35a) and the Cauchy-Schwartz inequality in (35b).

Substituting (35) into (34) and summing up through time steps, we obtain that

T∑
t=1

1

2

∥∥∥∥∥vt −
p∑
i=1

Civt−i

∥∥∥∥∥
2

≤
T∑
t=1

(
1 +

(1 + α)2

m

)
M∗t +

(
(1 + α)2 +m

)
· 1

2
‖vt − y∗t ‖

2
. (36)

Substituting (33) gives that

T∑
t=1

1

2

∥∥∥∥∥vt −
p∑
i=1

Civt−i

∥∥∥∥∥
2

≤
T∑
t=1

(
1 +

(1 + α)2

m

)
M∗t +

(
1 +

(1 + α)2

m

)
· (H∗t − ft(vt)),

which implies

T∑
t=1

ft(vt) +
1

2

∥∥∥∥∥vt −
p∑
i=1

Civt−i

∥∥∥∥∥
2
 ≤ (1 +

(1 + α)2

m

) T∑
t=1

(H∗t +M∗t). (37)

Now we consider the case when Ωt is a general convex set.
Theorem 6. Suppose the hitting cost functions are both m−strongly convex and l−strongly smooth
and the switching cost is given by c(yt:t−p) = 1

2 ‖yt −
∑p
i=1 Ciyt−i‖

2

2
, where Ci ∈ Rd×d and∑p

i=1 ‖Ci‖2 = α. For arbitrary η > 0, the cost of Algorithm 4 is upper bounded byK1cost(OPT)+
K2, where:

K1 = (1 + η) ·
(

1 +
(1 + α)2

m

)
,

K2 =

(
l +

(
1 +

1

η

)
α2 − (1 + η)

)
·
T∑
t=1

1

2
‖yt − vt‖2 .

Like Theorem 2, we can choose η to balance K1 and K2 and obtain a competitive ratio, in particular
the smallest η such that:

l +

(
1 +

1

η

)
α2 − (1 + η) ≤ 0.

Therefore, we have η = O(l + α2) and K2 ≤ 0. So the competitive ratio is upper bounded by:

O

(
(l + α2) ·

(
1 +

(1 + α)2

m

))
.

Proof of Theorem 6. Since yt is the projection of
∑p
i=1 Civt−i on Ωt, and Ωt is a convex set, we

have that
1

2

∥∥∥∥∥yt −
p∑
i=1

Civt−i

∥∥∥∥∥
2

≤ 1

2

∥∥∥∥∥vt −
p∑
i=1

Civt−i

∥∥∥∥∥
2

− 1

2
‖vt − yt‖2 . (38)

Because the hitting cost function ft is l-strongly smooth, and vt is the minimizer of ft, we see that

1

η1
ft(yt) ≤

l

2η1
‖vt − yt‖2 +

1

η1
ft(vt) (39)

24

holds for any η1 ≥ 1.

Since function 1
2 ‖yt − y‖

2 is 1-strongly smooth in y, by Lemma 4, we see that for any η2 > 0,

1

1 + η2
· 1

2

∥∥∥∥∥yt −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

≤ 1

2

∥∥∥∥∥yt −
p∑
i=1

Civt−i

∥∥∥∥∥
2

+
1

2η2

∥∥∥∥∥
p∑
i=1

Ci(vt−i − yt−i)

∥∥∥∥∥
2

. (40)

Notice that

1

2

∥∥∥∥∥
p∑
i=1

Ci(vt−i − yt−i)

∥∥∥∥∥
2

≤ 1

2

(
p∑
i=1

‖Ci‖ · ‖yt−i − vt−i‖

)2

(41a)

≤ α

2

(
p∑
i=1

‖Ci‖ · ‖yt−i − vt−i‖2
)
, (41b)

where we use the triangle inequality and the definition of matrix norm in (41a); Jensen’s Inequality in
(41b).

Substituting (41) into (40) gives

1

1 + η2
· 1

2

∥∥∥∥∥yt −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

≤ 1

2

∥∥∥∥∥yt −
p∑
i=1

Civt−i

∥∥∥∥∥
2

+
α

2η2

(
p∑
i=1

‖Ci‖ · ‖yt−i − vt−i‖2
)
.

(42)

Substituting (39) and (42) into (38) gives

1

η1
ft(yt) +

1

1 + η2
· 1

2

∥∥∥∥∥yt −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2

≤ 1

η1
ft(vt) +

1

2

∥∥∥∥∥vt −
p∑
i=1

Civt−i

∥∥∥∥∥
2

+

(
l

η1
− 1

)
· 1

2
‖vt − yt‖2 +

α

2η2

(
p∑
i=1

‖Ci‖ · ‖yt−i − vt−i‖2
)
.

(43)

Summing up (43) through time steps, we obtain that

min{ 1

η1
,

1

1 + η2
}

T∑
t=1

ft(yt) +
1

2

∥∥∥∥∥yt −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2


≤
T∑
t=1

ft(vt) +
1

2

∥∥∥∥∥vt −
p∑
i=1

Civt−i

∥∥∥∥∥
2
+

(
l

η1
+
α2

η2
− 1

)
· 1

2
‖yt − vt‖2 .

(44)

Let η2 = η and η1 = 1 + η. Combining with (37), we obtain that

T∑
t=1

ft(yt) +
1

2

∥∥∥∥∥yt −
p∑
i=1

Ciyt−i

∥∥∥∥∥
2


≤ (1 + η) ·
(

1 +
(1 + α)2

m

)
·
T∑
t=1

(H∗t +M∗t) +

(
l +

(
1 +

1

η

)
α2 − (1 + η)

)
· 1

2
‖yt − vt‖2 .

(45)

G Proof and example of Theorem 3

The proof will proceed as follows. First, we extract the controllable dimensions in xt,
{x(k1)t , · · · , x(kd)t }, to construct a new vector zt. Then we can represent xt by zt, zt−1, · · · , zt−p.

25

Therefore, we can rewrite the dynamics in sequence {zt}0≤t≤T , control action ut, and noise wt. By
this approach, we can remove the control matrix B before (ut + wt) in the dynamics. Finally, we
can convert the resulting dynamics to an OCO problem with structured memory.

We use ‖·‖ to denote `2 norm throughout the proof.

Recall that the objective is given as

1

2

T∑
t=0

(
qt ‖xt‖2 + ‖ut‖2

)
, (46)

where qt > 0 for all 0 ≤ t ≤ T . Without loss of generality, we assume qt = 0 for all t > T .

Recall that we define operator ψ : Rn → Rm as

ψ(x) =
(
x(k1), · · · , x(kd)

)ᵀ
.

Using this notation, we define vector zt as

zt := ψ(xt), t ≥ 0.

Notice that zjt = x
(kj)
t for j = 1, · · · , d. Since we have x(i)t = x

(i+1)
t−1 for i 6∈ I, xt can be

represented by

xt =
(
z
(1)
t−p1+1, · · · , z

(1)
t , · · · , z(d)t−pd+1, · · · , z

(d)
t

)ᵀ
. (47)

Since x0 = 0, we have zt = 0 for t ≤ 0.

Using (47), we can rewrite the objective function as a function of sequence {zt} and {ut}. Notice
that

T∑
t=0

qt ‖xt‖22 =

T∑
t=0

qt

d∑
i=1

pi∑
j=1

(
z
(i)
t+1−j

)2

=

T−1∑
t=0

d∑
i=1

 pi∑
j=1

qt+j

(z(i)t+1

)2
, (48a)

where in (48a) we use zt = 0 for all t ≤ 0 and qt = 0 for all t > T .

Therefore, we define function ht : Rd → R+ ∪ {0} as

ht(y) =
1

2

d∑
i=1

 pi∑
j=1

qt+j

(y(i))2 .
Using this definition, the objective (46) can be rewrite as

1

2

T∑
t=0

(
qt ‖xt‖2 + ‖ut‖2

)
=

T−1∑
t=0

ht(zt+1) +
1

2
‖ut‖2 , (49)

where we notice that the optimal choice of control action uT is always zero because it will not affect
any state.

We also see that ut can be determined by zt−p+1:t+1 because

ut = zt+1 − wt −A(I, :)xt, (50)

where A(I, :) consists of k1, · · · , kn rows of A and t ≥ 0.

Notice that A(I, :)xt can be written as
∑p
i=1 Cizt−i+1 by the definition of Ci, i = 1, · · · , p. There-

fore, we can rewrite (50) as

ut = zt+1 − wt −
p∑
i=1

Cizt−i+1, (51)

26

which is equivalent to

zt+1 = ut + wt +

p∑
i=1

Cizt−i+1.

We recursively define sequence {yt}t≥−p as the accumulation of control actions, i.e.

yt = ut +

p∑
i=1

Ciyt−i,∀t ≥ 0,

where yt = 0 for all t < 0. We also define sequence {ζt}t≥−p as the accumulation of control noises,
i.e.

ζt = wt +

p∑
i=1

Ciζt−i,∀t ≥ 0,

where ζt = 0 for all t < 0.

Recall that we have x0 = 0 by assumption. Therefore,

zt+1 = yt + ζt (52)

holds for all t ≥ −1.

Using (49) and (52), we can formalize the problem as online optimization with memory, where the
hitting cost function is given by

ft(y) = ht(y + ζt),

and the switching cost is 1
2 ‖yt −

∑p
i=1 Ciyt−i‖

2.

Although ht is revealed before the agent picks yt, we need the knowledge of vt = −ζt to construct
the hitting cost function ft, which depends on previous noises w0:t. At time step t, we know the exact
wτ for all τ ≤ t− 1, thus we can compute the exact ζτ for all τ ≤ t− 1.Since the set Wt contains
all possible noise wt, we can construct the set Ωt = {−w−

∑p
i=1 Ciζt−i | w ∈Wt} which contains

all possible vt.

Example. To illustrate the reduction, consider the following example:
x
(1)
t+1

x
(2)
t+1

x
(3)
t+1

x
(4)
t+1

x
(5)
t+1

 =


0 1 0 0 0
a1 a2 a3 a4 a5
0 0 0 1 0
0 0 0 0 1
b1 b2 b3 b4 b5



x
(1)
t

x
(2)
t

x
(3)
t

x
(4)
t

x
(5)
t

+


0 0
1 0
0 0
0 0
0 1


([

u
(1)
t

u
(2)
t

]
+

[
w

(1)
t

w
(2)
t

])
. (53)

Notice that since x(1)t+1 = x
(2)
t , x

(3)
t+1 = x

(4)
t , we can rewrite (53) in a more compact form:[

x
(2)
t+1

x
(5)
t+1

]
︸ ︷︷ ︸
zt+1

=

[
a2 a5
b2 b5

]
︸ ︷︷ ︸

C1

[
x
(2)
t

x
(5)
t

]
+

[
a1 a4
b1 b4

]
︸ ︷︷ ︸

C2

[
x
(2)
t−1
x
(5)
t−1

]
+

[
0 a3
0 b3

]
︸ ︷︷ ︸

C3

[
x
(2)
t−2
x
(5)
t−2

]
+

[
u
(1)
t

u
(2)
t

]
+

[
w

(1)
t

w
(2)
t

]
. (54)

In this example p1 = 2, p2 = 3, I = {k1, k2} = {2, 5} and thus p = 3 and n = 2. From (54) we
have

zt+1 = C1zt + C2zt−1 + C3zt−2 + ut + wt. (55)

Recall the definition of yt and ζt:

yt = ut +

3∑
i=1

Ciyt−i,∀t ≥ 0, ζt = wt +

3∑
i=1

Ciζt−i,∀t ≥ 0. (56)

Then the original system could be translated to the compact form:

zt+1 = yt + ζt. (57)

27

Algorithm 5: Adaptive control via optimistic ROBD
Parameter: λ > 0
Input: Transition matrix A and control matrix B
for t = 0 to T − 1 do

Observe: xt, Wt, and qt:t+p−1
if t > 0 then

wt−1 ← ψ (xt −Axt−1 −But−1)
ẑt ← ψ(xt)

Define function ht(z) = 1
2

∑d
i=1

(∑pi
j=1 qt+j

) (
z(i)
)2

w̃t ← arg minw∈Wt
minz ht(z) + λ

2 ‖z − w −
∑p
i=1 Ciẑt+1−i‖

2

zt ← arg minz ht(z) + λ
2 ‖z − w̃t −

∑p
i=1 Ciẑt+1−i‖

2

ut ← zt − w̃t −
∑p
i=1 Cizt−i

Output: ut
Output: uT = 0

If the objective is given as (46), we have that

ht(z) =
1

2
(qt+1 + qt+2)

(
z(1)
)2

+
1

2
(qt+1 + qt+2 + qt+3)

(
z(2)
)2
.

Lastly, we want to point out that our reduction can work for more general forms of objectives than
(46). Specifically, we only require that the objective can be transformed to

T−1∑
t=0

ht(zt+1) +
1

2
‖ut‖2 ,

where ht is a strongly convex and strongly smooth function that is observable before the agent picks
ut. Therefore, our reduction is more general than the reduction given in [24][Corollary 2], which
considered the case when B = I . Notice that when B = I , we have p = 1 and zt = xt.

H A numerical issue in algorithm 3 and its solution

We have presented Algorithm 3 in as simple and intuitive a manner as possible but, as a result, there is
a potential numerical issue that may arise for large horizon T . Although the sequence {zt} is naturally
bounded and we always have zt+1 = yt + ζt, the magnitudes of yt and ζt may grow exponentially
since they accumulate the actions and the noises separately. However, this is not a fundamental
problem, and there is a straightforward solution when the Solver in Algorithm 3 is Optimistic ROBD
(Algorithm 2). The key insight is to solve optimization in {ut, wt, zt} space, instead of {yt, ζt, zt}
space.

More specifically, when instantiated with Optimistic ROBD, we can rewrite the pseudo code of
Algorithm 3 as Algorithm 5 so that variables yt and ζt are not involved. While equivalent to Algorithm
3 with Optimistic ROBD as the Solver, Algorithm 5 is numerically stable because we avoid the
potentially unstable recursive calculation of ζt and the sequence {wt} is bounded.

I Proofs for Appendix B

In this section, we establish the lower bound of the cost incurred by any linear controller and the
upper bound of the offline optimal cost for different noise sequences. Specifically, we show a lower
bound of the linear controller’s cost on any noise sequence in Section I.1. We also give an upper
bound of the offline optimal cost on any noise sequence in Section I.2. We further show that the
upper bound of the offline optimal cost can be improved on two specific noise sequences in Section
I.3 and I.4. Based on these results, we derive the lower bound of the competitive ratio for any linear
control with respect to the these noise sequences in Section I.5, I.6, and I.7.

28

I.1 Lower bound of cost(LC) for any noise sequence {wt}Tt=0

For any stable linear controller ut = −kxt, we have the following closed-loop dynamics

xt+1 = (a− k)xt + wt.

Our technique is to consider the sum of squares of two consecutive states xt+1 and xt. Due to
the constraints given by the dynamics and the linear controller itself, xt+1 and xt cannot reach
zero simultaneously. Specifically, we define β = a − k. Since the controller is stable, we have
−1 < β < 1. Consider |xt+1|2 + |xt|2, ∀t ≥ 0, we have:

|xt+1|2 + |xt|2

=(βxt + wt)
2 + x2t

=(β2 + 1)x2t + 2βxtwt + w2
t

=(β2 + 1)(xt +
β

β2 + 1
wt)

2 +
1

β2 + 1
w2
t

≥ 1

β2 + 1
w2
t >

w2
t

2
.

Since cost(LC) =
∑T
t=0 qx

2
t + u2t =

∑T
t=0(q + k2)x2t , cost(LC) ≥

∑T−1
t=0 (q + k2)x2t+1. Then

we will have

cost(LC) ≥ 1

2

T−1∑
t=0

(q + k2)(x2t+1 + x2t) >
q + k2

4

T−1∑
t=0

w2
t >

q + (a− 1)2

4

T−1∑
t=0

w2
t , (58)

where the last step comes from the fact −1 < a− k < 1 and a > 1.

I.2 Upper bound of cost(OPT) for any {wt}Tt=0

When the controller has the full knowledge of the future noise sequence, the simplest strategy is to
correct the noise greedily at the start of each time step so that the agent always stays at state 0.

Formally, for cost(OPT), consider controller ut = −wt,∀t 6= T and ut = 0, t = T . Then we will
have xt = 0,∀t ≤ T so the cost would be

∑T−1
t=0 w2

t . Therefore we have

cost(OPT) ≤
T−1∑
t=0

w2
t .

I.3 Upper bound of cost(OPT) for wt = w

Compared with Section I.2, since wt is a constant case, we can balance the hitting cost and the
switching cost by keeping the agent at non-zero stationary state that is close to the zero state.

Formally, we consider the following control strategy:

ut =

{
u+w
1−a − w, t = 0

u, t ≥ 1,

where u is another constant. This controller yields xt = u+w
1−a , t ≥ 1. Then, we have

cost(u) = T (q(
u+ w

1− a
)2 + u2) + (

u+ w

1− a
− w)2,

where the first part is a quadratic function w.r.t. u and the minimum is q
q+(a−1)2 ·Tw

2 with minimizer
u∗ = −qw

q+(a−1)2 . Therefore we get

cost(OPT) ≤ q

q + (a− 1)2
Tw2 + c1,

where c1 = (u
∗+w
1−a − w)2 is a constant.

29

I.4 Upper bound of cost(OPT) for wt = (−1)t · w

Instead of keeping the noise wt at a fixed value, we let it oscillate between two values w and −w.
The resulting offline optimal controller will also oscillate between a positive state and a negative state.
We show that in this case, the offline optimal cost can be even smaller than the one when wt is fixed
at w (Section I.3).

In this case the dynamics follows{
x2k+1 = ax2k + u2k + w, k ≥ 0

x2k+2 = ax2k+1 + u2k+1 − w, k ≥ 0.

Consider controller class

ut =


−u−wa+1 − w, t = 0

u, t = 2k + 1, k ≥ 0

−u, t = 2k + 2, k ≥ 0.

Following this controller class, we have

xt =

{
−u−wa+1 , t = 2k + 1, k ≥ 0
u−w
a+1 , t = 2k + 2, k ≥ 0.

For simplicity, assume T is an even number. Then, we have

cost(u) = T (q(
u− w
a+ 1

)2 + u2) + (
u− w
a+ 1

+ w)2.

Similarly, the first part of cost(u) is a quadratic function and the minimum is q
q+(a+1)2 · Tw

2.
Therefore, we have

cost(OPT) ≤ q

q + (a+ 1)2
Tw2 + c2,

where c2 is also a constant.

I.5 Lower bound of cost(LC)
cost(OPT) for any {wt}Tt=0

Combining I.1 and I.2 we will have, for any {wt}Tt=0:

cost(LC)

cost(OPT)
>

q+(a−1)2
4

∑T−1
t=0 w2

t∑T−1
t=0 w2

t

=
q + (a− 1)2

4
.

I.6 Lower bound of cost(LC)
cost(OPT) for wt = w

Combining I.1 and I.3, we will have, if wt = w:

cost(LC)

cost(OPT)
>

q+(a−1)2
4 Tw2

q
q+(a−1)2Tw

2 + c1
.

Therefore as T →∞, cost(LC)
cost(OPT) ≥

q+(a−1)2
4 · q+(a−1)2

q .

I.7 Lower bound of cost(LC)
cost(OPT) for wt = (−1)t · w

Combining I.1 and I.4, we will have, if wt = (−1)t · w:

cost(LC)

cost(OPT)
>

q+(a−1)2
4 Tw2

q
q+(a+1)2Tw

2 + c2
.

Therefore as T →∞, cost(LC)
cost(OPT) ≥

q+(a−1)2
4 · q+(a+1)2

q .

30

