
We thank the reviewers for the thought-invoking questions and helpful comments on improving the manuscript. We will1

add more text to improve readability and, if necessary, remove some of the technical lemmas to make room. We also2

have extended our empirical proof of maximal informativeness to k = 15.3

4

R1, R2, & R3: The LLW hinge loss is calibrated with respect to the 0-1 loss while the WW hinge loss is not. Why5

does the WW SVM still outperform the LLW SVM? In other words, how can calibration be used as a justification for6

performance?7

A: The LLW SVM performs worse for a reason unrelated to calibration. Doǧan et al. [2016] makes the distinction8

between relative and absolute margin losses. The WW and CS loss are both based on relative margins, while LLW is9

based on absolute margins. Doǧan et al. [2016] on their page 20 gave an explanation for the worse performance of all10

losses based on absolute margin. Hence, the poor performance of LLW is a consequence of using absolute margin. Out11

of the nine SVM losses considered by Doǧan et al. [2016], only the CS and WW losses are relative margin based. We12

will add this discussion to our manuscript.13

14

R2, R3 & R4: Why is consistency with respect to the ordered partition loss desirable? What is the intuition?15

A: Regarding the intuition behind the ordered partition loss, the basic idea is that we want to rank the labels,16

where ties are allowed and each Si is a set of labels that are tied. We want the correct label to be as high17

up the ranking as possible. The lower the true class is ranked, the larger the loss. That is what the definition of18

the ordered partition loss says. We should have said this in the initial draft and will add this discussion to our manuscript.19

20

R1 & R4: How to get the surrogate decision function ψ to recover the ordered partition/buckets? Is there an excess21

risk bound?22

A: In line 125 of our manuscript, we cited Finocchiaro et al. [2019] who provided an explicit ψ given L, `, and ϕ. We23

refer to [Finocchiaro et al., 2019, Definition 6] for the construction of ψ. The excess risk bound for their constructed24

ψ can be found in [Finocchiaro et al., 2019, Theorem 6]. We will make the theorem references explicit in the manuscript.25

26

R2: What are the consequences of the maximally informative property?27

A: Intuitively, a discrete loss ` : R → Rk
+ (where R is finite) with embedding ϕ (an injection into the domain28

of L) is maximally informative for a surrogate L if ϕ(R) captures all the essential information contained in the29

surrogate L in the most compact way. To better convey this intuition, we replace “maximally informative” with the new30

terminology “minimally emblematic.” Let us say that a set of vectors E ⊆ Rk is an emblem of L if for all p ∈ ∆k, the31

set E ∩ argminv〈p, L(v)〉 is nonempty. Then we can equivalently define ` with ϕ to be minimally emblematic for L if32

ϕ(R) is an emblem of L of minimal cardinality. In other words, ϕ(R) is a minimal set of minimizers of all possible33

L-inner risks. We will update our manuscript with this discussion and the new terminology.34

35

R3: How does performance over the ordered partition loss translate to the 0-1 loss?36

A: Results from our section on the “argmax link” provide a partial answer to this. Namely, we show in two common37

regimes, the Bayes optimal ordered partition has a top bucket consisting of a single element. When this occurs, the38

argmax link recovers the most probable class, i.e., the unique element from the top bucket. We will modify the39

manuscript to clarify this point.40
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