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A Table Comparing to the Existing Literature

The comparison of our results to those in the existing literature, as discussed in Section 1.1, is
outlined in Table 1. In the table, we write u = E[f(g)g] for g ~ N(0,1). We use K to represent
the structured set of interest, and X} to represent the set of k-sparse vectors in R"™. For Projected
Back Projection (PBP) [26], the reconstructed vector is X := Px (=ATy), where Py is the
projection operator onto K. In addition, O/ represents the boundary of K. Letting ¢ : R" — R

be the density of the random measurement vector a and assume that g is differentiable, we write
Sq(a) = — Vq‘g—s). For thresholded Empirical Risk Minimization (ERM), the reconstructed vector

is X := arg minyecpi () X113 — 5 Yoiey i (Sq(ai), x), where §; == sign(y;) - [y| A 7 for some

thresholding parameter 7. We recall that GMW stands for Gaussian Mean Width (cf., Appendix E)
and LEP stands for Local Embedding Property (cf., Definition 3). Interested readers may refer
to [40, Table 1] for a summary of further relevant results.

B Omitted Details and Additional Auxiliary Results for Proving Theorem 1
(Non-Uniform Recovery)

In this section, we fill in the missing details for proving Theorem 1, including a statement of the
concentration bound used to establish Lemma 2, and a proof for Lemma 3. We first provide some
useful additional auxiliary results that are general, and then some that are specific to our setup.

B.1 General Auxiliary Results

We have the following basic concentration inequality, which is used in the proof of Lemma 2.
Lemma 4. ([34, Lemma 1.3]) Fix fixed x € R", we have for any € € (0, 1) that

1 2 —e2(1—€)m
P((l—e>|x|§<HﬁAxH2<(1+e>||x||%> > 1 — g~ (1-m/4, (36)

The following definition formally introduces the notion of an e-net, also known as a covering set.

Definition 4. Let (X, d) be a metric space, and fix € > 0. A subset S C X is said be an e-net of X if,
Sorall x € X, there exists some s € S such that d(x,s) < e. The minimal cardinality of an e-net of
X is denoted by N* (X, €) and is called the covering number of X (with parameter ¢).

Alongside the sub-Gaussian notion in Definition 1, we use the following definition of a sub-
exponential random variable and sub-exponential norm.

Definition 5. A random variable X is said to be sub-exponential if there exists a positive constant C
1
such that (E[| X |P])? < Cp for all p > 1. The sub-exponential norm of X is defined as

[ Xy, =supp™ " (E[|X[P])7 . (37)
p>1

The product of two sub-Gaussian random variables is sub-exponential, as stated in the following.

Lemma 5. ([36, Lemma 2.7.7]) Let X and Y be sub-Gaussian random variables (not necessarily
independent). Then XY is sub-exponential, and satisfies

[ XY [y < X Mg 1Y - (38)
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In our setting, since we assume that y; is sub-Gaussian and (a;, x*) ~ A(0,1), Lemma 5 reveals
that the random variable y;(a;, x*) is sub-exponential, and has the same distribution as f(g)g with
g~ N(0,1), yielding

n=E[f(g9)g] <E[lf(9)qgl] < f(9)glly, <CYP (39)

for some absolute constant C' > 0. In addition, we have the following concentration inequality for
sums of independent sub-exponential random variables.

Lemma 6. ([35, Proposition 5.16]) Let X1, ..., Xy be independent centered sub-exponential ran-
dom variables, and K = max; || X;||y,. Then for every a = [a1,...,an]T € RN and e > 0, it
holds that

N
i=1

€ €
>e) <2exp (c . min( , )) . (40)
> K lalf” Kol

B.2 Auxiliary Results for Our Setup

In the remainder of this appendix, we consider the setup described in Section 2. Based on Lemma 6,
we have the following.

Lemma 7. FixanyX € S" ! and lety := f(AX). Foranyt > 0, if m = ) (t + logn), then with

probability 1 — e=*®), we have
[t+1
<0 <¢ —|—0gn> ) 1)
o m

Proof. For any fixed j € [n], let X be the j-th entry of L AT (y — 1AX). We have

1
RYSEES
m

1o _ 1 «
X; = *Zaij(yi—lt(ai,xﬁ = *ZXij, (42)
m 4 m
=1 i=1
where X;; := a;;(9; — pu(ai, X)). We proceed by showing that { X }ic[m are i.i.d. sub-exponential
random variables.
Since a; ~ N (0,1,,), we have Cov|a;;, (a;,X)] = Z;. For i € [m], letting g := (a;,x) ~ N(0,1),
we find that a;; ~ N(0,1) can be written as a;; = Z;g + (/1 — Z7h, where h ~ N(0,1) is
independent of g. Thus, Xi; = a;;(4; — p(ai, X)) = (Z;9 + /1 — 23h)(f(g9) — ng), and hence
E[X;;] = 2;E[f(9)g — ng®] = p — o = 0. In addition, from Lemma 5 and (39), we obtain
1 Xijlle, < ClIf(9) = nglly, < C"2. (43)

For fixed ¢/ > 0, letting €; = ¢'|| X1 ||, 1/ t“% and € = max; ¢, we have from Lemma 6 that

P(|X;] > €) <P(|X;] > ¢;) (44)
1 m
=P(— Xij| > € 45
(m ; j| Z 6]) (45)
<92 i me; ey (46)
exp | —cmin ,
=T X312, X5,
<exp (—Q(t+1logn)), (47)

where (47) uses m = (¢ + logn) and the choice of ¢;. For sufficiently large ¢/, we can make the
implied constant to () in (47) greater than one, and taking the union bound over j € [n] gives

P (| nare - uan
m

> 6) < nexp (—Q(t +logn)) = e~ (48)

o

as desired. O
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In addition, we have the following useful lemma.

Lemma 8. FixanyX € S" ! and let y := f(AX). For any fixed u € R", the random variable
U := % <u, AT(y - ;LAX)> has zero mean and is sub-exponential. Moreover, for any £ > 0, if

m = Q(&2), then with probability 1 — 6_9(52), we have
GNP
v

Proof. When u is the zero vector, the result is trivial, so we only consider u # 0. Following similar
steps to the proof of Lemma 7, we write

Ul < (49)

(w, AT(y — pAR)) = > u; > ai;(5i — plai, X)) (50)
Jj=1 =1
:Z(gi_ﬂ<ai>i>)zujaij (51
i=1 j=1
= [ull2 > (@ — plai, %)) (ai, 1) (52)
i=1
= |ull2> U, (53)
=1

where G = m and U; := (y; — p{a;, X))(a;, ). We proceed by showing that Uy, ..., U,, are
i.i.d. sub-exponential random variables. Note that (a;, ) ~ N(0,1), and Cov[{a;, 0}, (a;,X)] =
(x,u). Fixing ¢ € [m] and letting g := (a;,X) ~ N(0,1), we find that (a;, @) can be written as
(a;,u) = (x,1)g + /1 — (x,u)2h, where h ~ N(0, 1) is independent of g. Therefore, we obtain

E[U] = E (5 — nlas, %))(as, w)] = (X, W)E[f(9)g — ug”] = 0. (54)
In addition, from Lemma 5 and (39), we derive
[Uillg, < C'lIf(9) — pglly, < C"9. (55)
EYllull2

, we deduce from Lemma 6 that

> e) (56)

Letting € = ¢/

Jm

PUﬂzo—P<ﬁf

S
=1

me> me
< 2exp [ —cmin , 57)
< (MW&W@H%MAﬂJ)
< &), (58)
where (58) follows from m = 2(£2) and the choice of e. O

Based on the above results, we are now in a positive to prove Lemma 3.

B.3 Proof of Lemma 3 (Main Auxiliary Result for Proving Theorem 1)

We utilize ideas from [2] based on forming a chain of nets. Specifically, for a positive integer [, let
M = My C My C ... C M, be a chain of nets of B(r) such that M, is a %-net with §; = g
There exists such a chain of nets with [35, Lemma 5.2]

AL
log |M;] < klog — " (59)

%

By the L-Lipschitz assumption on G, we have for any i € [I] that G(M;) is a §;-net of G(B5(r)).
We write x as
X=X-x)+ X —%X_1)+ ...+ (X1 — X0) + Xo, (60)
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where X; € G(M, i) foralli [7], and ||x —%;||2
the triangle inequality gives

< &, |[%i —%i_1]]2 < 5 foralli € [I]. Therefore,

% = Xoll2 < 26. (61)

We decompose - (AT (y — nAX),x — pX) into three terms:
1 o 1, o )
AT - pAR), X —px ) =( AN — pAX), Ko — px
—|—Z< AT(y — pAR), %x; — %, 1>

+<AT(y—MAx),5c—5q>. (62)
m

We derive upper bounds for these terms separately:
1. For any t € R", from Lemma 8, we have that for any £ > 0, if m = Q(¢?), then with
probability 1 — e~ UE),

&y

1
<mAT(y — pAX),t — u>‘<> < ||t — px||a- (63)

Recall that log |G(M)| = log [M| < klog 4. We set £ = C'\/klog &~ in (63), where C is a
certain positive constant, and let m = €2 (§ 2) =0 (k log %) By the union bound over G(M),
we have that with probability 1 — e~ (klog %), forallt € G(M),

1 r _ _ klog &~ _
(a7 - pax e px) <0 (0 PEL ) joopmle o
m m
Therefore, with probability 1 — —(klog & ) the first term in (62) can be upper bounded by
1 _ . B klog &r 5 _
<mAT(y—qu),x0—,ux> <0 LAY T6 %0 — ux||2 (65)

<O\ TIS (% — px||2 + 29), (66)

where (66) uses (61) and the triangle inequality.

2. From Lemma 8, similarly to (63), and applying the union bound, we obtain that for all i € [I]
with corresponding &; > 0 and all (t;_1,t;) pairs in G(M;—1) x G(M;), if m = Q (max; ),

then with probability at least 1 — Y\, [M;_| - |Mi|e_7,

é-l
Jm

Since (59) gives log (|M;] - |M;—1]) < 2ik + 2klog 4£7, if we set & = C'4/ik + klog &~

with C” sufficiently large, we obtain

1
<mAT(}_’ — AX), t; — ti1> l[t: —ti—1ll2- (67)

! . !
Z \M; | - |Mi|e_% _ Zefﬂ(ikJrklog Lr) _ —(klog &) Ze—Q(ik) _ o~ (klog &)
i=1 i=1 i=1

(68)
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Recall that ||%; —%;_1|2 < 5> foralli € [I]. Then, we obtain thatif m = Q (k (I + log £)),
with probability 1 — e_Q(k log 4 >, the second term in (62) can be upper bounded by

: l
o 5 o
ik+kloglr
< C’wz g5 « ot (70)

1 . Lr
k \/% + \/log e
< 4 — - Y
Oy -~ ;,1 ST (71)

[ k1 Lr
=0 | 9Yé rnog s , (72)
m

where (70) substitutes the choice of &;, (71) uses \/ a+b < a+ /b, and (72) uses the
assumption Lr = Q(dn) and the fact that ) .-, 2L i
3. Withm = Q) (k log T)’ if we set t = Q(klog & =) in Lemma 7, we obtain with probability

1-— eiQ(klog%) that
klog &z
<0 m/;’i o (73)

Then, setting | = [log, n], with probability 1 — e~ (klog %), the third term in (62) can be
upper bounded as follows:
% — %1 (74)

1 1
<AT(y — uAR),% >~<l> < HAT<y ~ 4A%)
m m 00

klog &= L
<olv/—% | valk-xl. 79
klog L&
<O |y N8y \/ﬁxé (76)
m 2
[ klog &&
=0 [y r08 s , (77)
m

where (74) uses Holder’s inequality, (75) uses ||v|1 < /n||v]]2 for v € R", (76) uses the
definition of X;, and (77) uses [ = [log, n].

is finite.

|- AT(5 -
m

By the assumption Lr = Q(dn), the choice [ = [log, n] leads to m = Q (k (I +log &")) =
Q (klog £r). Substituting (66), (72), and (77) into (62), we obtain that when m = Q (klog
with probability 1 — —(klog *)

1 klog L& klo
<mAT<y—uA5<),i—u>‘<>s0 w\/% 1% = pxll2 + O | 591 8% . (78)

This completes the proof of Lemma 3.

C Omitted Proofs from Section 4 (Other Extensions)

C.1 Proof Outline for Corollary 2 (Bounded Sparse Vectors)
For fixed v > 0, let S, := X} NvBY, where X} represents the set of k-sparse vectors in R™. We
know that for any & > 0, there exists a d-net M, of S, with |[M,| < (Z) (%)k < (e&”)k =
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exp (O (klog ¥%)) [1]. Using this observation and following the proof of Theorem 1, we can derive
the Corollary 2 for the case that the signal comes from the set of bounded k-sparse vectors.

C.2 Proof of Corollary 3 (General Covariance Matrices)
We can write a; as a; = v/Eb; with b; ~ N(0,1,,). Letting® A = [af;al;...;al ] € R™*" and
B = [b{;...;bl] € R™*" we have

. v A
x = argmin [|ly — Ax]|2

Sk = argmei}% ly — BVEx]2 (79)
& VI%x =arg min |y — Bx|s. (80)
x€VIK

Define G as G(z) = vVIG(z) for all z € BE(r). Then, it is straightforward to establish that G is

N . 1

L-Lipschitz with L = || X||3_,, L. In addition, we have y = f(Ax*) = f(BVXx*), [VEx*|s =1
A 1

and 1(vVEx*) € VEK = G(B5(r)). Applying Theorem 1, we obtain that when ||2(|3_,Lr =

[Zli2t7) with probability 1 — e~ (™),

Q(eyn) and m = Q(% log =12
VIR — pVEX"||y < e+ 7, (81)

as desired.

D Alternative Model for Binary Measurements

For binary observations, the following measurement model is considered in various works [4,24,43,
44]: The response variables, y; € {—1,1},4 € [m], are drawn independently at random according to
some distribution satisfying

Elyi|a;] = 0(af x*), (82)
for some deterministic function 6 with —1 < 6(z) < 1. In this section, we provide a result related to
Theorem 1 for this model, again considering the case that a; ~ N(0,1,,) and x* € K N S"~! with
K = G(B5(r)) for some L-Lipschitz generative model G.

The model (82) is a special case of (3) in which f(g) € {—1,1} and E[f(g)] = 6(g). Using this
interpretation and the tower property of expectation, we readily find that

1= E[E[f(9)g] 9]l = E[6(9)g] (83)
with g ~ N(0,1). In addition, we have for any i € [m] that
Ely:a’x"] = E[E[yialx"[a.]] = E[(a?x")0(alx")] = s, (34)
and it is straightforward to show that [43, Lemma 4]
Ely;a;] = px*. (85)

Lety € {—1,1}™ be a vector of corrupted observations satisfying \/% lly — ¥ll2 < 7. To derive an
estimator for x*, we seek X maximizing § (Ax) over x € K = G(B5(r)), i.e.,
% := argmaxy’ (Ax). (86)
xeX

As was done in previous works such as [24,43], we assume that the considered low-dimensional
set is contained in the unit Euclidean ball, i.e., K C BZ. In this section, we establish the following
theorem, which is similar to Theorem 1. Although the ideas are similar, the model assumptions and
the algorithms used are slightly different, so the results are both of interest.

Theorem 3. Consider any x* € K N S"~! with K = G(B(r)) C B} for some L-Lipschitz
generative model G : B (r) — R™, along with'y generated from the model (82) with a; ik
N(0,1,,), and an arbitrary corrupted vector y with \/% l¥ —vylle < 7. Foranye > 0, if Lr = Q(en)

and m = () (6% log %) then with probability 1 — e~ M), any solution X to (86) satisfies

Ix* — %[, < T (87)
1

The proof is mostly similar to that of Theorem 1, so we only outline the differences in the following.
>For matrices V1 € RF1XN and V, € RF2XN , we let [V1; V2] denote the vertical concatenation.
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D.1 Auxiliary Results

In the remainder of this appendix, we assume that the binary vector y is generated according
to (82). Note that for binary measurements, the relevant random variables are sub-Gaussian, and
thus we only need concentration inequalities for sub-Gaussian random variables, instead of those
for sub-exponential random variables. According to [35, Proposition 5.10], we have the following
concentration inequality for sub-Gaussian random variables.

Lemma 9. (Hoeffding-type inequality [35, Proposition 5.10]) Let Xy, ..., XN be independent
zero-mean sub-Gaussian random variables, and let K = max; || X;||y,. Then, for any o =
(a1, az,...,an]T € RN and any t > 0, it holds that

N 2

ct
P ‘ Xl >t < 11— ——75 ), 88
(Z“ ) o (1 fafas) ®

where ¢ > 0 is a constant.

By Lemma 9 and the equality E[y;a;] = Ax*, we arrive at the following lemma, which is similar to
Lemma 7.

Lemma 10. [43, Lemma 3] With probability at least 1 — e' ™, we have

<o [t +logn (89)
m

The following lemma is proved similarly to Lemma 8§, so the details are omitted.
Lemma 11. For any u € R", the random variable U = <%ATy — AX*, u> is sub-Gaussian with

1
‘ATy — Ax*
m

(oo}
for a certain constant ¢ > 0.

zero mean. Moreover, for any & > 0, with probability 1 — e=UE) e have

€llull>

<
i<

(90)

Finally, based on Lemmas 10 and 11, and by using a chain of nets similarly to (59)-(60), we derive the
following analog of Lemma 3, whose proof is again omitted due to similarity. Note that Lemmas 10
and 11 are only used to derive Lemma 12, and they are not directly used in the proof of Theorem 3.

Lemma 12. For any 0 > 0, if Lr = Q(én) and m = Q(k log %), then with probability 1 —
e~k log %), it holds that

1 klog L& klog Lz
<ATy—)\x*,§c—x*><O B ) et =gl +0 o) 2 ) o
m m m

D.2 Proof Outline for Theorem 3

Because X maximizes y7 (Ax) within K and we assume x* € K, we obtain

v (A%) > 37 (Ax"), (92)
which gives the following after some simple manipulations:
(ux*,x* —x) < <7711AT37—,ux*,§c—x*>. (93)
Using ||%x||2 < 1 and ||x*||2 = 1, we derive a lower bound for (ux*,x* — %), i.e.,
Sl =3 < x", x" = %). ©4)

Once this result is in place, the analysis proceeds similarly to that of Theorem 1: Similar to (19),
we derive an upper bound for the adversarial noise term, and using Lemma 12 (which is similar to
Lemma 3) to derive the following analog of (20):

1 klog L& Eklog LT
<AT5/—uX*,>E—X*> < |7+ %85 |x* —%x|l24+O | 70 +0 kI I (95)
m V' m V' m

Combining (94) and (95), and using similar steps to those following (23) in the proof of Theorem 1,
we derive the desired upper bound for ||x* — X||2. The details are omitted to avoid repetition.
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E Relation to the Gaussian Mean Width
The (global) Gaussian mean width (GMW) of a set K is defined as

S(K) = | sw (%)), 6)
xeK-K

where K — K :={s—t : s € K,t € K} and g ~ N(0,1,,). The GMW of K is a geometric

parameter, and is useful for understanding the effective dimension of K in estimation problems. In

various related works such as [25,26], the sample complexity derived depends directly on the GMW

or its local variants. For example, if Z C R™ is compact and star shaped, then by [26, Eq. (2.1)],

K 2
m=0 ( = 64) ) measurements suffice for e-accurate recovery.

According to [24], the GMW satisfies the following properties:

1/2
1 IFK = By or K = 8"1, then w(K) = E[||g|l2] < (E [|1gll2])"* = v:
2. If K is a finite set contained in BY, then w(K) < C/log|K|.

Using these observations, we obtain the following lemma.

Lemma 13. Fix r > 0, and let G be an L-Lipschitz generative model with Lr = Q(1), and let
K = G(B5(r)) C B. Then, we have

wK)?=0 (k log LQ‘?) ) 97)

Proof. As we stated in (59), for any § > 0, there exists a set M C B5(r) being a £ -net of B (r) with

log | M| < klog %, and G(M) is a é-net of K. For any x € K — K, there exists s € G(M ) —G(M)
with ||x — s||2 < 24; hence,

(8,x) < (g,s) + |Ig[l2llx — s[l2 < (g, s) + 24]|g][2. (98)
As a result, we have
w(K)=E { sup <g,x>} (99)
xeK-K
< w(G(M)) + 20E[[|g][2] (100)

4L
< C\/klogTT +25y/n. (101)
By a similar argument, we also have

w(K) > Cy/klog % — 25v/n. (102)

Setting § = \/g and applying the assumption Lr = (1), we obtain the desired result. [

We emphasize that the above analysis assumes that G(B%(r)) C BY, and in the absence of such an
assumption, the Gaussian mean width w(K) will generally grow linearly with the radius.

Returning to the sample complexity m = O(Eﬁ2 log %) in Theorem 1, we find that this reduces

2
tom = O(w(:g) ) in broad scaling regimes. For instance, this is the case when 1) is constant,

Lr = n2() (as is typical for neural networks [2]), and € decays no faster than polynomially in 7.

F Local Embedding Property (LEP) for the 1-bit Model

Forv,v' € R™, letdy(v,Vv’) := L 3™ 1{v; # v/} denote the (normalized) Hamming distance.

Note that when f(z) = sign(z), we obtain u = E[f(g)g] = \/% and ¢ = 1. We have the following

lemma, which essentially states that for all x,s € S™ 1 if x is close to s in £3-norm, then sign(Ax)
is close to sign(As) in Hamming distance.
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Lemma 14. (Adapted from [17, Corollary 2]) For fixed e € (0,1), if m = Q(£log £%), with

e
probability 1 — e~ ™), for all x,,%y € 8"~ with X1, poxs € K, where pi1, iz = (), it
holds that

Ix1 — x2]]2 < € = du(sign(Ax;),sign(Axz)) < O(e). (103)

Note that each entry of |sign(Ax;) — sign(Axs)| is either 2 or 0. Hence, if (103) is satisfied, we
have

1
vm
That is, setting 3 = %, we have that f(z) = sign(w) satisfies Assumption 1 in Section 5 with
Migp (57 ﬁ) = O(% log %) and PLEP(57 ﬂ) =1— e Q0Om),

|[sign(Ax;) — sign(Axs)|l2 = 2v/dnu(sign(Ax; ), sign(Axs)) < O(Ve). (104)

G Proof of Theorem 2 (Uniform Recovery)

We briefly repeat the argument at the start of the proof of Lemma 3: For fixed § € (0,1) and a
positive integer [, let M = My C M; C ... C M, be a chain of nets of Bé(r) such that M, is a
%—net with §; = %. There exists such a chain of nets with

4L
log | M;| < klog 5T

i

(105)
By the L-Lipschitz assumption on G, we have for any i € [I] that G(M;) is a §;-net of G(B5(r)).
We write ux* and X as

px* = (px" — pxq) 4 (pxg — pxp_y) + -+ (px] — pxg) + pxg, (106)

Xx=(x—-%)+ X —%-1)+ ...+ (%1 —X0) + %o, (107)

where X;, ux} € G(M;) foralli € [I], and ||x—%;||2 < 2%, || pex* —px |2 < %,and I%:i—%i—1]]2 <
2%1, [lpxt — pxt_qll2 < 2%1 for all ¢ € [I]. Therefore, the triangle inequality gives

5 %ol < 26, [lux — gl < 26, (108)

In analogy with (62), we write

<1AT(S’uAX*),f<uX*>
m
L oyr- - * Lo X0 - *
—{(—ATG -y x x4 (AT (y— (A ) k- g
m m %52
1 * * 1 *
+<AT (f(A X*O )—MA X*O ),X—ux*>+<AT,uA< X*O —x*),fc—,ux*>
m %5112 15| m (%512 ;

09)
and proceed by deriving uniform upper bounds for the four terms in (109) separately. In the following,

we assume that m = Q) (k log %); we will later choose ¢ such that this reduces to m = (k log L—ET) R
as in the theorem statement.

1. A uniform upper bound for <%AT y-y)x— ,ux*>: Recall that from (19), we have

1 1 1
Ay -y x—ux* V< ||l—=(y - ¥ ——A(%x — px* 110
(AT —9)x—m ) < | -9 x| =ag—m)|  ao
< 7O(|[% — px* |2 + ). (111)
This inequality holds uniformly for all X, ux* € IC, since it is based on the uniform result in

Lemma 2.
2. A uniform upper bound for (-L AT (y —f (A”:ﬁ)) , X — px*): From (108), we have

Ix* —x5ll2 < %. Because ||x*[|2 = 1 and ||x* — x3||2 > |[|x§|l2 — ||x*||2], we obtain

* * * —1 2(5
X XO(”XO*”? ) < |||X3”2 _ 1| <= (112)
x5l H

%5112

.
X0

2 2
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and the triangle inequality gives

44
2 B
If we choose § < ¢’ for sufficiently small ¢, then we obtain ||x3|2 € [1 — 70, 1 + 7] for

%
X0

“ Tl (113)

arbitrarily small )9, which implies that c7=5— € K for some ¢ € [ — 71, 4 + 7] and arbitrarily

HX* ll2
small 77 > 0 (since ux{ € K and p = ©(1)). Hence, considering Assumption 1, we observe
that the high-probability LEP condition (34) therein (along with © = ©(1)) implies

o= ()| = o s - (agi)
Vvm H %5112/ |l Vvm 1x51l2 /112
Then, similarly to the derivation of (111), we have that if m > Mpgp(d,5) + Q (k log %),
then with probability 1 — PLgp (6, ) — e~ ™),

(ea (-1 (i) ) %)

<0(67), (114

1
< ||— —Ax - 115
—Hm<y (a ||xo||2>) H =], ()
< 0(6") x O(||% — px* |2 + ) (116)
= O(6°||% — px*[|2 + 6°). (117)

3. A uniform upper bound for (- AT ( f (Ai> HA Hx0||2> — px*): For brevity, let

[EHB

sg = %AT (f (Ax70> MAHX*H ) We have

[

so, % — ux*) = (80, % — p—2_ Y 4+ (s, X0 _ ) ). (118)
7 e pl—
%512 %512

By Lemma 3 and the union bound over G(M) (for x{), we obtain with probability 1 —
|M‘e—9(klog %) =1 e—Q(klog %) that

klog Lr x klog Lt
<so,5< X°> <0 B ) g -0 || 4o 285 (119)
||Xo||2 m %512 {2 m
klog% . . klog =-
<0 (% — px*[]2 +46) + O | 0 (120)
m m

klog &r klog Lr
=0 5 Ik — 2 + O 5\/& , (121)
m m

where (120) follows from the triangle inequality and (113). In addition, we have

||::H||2
l

= <507PJ( ;{0 XS)> +<So, +Z So, W )> (122)

1512

Then, by Lemma 8 and the union bound over G(M) (for x{), we obtain with probability

1 — e~ (klog &) that
x klog L& x klog Lr
s X0 _x)V<o 9875 X0yl <o 58
0, W * 0 M * 0 9
%5 ]2 m %512 2 m

(123)
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where the last inequality uses (112). Similar to that in the proof of Lemma 3, we setl = [log, n].
By (77), the union bound over G(M) (for x{), and the assumption ) = ©(1), we obtain with

probability 1 — e~ ?(*10g %) that

[klog Lr
(80, pu(xf —x*)) <O |0 % . (124)

In addition, by (72) and a union bound over both G(M) and over G(M;_1) x G(M;) for all
i € [1], we obtain with probability 1 — e~2(k1os %) that

1 Lr

klog &
> (soplxiy —x1) <O [ 01— | (125)
=1

Substituting (121)—(125) into (118), we obtain

| klog £~ | klog &
(so, X —pux") <O [d+ % | — px*|la+O | 0 Orié . (126)

4. A uniform upper bound for <%ATMA (x—o x*) ,X — ,ux*>: From Lemma 2, we have

BB

that when m = ) (k log %) with probability 1 — e~2(™),

<1ATMA( X*O —X*) ,5(—,ux*>
m 151l
1 X4 1
< ||—=pA (*O - x*) —A(x — px*)
H\/m 1512 2 llvm 2
<O(8)O([[% = px*|l2 + 8) = O (3]|% — px*[|2 + 6%) . (128)

Having bounded the four terms, we now substitute (111), (117), (126), and (128) into (109), and
deduce thatif m > My gp (0, )+ (k log %) then with probability at least 1 —e~2("™) — Py pp (6, 8),
it holds uniformly (in both px* and X) that

1
<AT(y — pAX"), % — ,ux*>
m

Ik log Lt [klog L
<Oo|r+6°+ % % — px*[ls + O | 67 +6 %MW . (129

Then, similarly to (23), we derive that if m > Mpgp(4,8) + (k log %), then with probability at
least 1 — e~ (M) — Prrp (8, 8), it holds uniformly that

klog &- klog L&
lnx* —x[3 <0 T+55+\/% 1% — pix* [l + O 5T+5\/$+51+5 ,

(130)

(127)

where we used the fact that 6% 4 § = O(67), since 3 < 1.

Considering the parameter € in the theorem statement, we now set § = €!/7 (i.e., e = 6”), meaning
that the previous requirement m = Q (% log &) reduces to m = Q (% log £75) = Q (& log £7).

low L
In addition, 4/ kli% = O(e). Since e < 1 and 8 < 1, we have

[ klog £& [ klog £&
O|7+6 + % |% — px*lo+O | 67+ 6 %Jré“ﬁ

(r 4+ €)||% — px*||2 + O <el/ﬁ7+el+1/ﬁ) (131)
(T+e)|x— px*24+ 0 ((e+1)?). (132)

0
0
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Substituting into (130) and considering two cases depending on which term in (132) is larger, we
obtain that if m > Mpgp(e'/?, B) + Q(% log L), then with probability at least 1 — e~}(™) —
Prgp(e'/?, B), it holds uniformly that

|ux* — x|2 < O(1 + €). (133)
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