
A Pseudocode of TD Learning

In this section, we present the pseudocode of TD learning in Algorithm 1, which is introduced in §3.

Algorithm 1 Temporal-Difference Learning with Two-Layer Neural Network for Policy Evaluation

Initialization: ✓i(0)
i.i.d.⇠ ⇢0 (i 2 [m]), number of iterations K = bT/✏c, and policy ⇡ of interest.

for k = 0, . . . ,K � 1 do

Sample the state-action pair (s, a) from the stationary distribution D of ⇡, receive the reward r,
and obtain the subsequent state-action pair (s0, a0).
Calculate the Bellman residual � = bQ(x; ✓(m)(k))� r � � · bQ(x0; ✓(m)(k)), where x = (s, a)
and x

0 = (s0, a0).
Perform the TD update ✓i(k + 1) ✓i(k)� ⌘✏ · ↵ · � ·r✓�(x; ✓i(k)) (i 2 [m]).

end for

Output: {✓(m)(k)}K�1
k=0

B Q-Learning and Policy Improvement

In this section, we extend our analysis of TD to Q-learning and soft Q-learning for policy improvement.
In §B.1, we introduce Q-learning and its mean-field limit. In §B.2, we establish the global optimality
and convergence of Q-learning. In §B.3, we further extend our analysis to soft Q-learning, which is
equivalent to policy gradient.

B.1 Q-Learning

Q-learning aims to solve the following projected Bellman optimality equation,

Q = ⇧FT ⇤
Q. (B.1)

Here T ⇤ is the Bellman optimality operator, which is defined as follows,

T ⇤
Q(s, a) = E

⇥
r + � ·max

a2A
Q(s0, a)

�� r ⇠ R(· | s, a), s0 ⇠ P (· | s, a)
⇤
.

When ⇧F is the identity mapping, the fixed point solution to (B.1) is the Q-function Q
⇡⇤

of the
optimal policy ⇡

⇤, which maximizes the expected total reward J(⇡) defined in (2.1) [65]. We consider
the parameterization of the Q-function in (3.1) and update the parameter ✓(m) as follows,

✓i(k + 1) (B.2)

= ✓i(k)� ⌘✏ · ↵ ·
⇣
bQ
�
sk, ak; ✓

(m)(k)
�
� rk � � ·max

a2A
bQ
�
s
0
k, a; ✓

(m)(k)
�⌘

·r✓�
�
sk, ak; ✓i(k)

�
,

where i 2 [m], (sk, ak) is sampled from the stationary distribution DE 2P(S⇥A) of an exploration
policy ⇡E, rk ⇠ R(· | sk, ak) is the reward, and s

0
k ⇠ P (· | sk, ak) is the subsequent state. For

notational simplicity, we denote by eDE 2P(S ⇥A⇥R⇥S) the distribution of (sk, ak, rk, s0k). For
an initial distribution ⌫0 2P(RD), we initialize {✓i}mi=1 as ✓i

i.i.d.⇠ ⇢0 (i 2 [m]). See Algorithm 2
for a detailed description.

Mean-Field Limit. Corresponding to ✏! 0+ and m!1, the mean-field limit of the Q-learning
dynamics in (B.2) is characterized by the following PDE with ⌫0 as the initial distribution,

@t⌫t = �⌘ · div
�
⌫t · h(·; ⌫t)

�
. (B.3)

Here h(·; ⌫t) : RD ! RD is a vector field, which is defined as follows,

h(✓; ⌫) = �↵ · E(s,a,r,s0)⇠ eDE

h�
Q(s, a; ⌫)� r � � ·max

a2A
Q(s0, a; ⌫)

�
·r✓�(s, a; ✓)

i
. (B.4)

In parallel to Proposition 3.1, the empirical distribution b⌫(m)
k = m

�1 ·
Pm

i=1 �✓i(k) weakly converges
to ⌫k✏ as ✏! 0+ and m!1.
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Algorithm 2 Q-Learning with Two-Layer Neural Network for Policy Improvement

Initialization. ✓i(0)
i.i.d.⇠ ⌫0 (i 2 [m]), number of iterations K = bT/✏c, and exploration policy

⇡E.
for k = 0, . . . ,K � 1 do

Sample the state-action pair (s, a) from the stationary distribution DE of ⇡E, receive the reward
r, and obtain the subsequent state s

0.
Calculate the Bellman residual � = bQ(x; ✓(m)(k))� r � � · bQ(x0; ✓(m)(k)), where x = (s, a)
and x

0 = (s0, argmaxa2A
bQ(s0, a; ✓(m)(k))).

Perform the Q-learning update ✓i(k + 1) ✓i(k)� ⌘✏ · ↵ · � ·r✓�(x; ✓i(k)) (i 2 [m]).
end for

Output: {✓(m)(k)}K�1
k=0

B.2 Global Optimality and Convergence of Q-Learning

The max operator in the Bellman optimality operator T ⇤ makes the analysis of Q-learning more
challenging than that of TD. Correspondingly, we lay out an extra regularity condition on the
exploration policy ⇡E. Recall that the function class F is defined in (4.3).
Assumption B.1. We assume for an absolute constant  > 0 and any Q

1
, Q

2 2 F that

E(s,a)⇠DE

h�
Q

1(s, a)�Q
2(s, a)

�2i � (� + )2 · E(s,a)⇠DE

h�
max
a2A

Q
1(s, a)�max

a2A
Q

2(s, a)
�2i

.

Although Assumption B.1 is strong, we are not aware of any weaker regularity condition in the
literature, even in the linear setting [25, 55, 78] and the NTK regime [21]. Let the initial distribution
⌫0 be the standard Gaussian distribution N(0, ID). In parallel to Theorem 4.3, we establish the
following theorem, which characterizes the global optimality and convergence of Q-learning. Recall
that we write X = S ⇥A and x = (s, a) 2 X . Also, ⌫t is the PDE solution in (B.3), while ✓

(m)(k)
is the Q-learning dynamics in (B.2).
Theorem B.2. There exists a unique fixed point solution to the projected Bellman optimality equation
Q = ⇧FT ⇤

Q, which takes the form of Q†(x) =
R
�(x; ✓) d⌫̄(✓). We assume that D�2(⌫̄ k ⌫0) <1

and ⌫̄(✓) > 0 for any ✓ 2 RD. Under Assumptions 4.1, 4.2, and B.1, it holds for ⌘ = ↵
�2 that

inf
t2[0,T ]

Ex⇠DE

h�
Q(x; ⌫t)�Q

†(x)
�2i 

(+ �) ·D�2(⌫̄ k ⌫0)
2 · T +

(+ �) · C⇤
 · ↵ , (B.5)

where C⇤ > 0 is a constant depending on D�2(⌫̄ k ⌫0), B1, B2, and Br. Moreover, it holds with
probability at least 1� � that

min
kT/✏
(k2N)

Ex⇠DE

⇣
bQ
�
x; ✓(m)(k)

�
�Q

†(x)
⌘2�


(+ �) ·D�2(⌫̄ k ⌫0)

2 · T +
(+ �) · C⇤

 · ↵ +�(✏,m, �, T ), (B.6)

where �(✏,m, �, T ) > 0 is an error term such that

lim
m!1

lim
✏!0+

�(✏,m, �, T ) = 0.

Proof. See §B.4 for a detailed proof.

Theorem B.2 proves that the optimality gap Ex⇠DE [(Q(x; ⌫t)�Q†(x))2] decays to zero at a sublinear
rate up to the error of O(↵�1), where ↵ > 0 is the scaling parameter in (3.1). In parallel to Theorem
4.3, varying ↵ leads to a tradeoff between such an error of O(↵�1) and the deviation of ⌫t from ⌫0.
Moreover, based on the counterparts of Proposition 3.1 and Lemma D.6, Theorem B.2 gives the
global optimality and convergence of the Q-learning dynamics ✓(m)(k) in (B.2), which is in parallel
to Corollary 4.4.
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B.3 Soft Q-Learning

In this section, we generalize Theorem B.2 to soft Q-learning. To introduce soft Q-learning, we first
define the soft Bellman optimality operator as follows,

T�Q(s, a) = E
⇥
r + � · softmax

a2A
�
Q(s0, a)

�� r ⇠ R(· | s, a), s0 ⇠ P (· | s, a)
⇤
,

where the softmax operator is defined as follows,

softmax
a2A

�
Q(s, a) = � · logEa⇠⇡̄(· | s)

h
exp
�
�
�1 ·Q(s, a)

�i
.

Here ⇡̄(· | s) is the uniform policy. Soft Q-learning aims to find the fixed point solution to the projected
soft Bellman optimality equation Q = ⇧FT�Q. In parallel to the Q-learning dynamics in (B.2), we
consider the following soft Q-learning dynamics,

✓i(k + 1) (B.7)

= ✓i(k)� ⌘✏ · ↵ ·
⇣
bQ
�
sk, ak; ✓

(m)(k)
�
� rk � � · softmax

a2A
� bQ
�
s
0
k, a; ✓

(m)(k)
�⌘

·r✓�
�
sk, ak; ✓i(k)

�
,

whose mean-field limit is characterized by the following PDE,

@t⌫t = �⌘ · div
�
⌫t · h(·; ⌫t)

�
. (B.8)

In parallel to (B.4), h(·; ⌫t) : RD ! RD is a vector field, which is defined as follows,

h(✓; ⌫) = �↵ · E(s,a,r,s0)⇠ eDE

h�
Q(s, a; ⌫)� r � � · softmax

a2A
�
Q(s0, a; ⌫)

�
·r✓�(s, a; ✓)

i
.

In parallel to Assumption B.1, we lay out the following regularity condition.
Assumption B.3. We assume for an absolute constant  > 0 and any ⌫

1
, ⌫

2 2P(RD) that

E(s,a)⇠DE

h�
Q(s, a; ⌫1)�Q(s, a; ⌫2)

�2i

� (� + )2 · E(s,a)⇠DE

h�
softmax

a2A
�
Q(s, a; ⌫1)� softmax

a2A
�
Q(s, a; ⌫2)

�2i
.

The following proposition parallels Theorem B.2, which characterizes the global optimality and
convergence of soft Q-learning. Recall that ⌫t is the PDE solution in (B.8) and ✓

(m)(k) is the soft
Q-learning dynamics in (B.7).
Proposition B.4. There exists a unique fixed point solution to the projected soft Bellman optimal-
ity equation Q = ⇧FT�Q, which takes the form of Q‡(x) =

R
�(x; ✓) d⌫(✓). We assume that

D�2(⌫ k ⌫0) <1 and ⌫(✓) > 0 for any ✓ 2 RD. Under Assumptions 4.1, 4.2, and B.3, it holds for
⌘ = ↵

�2 that

inf
t2[0,T ]

Ex⇠DE

h�
Q(x; ⌫t)�Q

‡(x)
�2i 

(+ �) ·D�2(⌫ k ⌫0)
2 · T +

(+ �) · C⇤
 · ↵ ,

where C⇤ > 0 is a constant depending on D�2(⌫ k ⌫0), B1, B2, and Br. Moreover, it holds with
probability at least 1� � that

min
kT/✏
(k2N)

Ex⇠DE

⇣
bQ
�
x; ✓(m)(k)

�
�Q

‡(x)
⌘2�


(+ �) ·D�2(⌫ k ⌫0)
2 · T +

(+ �) · C⇤
 · ↵ +�(✏,m, �, T ),

where �(✏,m, �, T ) > 0 is an error term such that

lim
m!1

lim
✏!0+

�(✏,m, �, T ) = 0.

Proof. Replacing the max operator by the softmax operator in the proof of Theorem B.2 in §B.4
implies Proposition B.4.

Moreover, soft Q-learning is equivalent to a variant of policy gradient [37, 57, 58, 61]. Hence,
Proposition B.4 also characterizes the global optimality and convergence of such a variant of policy
gradient.
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B.4 Proof of Theorem B.2

For notational simplicity, we denote by EDE the expectation with respect to x ⇠ DE and E eDE
the

expectation with respect to (x, r, x0) ⇠ eDE.

Proof. In parallel to the proof of Lemma 5.1 in §C.1, to establish the existence and uniqueness of the
fixed point solution to the projected Bellman optimality equation Q = ⇧FT ⇤

Q, it suffices to show
that ⇧FT ⇤ : F ! F is a contraction mapping. In particular, it holds for any Q

1
, Q

2 2 F that

k⇧FT ⇤
Q

1 �⇧FT ⇤
Q

2k2L2(DE)
 �

2 · E eDE

h�
max
a2A

Q
1(s0, a)�max

a2A
Q

2(s0, a)
�2i

= �
2 · EDE

h�
max
a2A

Q
1(s, a)�max

a2A
Q

2(s, a)
�2i

 �
2

(� + )2
· EDE

h�
Q

1(s, a)�Q
2(s, a)

�2i
,

where the equality follows from the fact that DE is the stationary distribution and the last inequality
follows from Assumption B.1. Thus, ⇧FT ⇤ : F ! F is a contraction mapping. Following from the
Banach fixed point theorem [28], there exists a unique fixed point solution Q

† 2 F to the projected
Bellman optimality equation Q = ⇧FT ⇤

Q. Moreover, in parallel to the proof of Lemma 5.1 in §C.1,
there exists ⌫† 2P2(RD) such that Q(x; ⌫†) = Q

†(x), h(x; ⌫†) = 0, and W2(⌫†, ⌫0)  ↵
�1 · D̄,

where D̄ = D�2(⌫̄ k ⌫0)1/2.

For notational simplicity, we define Q
A(x) = maxa2A Q(s, a). In parallel to (C.13) in the proof of

Lemma 5.2 in §C.2, we have that

d

dt

W2(⌫t, ⌫†)2

2
= ⌘ ·

Z 1

0

⌦
@sh(·;�s), vs

↵
�s

ds

| {z }
(i)

+⌘ ·
Z 1

0

Z ⌦
h(✓;�s), @s(vs · �s)(✓)

↵
d✓ ds

| {z }
(ii)

, (B.9)

where � : [0, 1]!P2(RD) is the geodesic connecting ⌫t and ⌫
† with @s�s = � div(�s · vs).

Upper bounding term (i) of (B.9). In parallel to (C.5) and (C.6) in the proof of Lemma C.1, we
have that
⌦
@sh(·;�s), vs

↵
�s

= �E eDE

h
@s

�
Q(x;�s)� � ·QA(x0;�s)

�
· @sQ(x;�s)

i
(B.10)

 �EDE

h�
@sQ(x;�s)

�2i
+ � · EDE

h�
@sQ(x;�s)

�2i1/2 · EDE

h�
@sQ

A(x;�s)
�2i1/2

.

For the second term on the right-hand side of (B.10), we have that

EDE

h�
@sQ

A(x;�s)
�2i

= lim
u!0

EDE

⇣
u
�1 ·

�
Q

A(x;�s+u)�Q
A(x;�s)

�⌘2�

 (� + )�2 · lim
u!0

u
�2 · EDE

h�
Q(x;�s+u)�Q(x;�s)

�2i

= (� + )�2 · EDE

h�
@sQ(x;�s)

�2i
, (B.11)

where the inequality follows from Assumption B.1 and the fact that Q(·; ⌫) 2 ↵ · F . Plugging (B.11)
into (B.10), we have that

⌦
@sh(·;�s), vs

↵
�s
 � 

� + 
· EDE

h�
@sQ(x;�s)

�2i
,

which further implies that
Z 1

0

⌦
@sh(·;�s), vs

↵
�s

ds  � 

� + 
·
Z 1

0
EDE

h�
@sQ(x;�s)

�2i
ds

 � 

� + 
· EDE

⇣Z 1

0
@sQ(x;�s) ds

⌘2�

= � 

� + 
· EDE

h�
Q(x; ⌫t)�Q(x; ⌫†)

�2i
. (B.12)
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Upper bounding term (ii) of (B.9). In parallel to the proof of Lemma C.2 in §C.2, noting that
|QA(x; ⌫)|  supx2X |Q(x; ⌫)| for any ⌫ 2P2(RD), we have that

��r✓h(✓; ⌫t)
��
F
 ↵ ·B2 ·

�
2↵ ·B1 · W2(⌫t, ⌫0) +Br

�
.

In parallel to (C.15) and (C.16), we have that
Z 1

0

Z ���
⌦
h(✓;�s), @s(vs · �s)(✓)

↵��� d✓ ds  C⇤ · ↵�1
, (B.13)

where C⇤ > 0 is a constant that depends on D̄, B1, B2, and Br.

Plugging (B.12) and (B.13) into (B.9), we have that

d

dt

W2(⌫t, ⌫†)2

2
 � ⌘ · 

� + 
· EDE

h�
Q(x; ⌫t)�Q(x; ⌫†)

�2i
+ C⇤ · ⌘ · ↵�1

.

Thus, in parallel to the proof of Theorem 4.3 in §5, we have that

inf
t2[0,T ]

ED

h�
Q(x; ⌫t)�Q

†(x)
�2i 

(+ �) ·D�2(⌫̄ k ⌫0)
2 · T + C⇤ · ↵�1 · + �


,

which completes the proof of (B.5) in Theorem B.2. Meanwhile, in parallel to the proof of Lemma
D.6 in §D.2, we upper bound the error of approximating b⌫k by ⌫k✏, which further implies (B.6) of
Theorem B.2.

C Proofs of Supporting Lemmas

For notational simplicity, we denote by ED the expectation with respect to x ⇠ D and E eD the
expectation with respect to (x, r, x0) ⇠ eD. Also, with a slight abuse of notations, we write ✓

(m) =
{✓i}mi=1.

C.1 Proof of Lemma 5.1

Proof. Existence and uniqueness of Q
⇤
. To establish the existence of the fixed point solution Q

⇤

to the projected Bellman equation Q = ⇧FT ⇡
Q, it suffices to show that ⇧FT ⇡ : F ! F is a

contraction mapping. It holds for any Q
1
, Q

2 2 F that

k⇧FT ⇡
Q

1 �⇧FT ⇡
Q

2k2L2(D)  �
2 · E eD

h�
Q

1(x0)�Q
2(x0)

�2i

= �
2 ·
��Q1 �Q

2
��2
L2(D)

,

where the last equality follows from the fact that D is the stationary distribution. Thus, ⇧FT ⇡ :
F ! F is a contraction mapping. Note that F is complete. Following from the Banach fixed point
theorem [28], there exists a unique Q⇤ 2 F that solves the projected Bellman equation Q = ⇧FT ⇡

Q.
Moreover, by the definition of F in (4.3), there exists ⇢̄ 2P2(RD) such that

Q
⇤(x) =

Z
�(x; ✓) d⇢̄(✓).

Proof of (i) in Lemma 5.1. We define

⇢
⇤ = ⇢0 + ↵

�1 · (⇢̄� ⇢0). (C.1)

By the definition of Q(·; ⇢) in (3.2) and the fact that Q(x; ⇢0) = 0, we have that Q(x; ⇢⇤) = Q
⇤(x),

which completes the proof of (i) in Lemma 5.1.

Proof of (ii) in Lemma 5.1. For (ii) of Lemma 5.1, note that Q(·; ⇢⇤) = ⇧FT ⇡
Q(·; ⇢⇤). Thus, we

have that
⌦
Q(·; ⇢⇤)� T ⇡

Q(·; ⇢⇤), f(·)�Q(·; ⇢⇤)
↵
D � 0, 8f 2 F ,
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which further implies that

E eD

h�
Q(x; ⇢⇤)� r � � ·Q(x0; ⇢⇤)

�
·
Z

�(x; ✓) d(⇢� ⇢̄)(✓)
i
� 0, 8⇢ 2P2(RD). (C.2)

Let ⇢ = (id+h ·v)]⇢̄ for a sufficiently small scaling parameter h 2 R+ and any Lipschitz-continuous
mapping v : RD ! RD. Then, following from (C.2), we have that

Z
E eD

�
Q(x; ⇢⇤)� r � � ·Q(x0; ⇢⇤)

�
·
⇣
�
�
x; ✓ + h · v(✓)

�
� �(x; ✓)

⌘�
d⇢̄(✓) � 0 (C.3)

for any v : RD ! RD. Dividing the both sides of (C.3) by h and letting h! 0+, we have for any
v : RD ! RD that

0 
Z

E eD

h�
Q(x; ⇢⇤)� r � � ·Q(x0; ⇢⇤)

�
·
⌦
r✓�(x; ✓), v(✓)

↵i
d⇢̄(✓)

= �↵�1 ·
Z ⌦

g(✓; ⇢⇤), v(✓)
↵
d⇢̄(✓),

where the equality follows from the definition of g in (3.5). Thus, we have that g(✓; ⇢⇤) = 0 for ⇢̄-a.e.,
which completes the proof of (ii) in Lemma 5.1.

Proof of (iii) in Lemma 5.1. Following from the definition of ⇢⇤ in (C.1), we have that

D�2(⇢⇤ k ⇢0)

=

Z ✓
⇢
⇤(✓)

⇢0(✓)
� 1

◆2

d⇢0(✓) =

Z ✓
(1� ↵

�1) · ⇢0(✓) + ↵
�1 · ⇢̄(✓)

⇢0(✓)
� 1

◆2

d⇢0(✓) = ↵
�2 · D̄2

,

where D̄ = D�2(⇢̄ k ⇢0)1/2. By Lemma E.3, we have that

W2(⇢
⇤
, ⇢0)  DKL(⇢

⇤ k ⇢0)1/2  D�2(⇢⇤ k ⇢0)1/2  ↵
�1 · D̄,

which completes the proof of (iii) in Lemma 5.1.

C.2 Proof of Lemma 5.2

We first introduce the following lemmas. The first lemma establishes the one-point monotonicity of
g(·;�t) along a curve � : [0, 1]!P2(RD) on the Wasserstein space.
Lemma C.1. Let � : [0, 1]!P2(RD) be a curve such that @t�t = � div(�t · vt) for a vector field
v. We have that

⌦
@tg(·;�t), vt

↵
�t
 �(1� �) · ED

h�
@tQ(x;�t)

�2i
.

Furthermore, we have that
Z 1

0

⌦
@sg(·;�s), vs

↵
�s

ds  �(1� �) · ED

h�
Q(x;�0)�Q(x;�1)

�2i
. (C.4)

Proof. Following from the definition of g in (3.5), we have that

@tg(✓;�t) = �↵ · E eD

h
@t

�
Q(x;�t)� � ·Q(x0;�t)

�
·r✓�(x; ✓)

i
.

Thus, following from integration by parts and the continuity equation @t�t = � div(�t · vt), we have
that
⌦
@tg(·;�t), vt

↵
�t

= �
Z ⌧

↵ · E eD

h
@t

�
Q(x;�t)� � ·Q(x0;�t)

�
·r✓�(x; ✓)

i
, vt(✓) · �t(✓)

�
d✓

= �
Z

↵ · E eD

h
@t

�
Q(x;�t)� � ·Q(x0;�t)

�
· �(x; ✓)

i
· @t�t(✓) d✓

= �E eD

h
@t

�
Q(x;�t)� � ·Q(x0;�t)

�
· @tQ(x;�t)

i
, (C.5)
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where the last equality follows from the definition of Q in (3.2). Applying the Cauchy-Schwartz
inequality to (C.5), we have that
⌦
@tg(·;�t), vt

↵
�t

= �E eD

h�
@tQ(x;�t)

�2i
+ � · E eD

⇥
@tQ(x0;�t) · @tQ(x;�t)

⇤

 �E eD

h�
@tQ(x;�t)

�2i
+ � · E eD

h�
@tQ(x;�t)

�2i1/2 · E eD

h�
@tQ(x0;�t)

�2i1/2

= �(1� �) · ED

h�
@tQ(x;�t)

�2i
, (C.6)

where the last equality follows from the fact that the marginal distributions of eD with respect to x

and x
0 are D, since D is the stationary distribution. Furthermore, we have that

Z 1

0

⌦
@sg(·;�s), vs

↵
�s

ds  �(1� �) ·
Z 1

0
ED

h�
@sQ(x;�s)

�2i
ds

 �(1� �) · ED

⇣Z 1

0
@sQ(x;�s) ds

⌘2�

= �(1� �) · ED

h�
Q(x;�1)�Q(x;�0)

�2i
,

which completes the proof of Lemma C.1.

The following lemma upper bounds the norms of Q and r✓g.
Lemma C.2. Under Assumptions 4.1 and 4.2, it holds for any ⇢ 2P2(RD) that

sup
x2X

��Q(x; ⇢)
��  ↵ ·min

�
B1 · W2(⇢, ⇢0), B0

 
, (C.7)

sup
✓2RD

��r✓g(✓; ⇢)
��
F
 ↵ ·B2 ·min

�
2↵ ·B1 · W2(⇢, ⇢0) +Br, 2↵ ·B0 +Br

 
. (C.8)

Proof. We introduce the Wasserstein-1 distance, which is defined as

W1(µ
1
, µ

2) = inf
n
E
⇥
kX � Y k

⇤ ��� law(X) = µ
1
, law(Y ) = µ

2
o

for any µ
1
, µ

2 2P(RD) with finite first moments. Thus, we have that W1(µ1
, µ

2) W2(µ1
, µ

2).
The Wasserstein-1 distance has the following dual representation [5],

W1(µ
1
, µ

2) = sup

⇢Z
f(x) d(µ1 � µ

2)(x)

���� continuous f : RD ! R,Lip(f)  1

�
. (C.9)

Following from Assumptions 4.1 and 4.2, we have that kr✓�(x; ✓)k  B1 for any x 2 X and
✓ 2 RD, which implies that Lip(�(x; ·)/B1)  1 for any x 2 X . Note that Q(x; ⇢0) = 0 for any
x 2 X . Thus, by (C.9) we have for any ⇢ 2P2(RD) and x 2 X that
��Q(x; ⇢)

�� = ↵ ·
����
Z

�(x; ✓) · d(⇢� ⇢0)(✓)

����  ↵ ·B1 · W1(⇢, ⇢0)  ↵ ·B1 · W2(⇢, ⇢0). (C.10)

Meanwhile, following from Assumptions 4.1 and 4.2, we have for any x 2 X and ⇢ 2P2(RD) that
��Q(x; ⇢)

�� = ↵ ·
����
Z

�(x; ✓) d⇢(✓)

����  ↵ ·B0. (C.11)

Combining (C.10) and (C.11), we have for any ⇢ 2P2(RD) that

sup
x2X

��Q(x; ⇢)
��  ↵ ·min

�
B1 · W2(⇢, ⇢0), B0

 
, (C.12)

which completes the proof of (C.7) in Lemma C.2. Following from the definition of g in (3.5), we
have for any x 2 X and ⇢ 2P2(RD) that

��r✓g(✓; ⇢)
��
F
 ↵ · E eD

h��Q(x; ⇢)� r � � ·Q(x0; ⇢)
�� ·
��r2

✓✓�(x; ✓)
��
F

i

 ↵ ·min
�
2↵ ·B1 · W2(⇢, ⇢0) +Br, 2↵ ·B0 +Br

 
·B2.

Here the last inequality follows from (C.12) and the fact that kr2
✓✓�(x; ✓)kF  B2 for any x 2 X

and ⇢ 2 P2(RD), which follows from Assumptions 4.1 and 4.2. Thus, we complete the proof of
Lemma C.2.
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We are now ready to present the proof of Lemma 5.2.

Proof. Recall that ⇢t is the PDE solution in (3.4), that is,

@t⇢t = �⌘ · div
�
⇢t · g(·; ⇢t)

�
,

where

g(✓; ⇢) = �↵ · E eD

h�
Q(x; ⇢)� r � � ·Q(x0; ⇢)

�
·r✓�(x; ✓)

i
.

We fix a t 2 [0, T ]. We denote by � : [0, 1] ! P2(RD) the geodesic connecting ⇢t and ⇢
⇤.

Specifically, � satisfies that �0
s = � div(�s · vs) for a vector field v. Following from Lemma E.2, we

have that
d

dt

W2(⇢t, ⇢⇤)2

2
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⌦
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= ⌘ ·
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0
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↵
�s

ds� ⌘ ·
⌦
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↵
⇢⇤

= ⌘ ·
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0

⌦
@sg(·;�s), vs

↵
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ds

| {z }
(i)

+⌘ ·
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0

Z ⌦
g(✓;�s), @s(vs · �s)(✓)

↵
d✓ ds

| {z }
(ii)

,

(C.13)

where the last equality follows from (ii) of Lemma 5.1.

For term (i) of (C.13), following from (C.4) of Lemma C.1, we have that
Z 1

0

⌦
@sg(·;�s), vs

↵
�s

ds  �(1� �) · ED

h�
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�2i

= �(1� �) · ED

h�
Q(x; ⇢t)�Q

⇤(x)
�2i

. (C.14)

For term (ii) of (C.14), we have that
Z ���
⌦
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↵��� d✓ =
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 sup
✓2RD

��r✓g(✓;�s)
��
F
· kvsk2�s

,

where the equality follows from integration by parts and Lemma E.4. Since � is the geodesic
connecting ⇢t and ⇢

⇤, (2.7) implies that kvsk2�s
= W2(�0,�1)2 = W2(⇢t, ⇢⇤)2 for any s 2 [0, 1].

Applying (C.8) of Lemma C.2, we have that
Z ���
⌦
g(✓;�s), @s(vs · �s)(✓)

↵��� d✓  ↵ ·B2 ·
�
2↵ ·B1 · W2(⇢t, ⇢0) +Br

�
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⇤)2

 4↵ ·B2 ·
�
6↵ ·B1 · W2(⇢0, ⇢

⇤) +Br

�
· W2(⇢0, ⇢

⇤)2, (C.15)

where the last inequality follows from the condition of Lemma 5.2 that W2(⇢t, ⇢⇤)  2W2(⇢0, ⇢⇤)
and the fact that W2(⇢t, ⇢0)  W2(⇢t, ⇢⇤) + W2(⇢0, ⇢⇤). Then, applying (iii) of Lemma 5.1 to
(C.15), we have that

Z 1

0

Z ���
⌦
g(✓;�s), @s(vs · �s)(✓)

↵��� d✓ ds  4↵�1 ·B2 · D̄2 · (6B1 · D̄ +Br)

= C⇤ · ↵�1
, (C.16)

where C⇤ > 0 is a constant depending on D̄, B1, B2, and Br.

Finally, plugging (C.14) and (C.16) into (C.13), we have that

d

dt

W2(⇢t, ⇢⇤)2

2
 �(1� �) · ⌘ · ED

h�
Q(x; ⇢t)�Q

⇤(x)
�2i

+ C⇤ · ↵�1 · ⌘,

which completes the proof of Lemma 5.2.
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D Mean-Field Limit of Neural Networks

In this section, we prove Proposition 3.1, whose formal version is presented as follows. Recall
that ⇢t is the PDE solution in (3.4) and b⇢k = m

�1 ·
Pm

i=1 ✓i(k) is the empirical distribution of
✓
(m)(k) = {✓i(k)}mi=1. Note that we omit the dependence of b⇢k on m and ✏ for notational simplicity.

Proposition D.1 (Formal Version of Proposition 3.1). Let f : RD ! R be any continuous function
such that kfk1  1 and Lip(f)  1. Under Assumptions 4.1 and 4.2, it holds that

sup
kT/✏
(k2N)

����
Z

f(✓) d⇢k✏(✓)�
Z

f(✓) db⇢k(✓)
����

 B · eBT ·
⇣p

log(m/�)/m+
q
✏ ·
�
D + log(m/�)

�⌘

with probability at least 1��. Here B is a constant that depends on ↵, ⌘, �, Br, and Bj (j 2 {0, 1, 2}).

The proof of Proposition D.1 is based on [6, 53, 54], which utilizes the propagation of chaos [66].
Recall that g(·; ⇢) is a vector field defined as follows,

g(✓; ⇢) = �↵ · E eD

h�
Q(x; ⇢)� r � � ·Q(x0; ⇢)

�
·r✓�(x; ✓)

i
.

Correspondingly, we define the finite-width and stochastic counterparts of g(✓; ⇢) as follows,

bg(✓; ✓(m)) = �↵ · E eD

h� bQ(x; ✓(m))� r � � · bQ(x0; ✓(m))
�
·r✓�(x; ✓)

i
, (D.1)

bGk(✓; ✓
(m)) = �↵ ·

� bQ(xk; ✓
(m))� rk � � · bQ(x0

k; ✓
(m))

�
·r✓�(xk; ✓), (D.2)

where (xk, rk, x
0
k) ⇠ eD. Following from [6, 53], we consider the following four dynamics.

• Temporal-difference (TD). We consider the following TD dynamics ✓(m)(k), where k 2 N, with
✓i(0)

i.i.d.⇠ ⇢0 (i 2 [m]) as its initialization,

✓i(k + 1) = ✓i(k)� ⌘✏ · ↵ ·
⇣
bQ
�
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�
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�
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0
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xk; ✓i(k)

�

= ✓i(k) + ⌘✏ · bGk

�
✓i(k); ✓

(m)(k)
�
, (D.3)

where (xk, rk, x
0
k) ⇠ eD. Note that this definition is equivalent to (2.3).

• Expected temporal-difference (ETD). We consider the following expected TD dynamics ✓̆(m)(k),
where k 2 N, with ✓̆i(0) = ✓i(0) (i 2 [m]) as its initialization,

✓̆i(k + 1) = ✓̆i(k)� ⌘✏ · ↵ · E eD

⇣
bQ
�
x; ✓̆(m)(k)

�
� r � � · bQ
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x
0; ✓̆(m)(k)
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x; ✓̆i(k)

��

= ✓̆i(k) + ⌘✏ · bg
�
✓̆i(k); ✓̆

(m)(k)
�
. (D.4)

• Continuous-time temporal-difference (CTTD). We consider the following continuous-time TD
dynamics e✓(m)(t), where t 2 R+, with e✓i(0) = ✓i(0) (i 2 [m]) as its initialization,

d

dt
e✓i(t) = �⌘ · ↵ · E eD

⇣
bQ
�
x; e✓(m)(t)

�
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x; e✓i(t)

��

= ⌘ · bg
�e✓i(t); e✓(m)(t)

�
. (D.5)

• Ideal particle (IP). We consider the following ideal particle dynamics ✓̄(m)(t), where t 2 R+,
with ✓̄i(0) = ✓i(0) (i 2 [m]) as its initialization,

d

dt
✓̄i(t) = �⌘ · ↵ · E eD

h�
Q(x; ⇢t)� r � � ·Q(x0; ⇢t)

�
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�
x; ✓̄i(t)
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= ⌘ · g
�
✓̄i(t); ⇢t

�
, (D.6)

where ⇢t is the PDE solution in (3.4).
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We aim to prove that b⇢k = m
�1 ·

Pm
i=1 �✓i(k) weakly converges to ⇢k✏. For any continuous function

f : RD ! R such that kfk1  1 and Lip(f)  1, we use the IP, CTTD, and ETD dynamics as the
interpolating dynamics,
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��
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, (D.7)

where the last inequality follows from the the fact that Lip(f)  1. Here the norm k·k(m) of
✓
(m) = {✓i}mi=1 is defined as follows,

k✓(m)k(m) = sup
i2[m]
k✓ik. (D.8)

In what follows, we define B > 0 as a constant that depends on ↵, ⌘, �, Br, and Bj (j 2 {0, 1, 2}),
whose value varies from line to line. We establish the following lemmas to upper bound the terms on
the right-hand side of (D.8).
Lemma D.2 (Upper Bound of PDE – IP). Let f be any continuous function such that kfk1  1 and
Lip(f)  1. Under Assumptions 4.1 and 4.2, it holds for any f that

sup
t2[0,T ]
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Z

f(✓) d⇢t(✓)�m
�1 ·

mX
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f
�
✓̄i(t)

����  B ·
p
log(mT/�)/m

with probability at least 1� �.

Proof. See §D.1.1 for a detailed proof.

Lemma D.3 (Upper Bound of IP – CTTD). Under Assumptions 4.1 and 4.2, it holds that

sup
t2[0,T ]

��✓̄(m)(t)� e✓(m)(t)
��
(m)
 B · eBT ·

p
log(m/�)/m

with probability at least 1� �.

Proof. See §D.1.2 for a detailed proof.

Lemma D.4 (Upper Bound of CTTD – ETD). Under Assumptions 4.1 and 4.2, it holds that

sup
kT/✏
(k2N)

��e✓(m)(k✏)� ✓̆
(m)(k)

��
(m)
 B · eBT · ✏.

Proof. See §D.1.3 for a detailed proof.

Lemma D.5 (Upper Bound of ETD – TD). Under Assumptions 4.1 and 4.2, it holds that

sup
kT/✏
(k2N)

��✓̆(m)(k)� ✓
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(m)
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q
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�

with probability at least 1� �
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Proof. See §D.1.4 for a detailed proof.

We are now ready to present the proof of Proposition D.1.

Proof. Plugging Lemmas D.2-D.5 into (D.7), we have that

sup
kT/✏
(k2N)
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Z

f(✓) d⇢k✏(✓)�
Z

f(✓) db⇢k(✓)
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log(m/�)/m+
q
✏ ·
�
D + log(m/�)

�⌘

with probability at least 1� �. Thus, we complete the proof of Proposition D.1.

D.1 Proofs of Lemmas D.2-D.5

In this section, we present the proofs of Lemmas D.2-D.5, which are based on [6, 53, 54]. We include
the required technical lemmas in §D.3. Recall that B > 0 is a constant that depends on ↵, ⌘, �, Br,
and Bj (j 2 {0, 1, 2}), whose value varies from line to line.

D.1.1 Proof of Lemma D.2

Proof. For the IP dynamics in (D.6), it holds that ✓̄i(t) ⇠ ⇢t (i 2 [m]) (Proposition 8.1.8 in [5]).
Furthermore, since the randomness of ✓̄i(t) comes from ✓i(0) while ✓i(0) (i 2 [m]) are independent,
we have that ✓̄i(t)

i.i.d.⇠ ⇢t (i 2 [m]). Thus, we have that
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Applying McDiarmid’s inequality [70], we have for a fixed t 2 [0, T ] that
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Moreover, we have for any s, t 2 [0, T ] that
����
���m�1 ·

mX

i=1

f
�
✓̄i(t)

�
�
Z

f(✓) d⇢t(✓)
����
���m�1 ·

mX

i=1

f
�
✓̄i(s)

�
�
Z

f(✓) d⇢s(✓)
���
����


���m�1 ·

mX

i=1

f
�
✓̄i(t)

�
�m

�1 ·
mX

i=1

f
�
✓̄i(s)

����+
���
Z

f(✓) d⇢t(✓)�
Z

f(✓) d⇢s(✓)
���


��✓̄(m)(t)� ✓̄

(m)(s)
��
(m)

+W1(⇢t, ⇢s)


��✓̄(m)(t)� ✓̄

(m)(s)
��
(m)

+W2(⇢t, ⇢s),

where the second inequality follows from the fact that Lip(f)  1 and (C.9). Applying (D.38) and
(D.40) of Lemma D.8, we have for any s, t 2 [0, T ] that
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Applying the union bound to (D.9) for t 2 ◆ · {0, 1, . . . , bT/◆c}, we have that
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Setting ◆ = m
�1/2 and p = B ·

p
log(mT/�)/m, we have that
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with probability at least 1� �. Thus, we complete the proof of Lemma D.2.

D.1.2 Proof of Lemma D.3

Proof. Recall that g and bg are defined in (3.5) and (D.1), respectively, that is,
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.

Following from the definition of e✓i(t) and ✓̄i(t) in (D.5) and (D.6), respectively, we have for any
i 2 [m] and t 2 [0, T ] that
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where the last inequality follows from (D.35) of Lemma D.7. We now upper bound the second term
on the right-hand side of (D.10). Following from the definition of bQ, Q, and bg in (3.1), (3.2), and
(D.1), respectively, we have for any s 2 [0, T ] and i 2 [m] that
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where
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Following from Assumptions 4.1 and 4.2, we have that kZj
i (s)k  B. When i 6= j, following from

the fact that ✓̄i(s)
i.i.d.⇠ ⇢s (i 2 [m]), it holds that E[Zj

i (s) | ✓̄i(s)] = 0. Following from Lemma D.9,
we have for fixed s 2 [0, T ] and i 2 [m] that
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By (C.9), we have that
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x2X
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25



where the last inequality follows from (D.40) of Lemma D.8. Thus, following from Assumptions 4.1
and 4.2, Lemma D.8, and the fact that Lip(fg)  kfk1 · Lip(g) + kgk1 · Lip(f) for any functions
f and g, we have for any s, t 2 [0, T ] that
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Z
j
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X
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Z
j
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���
����  B · |t� s|.

Applying the union bound to (D.12) for i 2 [m] and t 2 ◆ · {0, 1, . . . , bT/◆c}, we have that

P
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Z
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2).

Setting ◆ = m
�1/2 and p = B ·

p
log(mT/�)/m, we have that
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s2[0,T ]

���m�1 ·
X

j 6=i

Z
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���  B ·
p
log(mT/�)/m (D.13)

with probability at least 1 � �. When i = j, it holds that km�1 · Zi
i (s)k  B/m in (D.11), which

follows from Assumptions 4.1 and 4.2. Thus, plugging (D.13) into (D.11), we have that
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with probability at least 1� �.

Conditioning on the event in (D.14), we obtain from (D.10) that
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for any t 2 [0, T ]. Following from Gronwall’s Lemma [41], we have that
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 B · eBT ·
p
log(m/�)/m, 8t 2 [0, T ]

with probability at least 1� �. Here the last inequality holds since we allow the value of B to vary
from line to line. Thus, we complete the proof of Lemma D.3

D.1.3 Proof of Lemma D.4

Proof. By the definition of bg, ✓̆i(t), and e✓i(t) in (D.1), (D.4), and (D.5), respectively, it holds that
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,

where the last inequality follows from (D.35) of Lemma D.7 and (D.39) of Lemma D.8. Following
from the definition of k·k(m) in (D.8), it holds for any k  T/✏ (k 2 N) that
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Following from the discrete Gronwall’s lemma [41], we have that
sup
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(k2N)

��e✓(m)(k✏)� ✓̆
(m)(k)

��
(m)
 B

2 · T · ✏ · eBT  B · eBT · ✏,

where the last inequality holds since we allow the value of B to vary from line to line. Thus, we
complete the proof of Lemma D.4.

D.1.4 Proof of Lemma D.5

Proof. Let Gk = �(✓(m)(0), z0, . . . , zk) be the �-algebra generated by ✓
(m)(0) and z` =

(x`, r`, x
0
`) (`  k). Recall that bg and bGk are defined in (D.1) and (D.2), respectively. We have

for any i 2 [m] and k 2 N+ that
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Recall that ✓(m)(k) and ✓̆
(m)(k) are the TD and ETD dynamics defined in (D.3) and (D.4), respec-

tively. Thus, we have for any i 2 [m] and k 2 N+ that
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where the last inequality follows from (D.35) of Lemma D.7, and Xi(`) and Ai(k) are defined as
Xi(0) = 0,
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Xi(`).

Following from (D.32) of Lemma D.7, we have that kXi(`)k  B. Thus, the stochastic process
{Ai(k)}k2N+ is a martingale with kAi(k)�Ai(k � 1)k  B. Applying Lemma D.10, we have that

P
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Applying the union bound to (D.16) for i 2 [m], we have that
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By setting p =
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log(m/�), we have that
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with probability at least 1� �. By (D.15) and (D.17), we have that��✓̆(m)(k)� ✓
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with probability at least 1� �. Applying the discrete Gronwall’s Lemma [41], we have that
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with probability at least 1� �. Here the last inequality holds since we allow the value of B to vary
from line to line. Thus, we complete the proof of Lemma D.5.
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D.2 Proof of Corollary 4.4

The proof of Corollary 4.4 follows from Theorem 4.3 and the following lemma, which characterizes
the error of approximating the TD dynamics ✓(m)(k) in (3.3) using the PDE solution ⇢t in (3.4).
Lemma D.6. Let B be a constant that depends on ↵, ⌘, �, B0, B1, and B2. Under Assumptions 4.1
and 4.2, it holds for any k  T/✏ (k 2 N) that
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with probability at least 1� �.

Proof. Recall that bQ and Q(·; ⇢) are defined in (3.1) and (3.2), respectively. For notational simplicity,
we denote the optimality gaps for ✓(m) = {✓i}mi=1 and ⇢ 2P2(RD) by

L(✓(m)) = ED

h� bQ(x; ✓(m))�Q
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�2i
, (D.18)

L̄(⇢) = ED

h�
Q(x; ⇢)�Q

⇤(x)
�2i

. (D.19)

Recall that ✓(m)(k), ✓̄(m)(k✏), and ⇢t are the TD dynamics, the IP dynamics, and the PDE solution
defined in (D.3), (D.6), and (3.4), respectively. It holds for any k 2 N that
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. (D.20)

In what follows, we upper bound the two terms on the right-hand side of (D.20).

Upper bounding term (i) of (D.20). Following from the definition of L in (D.18), it holds for any
k 2 N that
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(D.21)

Following from (D.30), (D.31), and (D.36) of Lemma D.7, we have for any k 2 N that
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Thus, we have that
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with probability at least 1� �. Here the last inequality follows from Lemmas D.3-D.5.

Upper bounding term (ii) of (D.20). Let t = k✏. It holds for any t 2 [0, T ] that
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(D.25)
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where the expectation is with respect to ✓̄i(t)
i.i.d.⇠ ⇢t (i 2 [m]). For the second term on the right-hand

side of (D.25), following from the fact that E⇢t [ bQ(x; ✓̄(m)(t))] = Q(x; ⇢t) for any x 2 X , we have
that
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 B/m, (D.26)

where the inequality follows from the fact that k�k  B in Assumption 4.2 and the independence of
✓̄i(t) (i 2 [m]). Let ✓1,(m) = {✓1, . . . , ✓1i , . . . , ✓m} and ✓

2,(m) = {✓1, . . . , ✓2i , . . . , ✓m} be two sets
that only differ in the i-th element. It holds that

��L(✓1,(m))� L(✓2,(m))
��  B ·m�1 · ED
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i
 B/m,

where the first inequality follows from (D.21) and (D.22) and the second inequality follows from
Assumption 4.2. Applying McDiarmid’s inequality [70], we have for a fixed t 2 [0, T ] that
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It holds for any s, t 2 [0, T ] that
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where the first inequality follows from (D.21), (D.22), and (D.23) and the second inequality follows
from (D.38) of Lemma D.8. Applying the union bound to (D.27) for t 2 ◆ · {0, 1, . . . , bT/◆c}, we
have that
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Setting ◆ = m
�1/2 and p = B ·

p
log(mT �)/m, we have that
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with probability at least 1� �. Plugging (D.26) and (D.28) into (D.25), noting that t = k✏, we have
that

���L
�
✓̄
(m)(k✏)

�
� L̄(⇢k✏)

���  B ·
p
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with probability at least 1� �.

Plugging (D.24) and (D.29) into (D.20), we have that
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with probability at least 1� �. Thus, we complete the proof of Lemma D.6.

D.3 Technical Lemmas for §D

In what follows, we present the technical lemmas used in §D. Recall that bQ, bg, and bGk are defined
in (3.1), (D.1), and (D.2), respectively. Let B > 0 be a constant depending on ↵, ⌘, �, Br, and
Bj (j 2 {0, 1, 2}), whose value varies from line to line.
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Lemma D.7. Under Assumptions 4.1 and 4.2, it holds for ✓(m) = {✓i}mi=1 and ✓
(m) = {✓i}mi=1 that
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Meanwhile, for any Q 2 F , it holds that
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For any ⇢ 2P2(RD), it holds that
��g(✓; ⇢)
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Proof. For (D.30) and (D.31) of Lemma D.7, following from Assumptions 4.1 and 4.2 and the
definition of bQ in (3.1), we have for any x 2 X , ✓(m), and ✓

(m) that
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For (D.32) and (D.33) of Lemma D.7, following from the definition of bGk in (D.2), we have for any
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The inequalities in (D.34) and (D.35) of Lemma D.7 for bg follow from the fact that

bg(✓i; ✓(m)) = E(xk,rk,x0
k)⇠ eD

⇥
Gk(✓i; ✓

(m))
⇤
.

The inequalities in (D.36) and (D.37) follow from the definition of F and g in (4.3) and (3.5),
respectively. Thus, we complete the proof of Lemma D.7.

Recall that ⇢t is the PDE solution in (3.4) and e✓(m)(t) and ✓̄
(m)(t) are the CTTD and IP dynamics

defined in (D.5) and (D.6), respectively.
Lemma D.8. Under Assumptions 4.1 and 4.2, it holds for any s, t 2 [0, T ] that

��✓̄(m)(t)� ✓̄
(m)(s)

��
(m)
 B · |t� s|, (D.38)

��e✓(m)(t)� e✓(m)(s)
��
(m)
 B · |t� s|, (D.39)

W2(⇢t, ⇢s)  B · |t� s|. (D.40)
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Proof. For (D.38) of Lemma D.8, by the definition of ✓̄i(t) in (D.6) and (D.37) of Lemma D.7, we
have for any s, t 2 [0, T ] and i 2 [m] that

��✓̄i(t)� ✓̄i(s)
�� = ⌘ ·

Z t

s

���g
�
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Similarly, for (D.39) of Lemma D.8, by the definition of e✓i(t) in (D.5) and (D.34) of Lemma D.7, we
have for any i 2 [m] and s, t 2 [0, T ] that ke✓i(t)� e✓i(s)k  B · |t� s|.

For (D.40) of Lemma D.8, following from the fact that ✓̄i(t)
i.i.d.⇠ ⇢t (i 2 [m]) and the definition of

W2 in (2.4), it holds for any s, t 2 [0, T ] that
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Thus, we complete the proof of Lemma D.8.

Lemma D.9 (Lemma 30 in [53]). Let {Xi}mi=1 be i.i.d. random variables with kXik  ⇠ and
E[Xi] = 0. Then, it holds for any p > 0 that

P
✓���m�1 ·
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��� � C⇠ · (m�1/2 + p)

◆
 exp(�mp

2),

where C > 0 is an absolute constant.
Lemma D.10 (Lemma A.3 in [6] and Lemma 31 in [53]). Let Xk 2 RD (k 2 N) be a martingale
with respect to the filtration Gk (k � 0) with X0 = 0. We assume for ⇠ > 0 and any � 2 RD that

E
h
exp
�
h�, Xk �Xk�1i

� ���Gk�1

i
 exp

�
⇠
2 · k�k2/2

�
.

Then, it holds that

P
⇣
max
kn
(k2N)

kXkk � C⇠ ·
p
n · (
p
D + p)

⌘
 exp(�p2),

where C > 0 is an absolute constant.

E Auxiliary Lemmas

We use the definition of absolutely continuous curves in P2(RD) in [5].
Definition E.1 (Absolutely Continuous Curve). Let � : [a, b]!P2(RD) be a curve. Then, � is an
absolutely continuous curve if there exists a square-integrable function f : [a, b]! R such that

W2(�s,�t) 
Z t

s
f(⌧) d⌧

for any a  s < t  b.

Then, we have the following first variation formula.
Lemma E.2 (First Variation Formula, Theorem 8.4.7 in [5]). Given ⌫ 2P2(RD) and an absolutely
continuous curve µ : [0, T ] ! P2(RD), let � : [0, 1] ! P2(RD) be the geodesic connecting µt

and ⌫. It holds that
d

dt

W2(µt, ⌫)2

2
= �hµ0

t,�
0
0iµt

,

where µ
0
t = @tµt, �0

0 = @t�t | t=0, and the inner product is defined in (2.5).
Lemma E.3 (Talagrand’s Inequality, Corollary 2.1 in [59]). Let ⌫ be N(0, · ID). It holds for any
µ 2P2(RD) that

W2(µ, ⌫)
2  2DKL(µ k ⌫)/.

Lemma E.4 (Eulerian Representation of Geodesics, Proposition 5.38 in [68]). Let � : [0, 1] !
P2(RD) be a geodesic and v be the corresponding vector field such that @t�t = � div(�t · vt). It
holds that

@t(�t · vt) = � div(�t · vt ⌦ vt).
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