
A Study on Encodings for Neural Architecture Search

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural architecture search (NAS) has been extensively studied in the past few years.1

A popular approach is to represent each neural architecture in the search space as2

a directed acyclic graph (DAG), and then search over all DAGs by encoding the3

adjacency matrix and list of operations as a set of hyperparameters. Recent work4

has demonstrated that even small changes to the way each architecture is encoded5

can have a significant effect on the performance of NAS algorithms [24, 27].6

In this work, we present the first formal study on the effect of architecture encodings7

for NAS, including a theoretical grounding and an empirical study. First we8

formally define architecture encodings and give a theoretical characterization on9

the scalability of the encodings we study. Then we identify the main encoding-10

dependent subroutines which NAS algorithms employ, running experiments to show11

which encodings work best with each subroutine for many popular algorithms. The12

experiments act as an ablation study for prior work, disentangling the algorithmic13

and encoding-based contributions, as well as a guideline for future work. Our14

results demonstrate that NAS encodings are an important design decision which15

can have a significant impact on overall performance. We release our code and all16

materials needed to reproduce our results.17

1 Introduction18

In the past few years, the field of neural architecture search (NAS) has seen a meteoric rise in19

interest [2], due to the promise of automatically designing specialized neural architectures for any20

given problem. Techniques for NAS span evolutionary search, reinforcement learning, gradient-21

based methods, and neural predictor methods. Many NAS instantiations can be described by the22

optimization problem mina∈A f(a), where A denotes a large set of neural architectures, and f(a)23

denotes the objective function of interest for a, which is usually a combination of validation accuracy,24

latency, or number of parameters. A popular approach is to describe each neural architecture a as a25

labeled directed acyclic graph (DAG), where each node or edge represents an operation.26

Due to the complexity of DAG structures and the large size of the space, neural architecture search27

is typically a highly non-convex, challenging optimization problem. A natural consideration when28

designing a NAS algorithm is therefore, how should we encode the neural architectures to maximize29

performance? For example, NAS algorithms may involve manipulating or perturbing architectures, or30

training a model to predict the accuracy of a given architecture; as a consequence, the representation31

of the DAG-based architectures may significantly change the outcome of these subroutines. The32

majority of prior work has not explicitly considered this question, opting to use a standard encoding33

consisting of the adjacency matrix of the DAG along with a list of the operations. Two recent papers34

have shown that even small changes to the architecture encoding can make a substantial difference35

in the final performance of the NAS algorithm [24, 27]. It is not obvious how to formally define an36

encoding for NAS, as prior work defines encodings in different ways, inadvertently using encodings37

which are incompatible with other NAS algorithms.38

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

In this work, we provide the first formal study on NAS encoding schemes, including a theoretical39

grounding as well as a thorough set of experimental results. We define an encoding as a multi-function40

from an architecture to a real-valued tensor. We define a number of common encodings from prior41

work, identifying adjacency matrix-based encodings [29, 27, 23] and path-based encodings [24, 22,42

20] as two main paradigms. Adjacency matrix approaches represent the architecture as a list of edges43

and operations, while path-based approaches represent the architecture as a set of paths from the44

input to the output. We theoretically characterize the scalability of each encoding by quantifying45

the information loss from truncation. This characterization is particularly interesting for path-based46

encodings, which we find to exhibit a sharp phase change at rk/n, where r is the number of possible47

operations, n is the number of nodes, and k is the expected number of edges. In particular, we show48

that when the size of the path encoding is greater than r2k/n, barely any information is lost, but below49

rk/(2n), nearly all information is lost. We empirically verify these findings.50

Next, we identify three major encoding-dependent subroutines used in NAS algorithms: sample51

random architecture, perturb architecture, and train predictor model. We show which of the52

encodings perform best for each subroutine by testing each encoding within each subroutine for many53

popular NAS algorithms. Our experiments retroactively provide an ablation study for prior work by54

disentangling the algorithmic contributions from the encoding-based contributions. We also test the55

ability of a neural predictor to generalize to new search spaces, using a given encoding. Finally, for56

encodings in which multiple architectures can map to the same encoding, we evaluate the average57

standard deviation of accuracies for the equivalence class of architectures defined by each encoding.58

Overall, our results show that NAS encodings are an important design decision which must be taken59

into account not only at the algorithmic level, but at the subroutine level, and which can have a60

significant impact on the final performance. Based on our results, we lay out recommendations for61

which encodings to use within each NAS subroutine. Our experimental results follow the guidelines62

in the recently released NAS research checklist [9]. In particular, we experiment on two popular NAS63

benchmark datasets, and we release our code.64

Our contributions. We summarize our main contributions below.65

• We demonstrate that the choice of encoding is an important, nontrivial question that should be66

considered not only at the algorithmic level, but at the subroutine level.67

• We give a theoretical grounding for NAS encodings, including a characterization of the scalability68

of each encoding, backed by experimental observations.69

• We give an experimental study of architecture encodings for NAS algorithms, disentangling the70

algorithmic contributions from the encoding-based contributions of prior work, and laying out71

recommendations for best encodings to use in different settings as guidance for future work.72

2 Related Work73

Neural architecture search. NAS has been studied for at least two decades and has received74

significant attention in recent years [7, 17, 29]. Some of the most popular techniques for NAS include75

evolutionary algorithms [11], reinforcement learning [13, 21], Bayesian optimization [6], gradient76

descent [10], neural predictors [23], and local search [25]. Recent papers have highlighted the need77

for fair and reproducible NAS comparisons [8, 27, 9]. See the recent survey on NAS [2] for more78

information on NAS research.79

Encoding schemes. Most prior NAS work has used the adjacency matrix encoding, [29, 27, 10],80

which consists of the adjacency matrix together with a list of the operations on each node. A81

continuous-valued variant has been shown to be more effective for some NAS algorithms [27]. The82

path encoding is a popular choice for neural predictor methods [24, 22, 20], and it was shown that83

truncating the path encoding leads to a small information loss [24].84

Some prior work uses graph convolutional networks (GCN) as a subroutine in NAS [15, 28], which85

requires retraining for each new dataset or search space. Other work has used intermediate encodings86

to reduce the complexity of the DAG [18, 4], or added summary statistics to the encoding of87

feedforward networks [19]. To the best of our knowledge, no paper has conducted a formal study of88

encodings involving more than two encodings.89

2

in

1x1

out

3x3

3x3

MP

1x1

in

1x1

out

3x3

in

1x1

out

in

out

MP

1x1

in

out

3x3

MP

1x1

...

One-hot

641 47

Categorical

One-Hot

... + ...3x3MP 1x1 1x1

Categorical

321 ... 21 + ...3x3MP 1x1 1x1

(a) (c)(b) in

MP

3x3

1x1

3x3

1x1

out

in MP 3x3 1x1 3x3 1x1 out

9

Figure 2.1: (a) An example neural architecture a. (b) A path-based representation of a, showing two
encodings. (c) An adjacency matrix representation of a, showing two encodings.

3 Encodings for NAS90

We denote a set of neural architectures a by A (called a search space), and we define an objective91

function ` : A→ R, where `(a) is typically a combination of the accuracy and the model complexity.92

We define a neural architecture encoding as an integer d and a multifunction e : A→ Rd from a set93

of neural architectures A to a d-dimensional Euclidean space Rd, and we define a NAS algorithm94

A as a procedure which takes as input a triple (A, `, e), and outputs an architecture a, with the goal95

that `(a) is as close to maxa∈A `(a) as possible. Based on this definition, we consider an encoding96

e to be a fixed transformation, independent of `. In particular, NAS components that use ` to learn97

a transformation of an input architecture (such as graph convolutional networks or autoencoders),98

are considered part of the NAS algorithm rather than the encoding. This is consistent with prior99

definitions of encodings [20, 27].100

We define eight encodings split into two popular paradigms: adjacency matrix-based and path-based101

encodings. We assume that each architecture is represented by a DAG with at most n nodes, at most102

k edges, at most P paths from input to output, and q choices of operations on each node. We focus103

on the case where nodes represent operations, though our analysis extends similarly to formulations104

where edges represent operations. Most of the following encodings have been defined in prior work,105

and we will see in the next section that each encoding is useful for some part of the NAS pipeline.106

Adjacency matrix encodings. We first consider a class of encodings that are based on representa-107

tions of the adjacency matrix. These are the most common types of encodings used in current NAS108

research. The one-hot adjacency matrix encoding is created by row-major vectorizing (i.e. flattening)109

the architecture adjacency matrix and concatenating it with a list of node operation labels. Each110

position in the operation list is a single integer-valued feature, where each operation is denoted by a111

different integer. The total dimension is n(n−1)/2 +n. See Figure 2.1. In the categorical adjacency112

matrix encoding, the adjacency matrix is first flattened into a one-hot vector, and the encoding is then113

defined as a list of the indices each of which specifies one of the n(n− 1)/2 possible edges in the114

adjacency matrix. To ensure a fixed length encoding, we allocate k features to each encoding (where115

k is the maximum number of possible edges). We again concatenate this representation with a list116

of operations, yielding a total dimensionality of k + n. Finally, the continuous adjacency matrix117

encoding is similar to the one-hot encoding, but each of the features for each edge can take on any118

real value in [0, 1], rather than just {0, 1}. We also add a feature representing the number of edges,119

1 ≤ K ≤ k. The list of operations is encoded the same way as before. The architecture is created by120

choosing the K edges with the largest continuous features. The dimension is n(n− 1)/2 + n+ 1.121

The disadvantage of adjacency matrix-based encodings is that nodes are arbitrarily assigned indices122

in the matrix, which means one architecture can have many different representations (in other words,123

e−1 is not onto). See Figure 3.1 (b).124

Path-based encodings. Path-based encodings are representations of a neural architecture that are125

based on the set of paths from input to output that are present within the architecture DAG. The126

one-hot path encoding is created by giving a binary feature to each possible path from the input127

3

in

out

3x3

3x3

(a)

in

out

3x3

3x3

in

3x3

out

3x3

3x3

...

in out3x3 3x3

in out3x3

in

MP

3x3

1x1

3x3

1x1

out

in MP 3x3 1x1 3x3 1x1 out

in

3x3

1x1

MP

3x3

1x1

out

in 3x3 1x1 MP 3x3 1x1 out

(b)

in

1x1

out

3x3

3x3

MP

1x1

Figure 3.1: (a) An example of three architectures that map to the same path encoding. (b) An example
of two adjacency matrices that map to the same architecture.

node to the output node in the DAG (for example: input–conv1x1–maxpool3x3–output). See128

Figure 2.1. The total dimension is
∑n
i=0 q

i = (qn+1 − 1)/(q − 1). The truncated one-hot path129

encoding, simply truncates this encoding to only include paths of length x. The new dimension is130 ∑x
i=0 q

i. The categorical path encoding, is defined as a list of indices each of which specifies one of131

the
∑n
i=0 q

i possible paths. The continuous path encoding consists of a real-valued feature [0, 1] for132

each potential path, as well as a feature representing the number of paths. Just like the one-hot path133

encoding, the continuous path encoding can be truncated. Path-based encodings have the advantage134

that nodes are not arbitrarily assigned indices, and also that isomorphisms are automatically mapped135

to the same encoding. Path-based encodings have the disadvantage that different architectures can136

map to the same encoding (e is not onto). See Figure 3.1 (c).137

3.1 The scalability of encodings138

In this section, we discuss the scalability of the NAS encodings with respect to architecture size. We139

focus on the one-hot variants of the encodings, but our analysis extends to all encodings. We show140

that the path encoding can be truncated significantly while maintaining its performance, while the141

adjacency matrix cannot be truncated at all without sacrificing performance, and we back up our142

theoretical results with experimental observations in the next section. In prior work, the one-hot path143

encoding has been shown to be effective on smaller benchmark NAS datasets [22, 24], but it has144

been questioned whether its exponential Θ(qn) length allows it to perform well on very large search145

spaces [20]. However, a counter-arguement is as follows. The vast majority of features correspond to146

single line paths using the full set of nodes. This type of architecture is not common during NAS147

algorithms, nor is it likely to be effective in real applications. Prior work has made the first steps in148

showing that truncating the path encoding does not harm the performance of NAS algorithms [24].149

Consider the popular sample random architecture method: given n, r, and k ≤ n(n−1)
2 , (1) choose150

one of r operations for each node from 1 to n; (2) for all i < j, add an edge from node i to node j151

with probability 2k
n(n−1) ; (3) if there is no path from node 1 to node n, goto(1). Given a random152

graph Gn,k,r outputted by this method, let an,k,` denote the expected number of paths from node 1153

to node n of length ` in Gn,k,r. We define154

b(k, x) =

∑x
`=1 an,k,`∑n
`=1 an,k,`

.

Given n < k < n(n − 1)/2 and 0 < x < n, b(k, x) represents the expected fraction of paths of155

length at most x in Gn,k,r in expectation. Say that we truncate the path encoding to only include156

paths of length at most x. If b(k, x) is very close to one, then the truncation will result in very little157

information loss because nearly all paths in a randomly drawn architecture are length at most x with158

high probability. However, if b(k, x) is bounded away from 1 by some constant, there may not be159

enough information in the truncated path encoding to effectively run a NAS algorithm.160

Prior work has shown that b(k, x) > 1− 1/n2 when k < n+ O(1) and x > log n [24]. However,161

no bounds for b(k, x) are known when k is larger than a constant added to n. Now we present162

our main result for the path encoding, which gives a full characterization of b(k, x) up to constant163

factors. Interestingly, we show that b(k, x) exhibits a phase transition at x = k/n. What this means164

is, for the purposes of NAS, truncating the path encoding to length rk/n contains almost exactly the165

4

same information as the full path encoding, and it cannot be truncated any smaller. In particular, if166

k ≤ n log n, the truncated path encoding can be length n, which is smaller than the one-hot adjacency167

matrix encoding. We give the full details of the proofs from this section in Appendix A.168

Theorem 3.1. Given n ≤ k ≤ n(n−1)
2 , and c > 1, for x > 2ec · kn , b(k, x) > 1 − c−x−1, and for169

x < 1
2ec ·

k
n , b(k, x) < −2

k
2n .170

Proof sketch. Let G′n,k,r denote a random graph after step (2) of sample random architecture. Then171

G′n,k,r may not contain a path from node 1 to node n. Let a′n,k,` denote the expected number of paths172

of length ` in G′n,k,r. Say that a graph is valid if it contains a path from node 1 to node n. Then173

a′n,k,` = 0 · (1− P (G′n,k,r is valid)) + an,k,` · P (G′n,k,r is valid),

so an,k,` = a′n,k,`/P (G′n,k,r is valid). Then174

b(k, x) =

∑x
`=1 an,k,`∑n
`=1 an,k,`

=

∑x
`=1 a

′
n,k,`/P (G′n,k,r is valid)∑n

`=1 a
′
n,k,`/P (G′n,k,r is valid)

=

∑x
`=1 a

′
n,k,`∑n

`=1 a
′
n,k,`

.

Now we claim that
2k

n2

(
2k(1− ε)
(`− 1)n

)`−1
≤ an,k,` ≤

2k

n2

(
2ek(1− ε)
(`− 1)n

)`−1
for a small constant 0 < ε < 1. This is because on a path from node 1 to n of length `, there are175 (
n−2
`−1
)

choices of intermediate nodes from 1 to n. Once the nodes are chosen, we need all ` edges176

between the nodes to exist, and each edge exists independently with probability 2
n(n−1) · k. Then we177

use the well-known binomial inequalities
(
n
`

)` ≤ (n`) ≤ (en`)` to finish the claim.178

To prove the first part of Theorem 3.1, given x > 2ec · kn , we must upper bound
∑n
`=x+1 a

′
n,k,` and179

lower bound
∑x
`=1 a

′
n,k,`. To lower bound

∑x
`=1 a

′
n,k,`, we use x > 2ec · kn with the claim:180

n∑
`=x+1

an,k,` ≤
n∑

`=x+1

2k

n2

(
2ek(1− ε)
(`− 1)n

)`−1
≤ 2k

n2

n∑
`=x+1

(
1

c

)`−1
≤
(

2k

n2

)(
1

c

)x−1
We also have an,k,1 = 2k

n2 because there is just one path of length 1: the edge from the input node to181

the output node. Therefore, we have182

b(k, x) =

∑x
`=1 an,k,`∑n
`=1 an,k,`

≥ an,k,1
an,k,1 +

∑n
`=x+1 an,k,`

≥
2k
n2

2k
n2 +

(
2k
n2

) (
1
c

)x−1 ≥ 1− c−x−1.

The proof of the second part of Theorem 3.1 uses similar techniques.183

In Figure 4.2, we plot b(k, x) for NASBench-101, which supports Theorem 3.1. Next, we may ask184

whether the one-hot adjacency matrix encoding can be truncated. However, even removing one bit185

from the adjacency matrix encoding can be very costly, because each single edge makes the difference186

between a path from the input node to the output node vs. no path from the input node to the output187

node. In the next theorem, we show that the probability of a random graph containing any individual188

edge is at least 2k/(n(n− 1)). Therefore, truncating the adjacency matrix encoding even by a single189

bit results in significant information loss. In the following theorem, let En,k,r denote the edge set190

of Gn,k,r. Given 1 ≤ z ≤ n(n− 1)/2, we slightly abuse notation by writing z ∈ En,k,r if the edge191

with index z in the adjacency matrix is in En,k,r.192

Theorem 3.2. Given n ≤ k ≤ n(n−1)
2 and 1 ≤ z ≤ n(n− 1)/2, we have P (z ∈ En,k,r) > 2k

n(n−1) .193

Proof. Recall that sample random architecture adds each edge with probability 2k/(n(n− 1)) and194

rejects in step (3) if there is no path from the input to the output. Define G′n,k,r and valid as in the195

proof of Theorem 3.1. Then196

P (G′n,k,r is valid | z ∈ E′n,k,r)
P (G′n,k,r is valid)

=
P (z ∈ E′n,k,r | G′n,k,r is valid)

P (z ∈ E′n,k,r)
> 1,

5

because there is a natural bijection φ from graphs with z to graphs without z given by removing z,197

where G is valid if φ(G) is valid but the reverse does not hold. Therefore,198

P (z ∈ En,k,r) = P (z ∈ E′n,k,r | G′n,k,r is valid) =
P (G′n,k,r is valid | z ∈ E′n,k,r)P (z ∈ E′n,k,r)

P (G′n,k,r is valid)

> P (z ∈ E′n,k,r) =
2k

n(n− 1)
.

Our theoretical results show that the path encoding can be heavily truncated, while the adjacency199

matrix cannot be truncated. In the next section, we verify this experimentally (Figure 4.2).200

4 Experiments201

In this section, we present our experimental results. All of our experiments follow the Best Practices202

for NAS checklist [9]. We discuss our adherence to these practices in Appendix B. We run experiments203

on two NAS benchmark datasets which we describe below.204

The NASBench-101 dataset [27] consists of approximately 423,000 neural architectures pretrained205

on CIFAR-10. The search space is a cell consisting of 7 nodes. The first node is the input, and the206

last node is the output. The middle five nodes can take one of three choices of operations, and there207

can be at most 9 edges between the 7 nodes. The NASBench-201 dataset [1] consists of 15625 neural208

architectures separately trained on each of CIFAR-10, CIFAR-100, and ImageNet16-120. The search209

space consists of a cell which is a complete directed acyclic graph with 4 nodes. Each edge takes an210

operation, and there are five possible operations.211

We split up our first set of experiments based on the three encoding-dependent subroutines: sample212

random architecture, perturb architecture, and train predictor model. These three subroutines are the213

only encoding-dependent building blocks necessary for many NAS algorithms.214

Sample random architecture. Most NAS algorithms use a subroutine to draw an architecture215

randomly from the search space. Although this operation is more generally parameterized by a216

distribution over the search space, it is often instantiated with the choice of architecture encoding.217

Given an encoding, we define a subroutine by sampling each feature uniformly at random. We also218

compare to sampling each architecture uniformly at random from the search space (which does not219

correspond to any encoding). Note that sampling architectures uniformly at random can be very220

computationally intensive. It is much easier to sample features uniformly at random.221

Perturb architecture. Another common subroutine in NAS algorithms is to make a small change to222

a given architecture. The type of modification depends on the encoding. For example, a perturbation223

might be to change an operation, add or remove an edge, or add or remove a path. Given an encoding224

and a mutation factor m, we define a perturbation subroutine by resampling each feature of the225

encoding uniformly at random with a fixed probability, so that m features are modified on average.226

Train predictor model. Many families of NAS algorithms use a subroutine which learns a model227

based on previously queried architectures. For example, this can take the form of a Gaussian process228

within Bayesian optimization (BO), or, more recently, a neural predictor model [15, 23, 24]. In the229

case of a Gaussian process model, the algorithm uses a distance metric defined on pairs of neural230

architectures, which is typically chosen as the edit distance between architecture encodings [6, 5]. In231

the case of a neural predictor, the encodings of the queried architectures are used as training data, and232

the goal is typically to predict the accuracy of unseen architectures.233

We run multiple experiments for each encoding-dependent subroutine listed above. Many NAS234

algorithms use more than one subroutine, so in each experiment, we fix the encodings for all235

subroutines except for the one we are testing. For each NAS subroutine, we experiment on algorithms236

that depend on the subroutine. In particular, for random sampling, we run experiments on the Random237

Search algorithm. For perturb architecture, we run experiments on regularized evolution [14] and238

local search [25]. For train predictor model, we run experiments on BO, testing five encodings that239

define unique distance functions, as well as NASBOT [6] (which does not correspond to an encoding).240

We also train a neural predictor model using six different encodings. Since this runs in every iterations241

6

10 20 30 40 50 60
time in TPU hours

6.2

6.4

6.6

6.8

7.0

7.2

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Random Search (Sample Random Arch.)
Adj.
Cont. Adj.
Path
Trunc. Path
Trunc. Cont. Path
Uniform

0 10 20 30 40 50 60 70 80
time in TPU hours

6.0

6.2

6.4

6.6

6.8

7.0

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Regularized Evolution (Perturb Arch.)
Adj.
Cat. Adj.
Path
Trunc. Path
Cat. Path
Trunc. Cat. Path

10 20 30 40 50 60
time in TPU hours

6.0

6.2

6.4

6.6

6.8

7.0

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Local Search (Perturb Arch.)
Adj.
Path
Trunc. Path

15 20 25 30 35 40 45
time in TPU hours

5.8

5.9

6.0

6.1

6.2

6.3

6.4

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Bayesian Optimization (Train Predictor Model)
Adj.
Cont. Adj.
Path
Trunc. Path
Cont. Path
NASBOT

102 103

size of the training set

1.0

1.5

2.0

2.5

3.0

3.5

m
ea

n
ab

so
lu

te
 e

rro
r o

n
te

st
 se

t

Neural Predictor (Train Predictor Model)
Adj.
Cat. Adj.
Cont. Adj.
Path
Trunc. Path
Cat. Path

10 20 30 40
time in TPU hours

5.8

6.0

6.2

6.4

6.6

6.8

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

BANANAS (All Subroutines)
(Adj., Cat. Adj., Trunc. Path)
(Trunc. Path, Trunc. Path, Trunc. Path)
(Adj., Adj., Adj.)
(Adj., Adj., Trunc. Path)
(Adj., Adj., Cat. Path)

Figure 4.1: Experiments on NASBench-101 with different encodings, keeping all but one subroutine
fixed: random sampling (top left), perturb architecture (top middle, top right), train predictor model
(bottom left, bottom middle), or varying all three subroutines (bottom right).

of a NAS algorithm [15, 24, 23], we plot the mean absolute error on the test set for different sizes242

of training data. Finally, we run experiments on BANANAS [24], varying all three subroutines at243

once. We directly used the open source code for each algorithm. Details on the implementations244

for each algorithm are discussed in Appendix B. In each experiment, we report the test error of the245

neural network with the best validation error after time t, for t up to 130 TPU hours. We run at least246

200 trials for each algorithm. See Figure 4.1 for the results on NASBench-101. We present more247

experiments for NASBench-201 in Appendix B, seeing largely the same trends.248

Depending on the subroutine, two encodings might be functionally equivalent, which is why not all249

encodings appear in each experiment (for example, in local search, there is no difference between250

one-hot and categorical encodings). There is no overall best encoding; instead, each encoding has251

varied performance for each subroutine, and the results in Figure 4.1 act as a guideline for which252

encodings to use in which subroutines. For example, the one-hot adjacency matrix encoding performs253

well in most settings, but is quite poor in the neural predictor subroutine. Categorical, one-hot,254

adjacency-based, path-based, and continuous encodings are all best in certain settings. Some of our255

findings explain the success of prior algorithms, e.g., regularized evolution using the categorical256

adjacency encoding, and BANANAS using the path encoding in the meta neural network. Some of our257

results show new discoveries, for example, the continuous adjacency encoding has previously never258

been used for NAS with BO, and it outperforms all other encodings. We also show that combining259

the best encodings for each subroutine in BANANAS yields the best performance.260

In Figure 4.1, Trunc. Path denotes the path encoding truncated from
∑5
i=0 3i = 364 to

∑3
i=0 3i = 40.261

As predicted by Theorem 3.1, this does not decrease performance. In fact, in regularized evolution,262

the truncation improves performance significantly because perturbing with the full path encoding263

is more likely to add uncommon paths that do not improve accuracy. We also evaluate the effect of264

truncating the one-hot adjacency matrix encoding on regularized evolution, from the full 31 bits (on265

NASBench-101) to 0 bits, and the path encoding from 31 bits (out of 364) to 0 bits. See Figure 4.2.266

The path encoding is much more robust to truncation, consistent with Theorems 3.1 and 3.2.267

Outside search space experiment. In the set of experiments above, we tested the effect of encod-268

ings on a neural predictor model by computing the mean absolute error between the predicted vs.269

actual errors on the test set, and also by evaluating the performance of BANANAS when changing270

the encoding of its neural predictor model. The latter experiment tests the predictor model’s ability271

to predict the best architectures, not just all architectures on average. We take this one step further272

and test the ability of the neural predictor to generalize beyond the search space on which it was273

trained. We set up the experiment as follows. We define the training search space as a subset274

of NASBench-101: architectures with at most 6 nodes and 7 edges. We define the disjoint test275

7

Table 1: Ability of neural predictor with different encodings to generalize beyond the search space.

Encoding Validation error Test error

Top 10 avg. Top 1 avg. Top 10 avg. Top 1 avg.

Adjacency 5.888 5.505 6.454 6.056
Categorical Adjacency 7.589 6.191 8.155 7.086

Path 5.967 5.606 6.616 6.335
Truncated Path 6.082 5.644 6.712 6.452
Categorical Path 6.357 5.703 6.939 6.489
Truncated Categorical Path 6.339 5.895 6.918 6.766

0 1 2 3 4 5 6 7
x: length of path

1

2

3

4

5

6

7

8

k:
 e

xp
ec

te
d

nu
m

be
r o

f e
dg

es

b(k,x) for NASBench-101

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30
encoding length

6

7

8

9

10

11

12

13
te

st
 e

rro
r o

f b
es

t n
eu

ra
l n

et
Adj.
Path

100 101 102

length of path encoding

0

1

2

3

4

5

6

st
an

da
rd

 d
ev

ia
tio

n

path enc. equiv. classes

Figure 4.2: Plot of b(k, x) on NASBench-101 (left). Truncation of encodings for regularized evolution
on NASBench-101 (middle). Average standard deviation of accuracies within each equivalence class
defined by the path encoding at different levels of truncation on NASBench-101 (right).

search space as architectures with 6 nodes and 7 to 9 edges. The neural predictor is trained on 1000276

architectures and predicts the validation loss of the 5000 architectures from the test search space. We277

evaluate the losses of the ten architectures with the highest predicted validation loss. We run 200278

trials for each encoding and average the results. See Table 1. The adjacency encoding performed the279

best. An explanation is that for the path encoding, there are features (paths) in architectures from280

the test set that do not exist in the training set. This is not the case for the adjacency encoding: all281

features (edges) from architectures in the test set have shown up in the training set.282

Equivalence class experiments. Recall that the path encoding function e is not onto (see Fig-283

ure 3.1). In general, this is not desirable because information is lost when two architectures map to the284

same encoding. However, if the encoding function only maps architectures with similar accuracies285

to the same encoding, then the behavior is beneficial. On the NASBench-101 dataset, we compute286

the path encoding of all 423k architectures, and then we compute the average standard deviation287

of accuracies among architectures with the same encoding (i.e., we look at the standard deviations288

within the equivalence classes defined by the encoding). The result is an average standard deviation of289

0.353%, compared to the 5.55% standard deviation over the entire set of architectures. See Figure 4.2.290

5 Conclusion291

In this paper, we give the first formal study of encoding schemes for neural architecture search. We292

define eight different encodings and characterize the scalability of each one. We then identify three293

encoding-dependent subroutines used by NAS algorithms, sample random architecture, perturb294

architecture, and train predictor model, and we run experiments to find the best encoding for each295

subroutine in many popular algorithms. We also conduct experiments on the ability of a neural296

predictor to generalize beyond the training search space, given each encoding. Our experimental297

results allow us to disentangle the algorithmic and encoding-based contributions of prior work, and298

act as a guideline for the encodings to use in future work. Overall, we show that encodings are an299

important, nontrivial design decision in the field of NAS. Designing and testing new encodings is an300

exciting next step.301

8

6 Broader Impact302

Our work gives a study on encodings for neural architecture search, with the goal of helping future303

researchers improve their NAS algorithms. Therefore, this work will not directly impact society,304

since it is two levels of abstraction from real applications, but it can indirectly impact society. As an305

example, our work may inspire the creation of a new state-of-the-art NAS algorithm, which is then306

used to improve the performance of several deep learning algorithms, ranging from optimizers that307

reduce CO2 emissions, to deep fake generators.308

Since our work is two levels up the stack, we have much less control over the net impact of our work309

on society. Due to the recent push for the AI community to be more conscious and clairvoyant about310

the societal impact of its work, [3] we are cautiously optimistic that our work will have a net positive311

impact.312

References313

[1] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural314

architecture search. In Proceedings of the International Conference on Learning Representations315

(ICLR), 2020.316

[2] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.317

arXiv preprint arXiv:1808.05377, 2018.318

[3] Brent Hecht, Lauren Wilcox, Jeffrey P Bigham, Johannes Schöning, Ehsan Hoque, Jason Ernst,319

Yonatan Bisk, Luigi De Russis, Lana Yarosh, Bushra Anjum, Danish Contractor, and Cathy Wu.320

It’s time to do something: Mitigating the negative impacts of computing through a change to321

the peer review process. ACM Future of Computing Blog, 2018.322

[4] William Irwin-Harris, Yanan Sun, Bing Xue, and Mengjie Zhang. A graph-based encoding323

for evolutionary convolutional neural network architecture design. In 2019 IEEE Congress on324

Evolutionary Computation (CEC), pages 546–553. IEEE, 2019.325

[5] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: Efficient neural architecture search with326

network morphism. arXiv preprint arXiv:1806.10282, 2018.327

[6] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.328

Neural architecture search with bayesian optimisation and optimal transport. In Advances in329

Neural Information Processing Systems, pages 2016–2025, 2018.330

[7] Hiroaki Kitano. Designing neural networks using genetic algorithms with graph generation331

system. Complex systems, 4(4):461–476, 1990.332

[8] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.333

arXiv preprint arXiv:1902.07638, 2019.334

[9] Marius Lindauer and Frank Hutter. Best practices for scientific research on neural architecture335

search. arXiv preprint arXiv:1909.02453, 2019.336

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.337

arXiv preprint arXiv:1806.09055, 2018.338

[11] Krzysztof Maziarz, Andrey Khorlin, Quentin de Laroussilhe, and Andrea Gesmundo.339

Evolutionary-neural hybrid agents for architecture search. arXiv preprint arXiv:1811.09828,340

2018.341

[12] Willie Neiswanger, Kirthevasan Kandasamy, Barnabas Poczos, Jeff Schneider, and Eric Xing.342

Probo: a framework for using probabilistic programming in bayesian optimization. arXiv343

preprint arXiv:1901.11515, 2019.344

[13] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural345

architecture search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.346

9

[14] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image347

classifier architecture search. In Proceedings of the AAAI conference on artificial intelligence,348

volume 33, pages 4780–4789, 2019.349

[15] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T Kwok, and Tong Zhang. Multi-objective350

neural architecture search via predictive network performance optimization. arXiv preprint351

arXiv:1911.09336, 2019.352

[16] Pantelimon Stanica. Good lower and upper bounds on binomial coefficients. Journal of353

Inequalities in Pure and Applied Mathematics, 2001.354

[17] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting355

topologies. Evolutionary computation, 10(2):99–127, 2002.356

[18] KO Stanley, DB D’Ambrosio, and J Gauci. A hypercube-based indirect encoding for evolving357

large-scale neural networks. In Artificial Life, volume 15(2), pages 185–212, 2009.358

[19] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen. Evolving deep convolutional neural359

networks for image classification. IEEE Transactions on Evolutionary Computation, 2019.360

[20] El-Ghazali Talbi. Optimization of deep neural networks: a survey and unified taxonomy. 2020.361

[21] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural362

networks. arXiv preprint arXiv:1905.11946, 2019.363

[22] Chen Wei, Chuang Niu, Yiping Tang, and Jimin Liang. Npenas: Neural predictor guided364

evolution for neural architecture search. arXiv preprint arXiv:2003.12857, 2020.365

[23] Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kindermans. Neural366

predictor for neural architecture search. arXiv preprint arXiv:1912.00848, 2019.367

[24] Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural368

architectures for neural architecture search. arXiv preprint arXiv:1910.11858, 2019.369

[25] Colin White, Sam Nolen, and Yash Savani. Local search is state of the art for nas benchmarks.370

arXiv preprint arXiv:2005.02960, 2020.371

[26] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci. Nas evaluation is frustratingly hard.372

In Proceedings of the International Conference on Learning Representations (ICLR), 2020.373

[27] Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter. Nas-374

bench-101: Towards reproducible neural architecture search. arXiv preprint arXiv:1902.09635,375

2019.376

[28] Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational377

autoencoder for directed acyclic graphs. In Proceedings of the Annual Conference on Neural378

Information Processing Systems (NIPS), 2019.379

[29] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In380

Proceedings of the International Conference on Learning Representations (ICLR), 2017.381

10

A Details from Section 3 (Encodings for NAS)382

We give the details from Section 3. We restate the random graph model here more formally.383

Definition A.1. Given nonzero integers n, r, and k < n(n−1)/2, a random graph Gn,k,r is generated384

as follows:385

(1) Denote n nodes by 1 to n and label each node randomly with one of r operations.386

(2) For all i < j, add edge (i, j) with probability 2k
n(n−1) .387

(3) If there is no path from node 1 to node n, goto (1).388

Let G′n,k,r denote the random graph outputted by the above procedure without step (3). Since the389

number of pairs (i, j) such that i < j is n(n−1)
2 , the expected number of edges of G′n,k,r is k. Define390

an,k,` as the expected number of paths from node 1 to node n of length ` in G′n,k,r. Formally, we set391

P = {paths from node 1 to n in G′n,k,r}, and define392

an,k,` = E [|p ∈ P| | |p| = `] .

Recall that393

b(k, x) =

∑x
`=1 an,k,`∑n
`=1 an,k,`

.

In the next theorem, we give a full characterization of b(k, x) in terms of k and n, up to constant394

factors. We prove there exists a phase transition for b(k, x) at x = k
n . As noted by prior work [24],395

there are two caveats when applying this type of theorem to NAS performance. The theorem considers396

the distribution from Definition A.1, not the distribution of architectures encountered in a real search,397

and the most common paths in the distribution are not necessarily the ones with the most entropy in398

predicting whether an architecture has a high accuracy. However, two prior works have experimentally399

showed that truncating the path encoding does not decrease performance [22, 24], and we gave even400

more experimental evidence in Section 4.401

Theorem 3.1 (restated). Given n ≤ k ≤ n(n−1)
2 , and c > 3, for x > 2ec · kn , b(k, x) > 1− c−x+1,402

and for x < 1
2ec ·

k
n , b(k, x) < −2

k
2n .403

To prove Theorem 3.1, we use the well-known bounds on binomial coefficients, e.g. [16].404

Theorem A.2. Given 0 ≤ ` ≤ n,405 (n
`

)`
≤
(
n

`

)
≤
(en
`

)`
.

Now we give upper and lower bounds on an,k,` which will be used for the rest of the proofs. The406

next fact is similar to Lemma C.3 from BANANAS [24].407

Fact A.3. Given n ≤ k ≤ n(n−1)
2 , and 0 < x < n, we have408

2k

n2

(
2k(1− ε)
(`− 1)n

)`−1
≤ an,k,` ≤

2k

n2

(
2ek(1− ε)
(`− 1)n

)`−1
Proof. First, we have409

an,k,` =

(
n− 2

`− 1

)(
2k

n(n− 1)

)`
because on a path from node 1 to node n with length `, there are

(
n−2
`−1
)

choices of intermediate nodes410

from 1 to n. Once the nodes are chosen, we need all ` edges between the nodes to exist, and each411

edge exists independently with probability 2
n(n−1) · k. Then we achieve the desired result by applying412

Theorem A.2.413

Now we prove the upper bound of Theorem 3.1.414

Lemma A.4. Given n ≤ k ≤ n(n−1)
2 and c > 2, for x > 2eck

n , b(k, x) > 1− c−x+1.415

11

Proof. Given n ≤ k ≤ n(n−1)
2 and x > 2eck

n , we give a lower bound for
∑x
`=1 an,k,` and an upper416

bound for
∑n
`=x+1 an,k,`.417

When ` = 1, we have
(
n−2
`−1
)

= 1. Therefore,418

x∑
`=1

an,k,` ≥ an,k,1 =

(
2k

n(n− 1)

)
≥ 2k

n2
.

Now we upper bound
∑n
`=x an,k,`.419

n∑
`=x+1

an,k,` ≤
n∑

`=x+1

2k

n2

(
2ek(1− ε)
(`− 1)n

)`−1

=
2k

n2

n∑
`=x+1

(
2ek(1− ε)
(`− 1)n

)`−1

≤ 2k

n2

n∑
`=x+1

(
1

c

)`−1

=

(
2k

n2

)(
1

c

)x ∞∑
`=0

(
1

c

)`
(A.1)

=

(
2k

n2

)(
1

c

)x(
c

c− 1

)
=

(
2k

n2

)(
1

c

)x−1
In inequality A.1, we use the fact that for all ` ≥ x,420

` ≥ x > 2eck

n
=⇒ 2ek(1− ε)

n`
≤ 1

c

when c > 2, since 1− ε > n−2
n−1 in Fact A.3.421

Therefore, we have422

b(k, x) =

∑x
`=1 an,k,`∑n
`=1 an,k,`

=

∑x
`=1 an,k,`∑x

`=1 an,k,` +
∑n
`=x+1 an,k,`

≥
2k
n2

2k
n2 +

(
2k
n2

) (
1
c

)x−1
=

1

1 +
(
1
c

)x−1
≥ 1− c−x+1.

423

Now we prove the lower bound for Theorem 3.1.424

Lemma A.5. Given n ≤ k ≤ n(n−1)
2 and c > 3, for x < k

2ecn , b(k, x) < 2−
k
2n .425

Proof. Given n ≤ k ≤ n(n−1)
2 and x < k

2ecn , now we give an upper bound for
∑x
`=1 an,k,` and a426

lower bound for
∑n
`=x+1 an,k,`.427

12

First we make the following claim. For all 1 ≤ ` ≤ x < k
2ecn , we have428 (

2ek(1− ε)
(`− 1)n

)`
<
(
4e2c(1− ε)

) k
2ecn . (A.2)

To prove the claim, we have429 (
2ek(1− ε)
(`− 1)n

)`
= elog(

2ek(1−ε)
(`−1)n)` (A.3)

= e` log
1
`+` log(

2ek(1−ε)
n)

≤ e
k

2ecn log(2ecn
k)+ k

2ecn log(2ek(1−ε)
n) (A.4)

= elog(4e
2c(1−ε)) k

2ecn (A.5)

=
(
4e2c(1− ε)

) k
2ecn

In inequality A.5, we use the fact that k
(`−1)n < 1 and y > log y for all y > 1.430

Then we have431

x∑
`=1

an,k,` ≤
x∑
`=1

2k

n2

(
2ek(1− ε)
(`− 1)n

)`−1
=

2k

n2

x∑
`=1

(
2ek(1− ε)
(`− 1)n

)`−1
≤
(

2k

n2

)
· x ·

(
4e2c(1− ε)

) k
2ecn .

Now we give the lower bound for the other side of the summation.432

n∑
`=x

an,k,` =

n∑
`=x

2k

n2

(
2k(1− ε)
(`− 1)n

)`−1
≥ 2k

n2

k
n∑

`= k
n

(
2k(1− ε)
(`− 1)n

)`−1
=

2k

n2
(2(1− ε))

k
n

Therefore,433

b(k, x) =

∑x
`=1 an,k,`∑n
`=1 an,k,`

≤
∑x
`=1 an,k,`∑n

`=x+1 an,k,`

≤
(
2k
n2

)
· x ·

(
4e2c(1− ε)

) k
2ecn

2k
n2 (2(1− ε))

k
n

≤ x · (2e)
k
ecn (c)

k
2ecn (2)

− kn

≤ x · 2−
k
n (1− 1

c−
log c
2ec)

≤ 2−
k
2n

434

The proof of Theorem 3.1 follows immediately from combining Lemmas A.4 and A.5.435

13

B Details from Section 4 (Experiments)436

In this section, we give details from Section 4, and more experiments. First we describe the algorithms437

used in our experiments.438

• Random Search consists of randomly choosing architectures and then training them, until439

the runtime budget is exceeded.440

• Regularized evolution [14] consists of maintaining a population of neural architectures. In441

each iteration, a subset is selected and the best architecture from the subset is mutated. The442

mutation replaces the oldest architecture from the population. We used a population size of443

30. We also found that replacing the worst architecture (not the oldest) performed better, so444

we used this version.445

• Local search [25] is a simple greedy algorithm that has only recently been applied to NAS.446

We use the simplest instantiation (often called the hill-climbing algorithm).447

• Bayesian optimization (BO) is a strong method for zeroth order optimization. We use the448

ProBO [12] implementation, which uses a Gaussian process kernel and expected improve-449

ment as the acquisition function.450

• NASBOT [6] is a BO-based NAS algorithm. It was not defined for cell-based search spaces,451

so we use a variant that works for cell-based spaces [24].452

• BANANAS [24] is a BO-based method which uses a neural predictor model.453

B.1 Experiments on NASBench-201454

In this section, we give similar experiments to Figure 4.1, but with NASBench-201 instead of455

NASBench-101. Note that NASBench-201 is not as good for encoding experiments because every456

single architecture has the same graph structure - a clique of size 4. The only differences are the457

operations. Therefore, many encodings are functionally equivalent. For example, the one-hot,458

categorical, and continuous adjacency matrix encodings are all identical because the only difference459

is the way they encode the adjacency matrix. I.e., these encodings will all look like a set of operations,460

plus some adjacency matrix encoding that is the same for every architecture in the search space. The461

one-hot adjacency matrix encoding, path encoding, and truncated path encoding are all distinct from462

one another, so we run experiments with these encodings. See Figure B.1. We see largely the same463

trends as in NASBench-101 (Figure 4.1). Note that on the ImageNet-16-120 dataset, some algorithms464

such as NASBOT overfit to the training set, causing performance to decline over time.465

B.2 Best practices for NAS466

Many authors have called for improving the reproducibility and fairness in experimental comparisons467

in NAS research [8, 27, 26], which has led to the release of a NAS best practices checklist [9]. We468

address each section and we encourage future work to do the same.469

• Best practices for releasing code. We included our code in the supplementary material.470

We will release our code publicly after this reviewing cycle. We used the NASBench-471

101 and NASBench-201 datasets, so questions about training pipeline, evaluation, and472

hyperparameters for the final evaluation do not apply.473

• Best practices for comparing NAS methods. We made fair comparisons due to our use of474

NASBench-101 and NASBench-201. We did run ablation studies and ran random search.475

We performed 300 trials of each experiment on NASBench-101 and NASBench-201.476

• Best practices for reporting important details. We used the hyperparamters straight from477

the open source repositories, with a few exceptions listed above.478

14

1 2 3 4 5 6
time in GPU hours

5.6

5.8

6.0

6.2

6.4

6.6

6.8

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Reg. Evolution: CIFAR-10
Adj.
Path
Trunc. Path

2 4 6 8 10 12
time in GPU hours

26.5

27.0

27.5

28.0

28.5

29.0

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Reg. Evolution: CIFAR-100

Adj.
Path
Trunc. Path

10 20 30 40 50
time in GPU hours

53.4

53.6

53.8

54.0

54.2

54.4

54.6

54.8

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Reg. Evolution: ImageNet-16-120

Adj.
Path
Trunc. Path

1 2 3 4 5 6
time in GPU hours

5.6

5.8

6.0

6.2

6.4

6.6

6.8

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Local Search: CIFAR-10
Adj.
Path
Trunc. Path

2 4 6 8 10 12
time in GPU hours

26.5

27.0

27.5

28.0

28.5

29.0

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Local Search: CIFAR-100
Adj.
Path
Trunc. Path

10 20 30 40 50
time in GPU hours

53.4

53.6

53.8

54.0

54.2

54.4

54.6

54.8

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

Local Search: ImageNet-16-120
Adj.
Path
Trunc. Path

1 2 3 4
time in GPU hours

5.6

5.8

6.0

6.2

6.4

6.6

6.8

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

BANANAS: CIFAR-10
Adj.
Path
Trunc. Path

2 3 4 5 6 7 8 9
time in GPU hours

26.5

27.0

27.5

28.0

28.5

29.0

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

BANANAS: CIFAR-100
Adj.
Path
Trunc. Path

5 10 15 20 25
time in GPU hours

53.4

53.6

53.8

54.0

54.2

54.4

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

BANANAS: ImageNet-16-120
Adj.
Path
Trunc. Path

1 2 3 4
time in GPU hours

5.6

5.8

6.0

6.2

6.4

6.6

6.8

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

BO: CIFAR-10
Adj.
Path
Trunc. Path
NASBOT

2 4 6 8
time in GPU hours

26.5

27.0

27.5

28.0

28.5

29.0

29.5

30.0

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

BO: CIFAR-100
Adj.
Path
Trunc. Path
NASBOT

5 10 15 20 25
time in GPU hours

53.6

53.8

54.0

54.2

54.4

54.6

te
st

 e
rro

r o
f b

es
t n

eu
ra

l n
et

BO: ImageNet-16-120
Adj.
Path
Trunc. Path
NASBOT

Figure B.1: Experiments on NASBench-201 with different encodings, keeping all but one subroutine
fixed: perturb architecture (Reg. evolution (top row), local search (second row)), train predictor
model (BANANAS (third row), Bayesian optimization (bottom row)).

15

	Introduction
	Related Work
	Encodings for NAS
	The scalability of encodings

	Experiments
	Conclusion
	Broader Impact
	Details from Section 3 (Encodings for NAS)
	Details from Section 4 (Experiments)
	Experiments on NASBench-201
	Best practices for NAS

